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Hydrodynamic flows in compliant channels are of great interest in physiology and microfluidics. In
these situations, elastohydrodynamic coupling leads to: (i) a nonlinear pressure-vs.-flow-rate rela-
tion, strongly affecting the hydraulic resistance; and (ii), because of the compliance-enabled volume
storage, a finite relaxation time under a step-wise change in pressure. This latter effect remains
relatively unexplored, even while the time scale can vary over a decade in typical situations. In this
study we provide time-resolved measurements of the relaxation dynamics for thin and soft, rectan-
gular microfluidic channels. We describe our data using a perturbative lubrication approximation
of the Stokes equation coupled to linear elasticity, while taking into account the effect compliance
and resistance of the entrance. The modeling allows to completely describe all of the experimen-
tal results. Our work is relevant for any microfluidic scenario wherein a time-dependent driving is
applied and provides a first step in the dynamical description of compliant channel networks.

To force the movement of fluid through a channel, a
pressure drop must be applied across its ends. If the
bounding walls of this simple flow domain are compli-
ant, a pressure-induced deformation can strongly affect
the flow as compared to the non-compliant case. This
elastohydrodynamic coupling is often encountered, and
the pipe-flow case is referred to as soft hydraulics [1].
Particularly, the flow modification can give a non-linear
pressure-vs.-flow-rate relation [2, 3], with the flow resis-
tance changing by an order of magnitude or more. Upon
a pressure change, however, the relaxation to a new de-
formation profile is not instantaneous. The pipe thus
settles into a new configuration over a little-investigated,
pressure-dependent time scale at the focus of this Letter.

Elastohydrodynamics (EHD) was historically studied
in the context of lubrication of rough, solid contacts [4–
6], often for heavy mechanical applications and remains
a key ingredient in modern tribology [7]. Conversely,
the lubrication of soft materials has attracted increas-
ing attention in the last decades [8–12] due in part to
its relevance in biology and microtechnologies. Exam-
ples include joint lubrication [13], eyelid wiper mechan-
ics [14], and the deformation of blood vessels under flow-
induced pressure [15–19]. At microscales, EHD interac-
tions may affect the transport of blood cells [20] because
of the emergent lift forces arising from the fluid-mediated
soft-substrate deformation [21].

Concerning soft technologies, microfluidics is of signif-
icant interest [22]. Indeed, microchannels are typically
made with soft elastomers —e.g. polydimethylsiloxane
(PDMS)— allowing for fast prototyping, design fidelity,
and transparency [23, 24]. Compliance is a key attribute
for applications such as organ-on-a-chip [25, 26] or wear-
able technologies [27, 28]. Targeted actuation of de-
formable pipes also allows to generate and manipulate
flows at the scale of a single channel [29–31], or in com-

plex networks [32] as in the plant kingdom [33]. Finally,
soft components can be used as pressure-controlled valves
serving as building blocks for the logic gate components
in state-of-the-art microdevices [34–36].

While many soft-hydraulics studies focus on the steady
state, compliance is also expected to have dynamic ef-
fects. This deformability leads to volume storage capac-
ity [37], schematically indicated in Fig. 1(a), which in
addition to changing the resistance of a narrow chan-
nel, implies a characteristic response time of the system
by analogy with electronics [38, 39], see Fig. 1(b). This
dynamic response was used for example to attenuate par-
asitic fluctuations in syringe-pump driven flows [40], and
limits the production rate in stop-flow lithography [41].

With dynamical aspects of soft hydraulics already find-
ing applications, it is imperative to characterize the tem-
poral response of compliant microchannels. Here we ex-
perimentally and theoretically investigate the response
of thin, soft microfluidic channels to step-wise pressure
perturbations. We use an EHD model in the lubrication
limit applied to such devices. As previously [2, 3, 42], this
approach allows to rationalise the nonlinear relation be-
tween pressure and flow rate. Performing a perturbation
analysis and, crucially, specifying the capacitance and
resistance of the peripheral components, the pressure-
dependent relaxation dynamics of the entire experimen-
tal system is revealed. Our approach includes an asymp-
totic analysis of the general high- and low-pressure limits,
along with the full crossover requiring complete specifi-
cation of the microsystem.

The microfluidic chips used here consisted of rectan-
gular channels with length L = 4.0 cm between the
inlet/outlet centers of radius dc = 1.0 mm (cf. the
Supplemental Material, SM §S.I at Ref. [43], for a
full list of symbols). The channel widths were w =
{200, 500, 1000, 2000} µm, with uncertainty of order a
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Figure 1. (a) Schematics of the microfluidic setup, including
a flow sensor, a pressure sensor and a soft channel. (b) Equiv-
alent electronic circuit, the flow sensor modeled as an ideal
resistance r0, the pressure sensor as a capacitance c0, and the
soft channel as a series of infinitesimal resistances and capac-
ities as in a transmission line. (c) Shifted, imposed pin and
measured p0 and q as a function of t, with long-time values of
pin,∞ = 1301 mbar, p0,∞ = 862 mbar and q∞ = 1058 nL/min.

few micrometers, and undeformed heights h0 = 5.0± 0.1
µm. The molds were characterized with a mechan-
ical profilometer (Bruker Dektak). Liquid reservoirs
were connected to chips using tubing with negligible hy-
draulic resistance and compliance (PEEK, IDEX 1581,
ID 0.25 mm, OD 1/32", length ca. 50 cm). Microchan-
nels were fabricated [44] from PDMS (Momentive RT
615 A & B) including 10 wt.% cross-linker, and cured at
170 °C for 15 minutes.

Flow and pressure sensors (Elveflow MFS1 and MPS2)
provided time-resolved measurements of the flow rate q
and pressure p0, relative to atmospheric pressure, at the
chip inlet. Ultra-pure water (Milli-Q, 18.2 MΩ cm, vis-
cosity η = 1.00 ± 0.02 mPa s) at room temperature was
driven using a pressure controller (Elveflow OB1 mk3+),
with constant pressure, pin, imposed across the input sen-
sors and the microchannel, see Fig. 1(a). After reaching
steady state, pin was suddenly dropped and the tempo-
ral responses q(t) and p0(t) recorded until a new steady
state was reached; a selection of raw data is also shown
in the SM §S.II.

Figure 1(c) shows a set of recorded signals for pin(t),
p0(t), and q(t) after a pressure drop. Each signal is
shifted to its long-time, steady value, denoted pin,∞,
p0,∞, and q∞, respectively. While pin varied on a time
scale of just 0.1 s, p0 and q reach new steady states after
a much longer transient time, τt, of order 10 s, depending
on the initial input pressure and channel geometry. In
the following we study the dependence of q∞ and τt, on
p0,∞ and w.

In Fig. 2 is shown the scaled relation between the
dimensionless, steady-state flow rate Q∞ and pressure
P0,∞ for all of the chip geometries used here. While the

raw data is shown in SM §S.III, here the pressure is nor-
malized by the natural scale p∗ = E∗h0/w. The semi-
infinite slab case [2, 45] gives E∗ ≈ EY/0.5427(1 − ν2),
where ν and EY are the Poisson ratio and Young’s mod-
ulus of the material [46]. The flow rate is normalized
by p∗/rc, with rc = 12ηL/wh30 the hydraulic resistance
of an undeformed rectangular channel [47]. Such a nor-
malization gives a single master curve after adjusting the
data to the fitting parameters for each chip, p∗ and rc.
These latter follow the expected scaling with w, as seen
in the insets, the top one with no fitting parameter on
the line. The slope of the line of the bottom inset finally
gives a measurement of EY = 1.07±0.03 MPa, consistent
with the typical value for this PDMS [48]. In contrast to
rigid pipe flow [47, 49], the flow-rate response of these
channels is highly nonlinear. Indeed, when the pressure
is increased, the channel’s resistance decreases due to its
dilation.

Considering the dynamics, in Fig. 3 is shown p0−p0,∞
as a function of time in a 200 µm-wide channel for several
p0,∞; straight lines in semi-log axis indicate exponential
relaxations, allowing a precise determination of τt. The
inset of Fig. 3 thus shows the characteristic time τt as
a function of p0,∞, the relaxation time decreasing by a
factor of 5 across the accessed range of p0,∞. As defor-
mation allows the channel to store a pressure-dependent
fluid volume, a microfluidic chips is a liquid-storage ca-
pacitor. Furthermore, the channels exhibit resistance,
so that they are RC fluidic circuits [38, 47]. To ratio-
nalize the non-linearity of q∞ with p0,∞, as well as the
dependence of τt on p0,∞, we propose the following elas-
tohydrodynamic model.

Considering the one dimensional limit since h0 � w �
L, we denote h(x, t) the time-dependent height of the mi-
crochannel along the center line and along the flow direc-

Figure 2. Dimensionless steady-state flow rateQ∞ = q∞rc/p
∗

as a function of the dimensionless steady-state inlet pressure
P0,∞ = p0,∞/p

∗ for channels of the indicated widths. The
solid line indicates the model of Eq. 5. Error bars are smaller
than symbol size; insets show fitting parameters p∗ and rc.
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Figure 3. Inlet pressure p0 − p0,∞ as a function of time t in
a 200 µm-wide channel, the color bar indicating p0,∞. The
inset shows the exponential relaxation time, obtained from
best fits, as a function of p0,∞. Error bars are smaller than
symbol size.

tion, x, and p(x, t) the pressure field within the channel.
In the lubrication limit, the Reynolds equation [50] ex-
presses conservation of volume for incompressible, New-
tonian fluids:

∂th =
1

12η
∂x
(
h3∂xp

)
. (1)

Since the former equation introduces the unknown fields
h(x, t) and p(x, t), an elastic model is needed to connect
the height profile to the pressure field. Even though the
height profile varies in both the streamwise x and trans-
verse y directions, as detailed by Christov and cowork-
ers [3, 42], we consider a local, linear elastic response of
the surrounding material along the center line:

h(x, t) = h0 +
w

E∗
p(x, t) , (2)

neglecting possible viscous losses in the PDMS [51].
To close the problem, we consider the boundary con-

ditions. At the outlet we simply have p(L, t) = 0. At
the inlet, we account for the peripheral sensors. Using
the classic analogy between microfluidics and electron-
ics [38, 39, 47], the setup is akin to the circuit depicted
in Fig. 1(b). The flow sensor, composed of a thin hard
glass capillary, is modeled as an ideal resistance r0. The
pressure sensor, including deformable parts, is modeled
with a negligibly-resistant capacity c0 = dΩ/dp0 where
Ω is the volume of fluid stored in the sensor with pressure
playing the role of the electric potential. Flux conserva-
tion then reads as the electrical current flowing through
a resistance and the discharge current of a capacitor on
one side, and the current at the entrance of a non-linear
transmission line (cf. Ref. [52]) on the other:

pin − p0
r0

− c0
dp0
dt

=

(
−wh

3

12η
∂xp

)∣∣∣∣
x=0

. (3)

Non-dimensionalizing, we take: h = h0H, x = LX,
t = τcT with τc = 12ηwL2/h30E

∗ as in Ref. [41], and
pressures take the form p = p∗P . Combining Eq. 1 and
Eq. 2, we obtain the elastohydrodynamic equation for the
pressure field within the chip:

∂TP = ∂X

[
(1 + P )

3
∂XP

]
. (4)

In the steady state, with a constant inlet pressure P0,∞
and null outlet pressure, a single integration of Eq. 4
gives P∞(X) =

[
(1−X)((1 + P0,∞)4 − 1) + 1

]1/4 − 1.
From this pressure profile, we compute the steady flux
Q∞ using the square-bracketed term of Eq. 4:

Q∞ =
1

4

[
(1 + P0,∞)

4 − 1
]

=
1

4
Π , (5)

having introduced Π = (1 + P0,∞)
4 − 1. Equation 5 has

a similar form to the expressions given previously [3, 42],
and we note the excellent agreement between this model
(black line) and the data of Fig. 2.

Addressing the time-dependent problem now, we lin-
earize Eq. 4, introducing δP (X,T ) = P (X,T )−P∞(X).
At O(δP 1) and after the linear change of variables X̃ =
(1−X)Π + 1 and T̃ = Π2T , we obtain:

∂T̃ δP = ∂2
X̃

[
X̃3/4δP

]
. (6)

Looking for separable solutions of Eq. 6, we propose
δP (X̃, T̃ ) = A(X̃)B(T̃ ). Using the boundary condi-
tion for δP = 0 at X̃ = 1, we obtain Bλ(T̃ ) =
exp(−λT̃ ), confirming the experimentally observed ex-
ponential pressure decay; determining the eigenvalues λ
remains. For the spatial part, we have [53] Aλ(X̃) =

αλX̃
−1/4C 4

5

(
8
√
λ

5 X̃5/8
)
, where αλ is an integration con-

stant. The function Cν is a linear combination of Bessel
functions, here of the form Cν(x) = Y 4

5

(
8
√
λ

5

)
Jν(x) −

J 4
5

(
8
√
λ

5

)
Yν(x), satisfying p(L, t) = 0.

For the boundary condition at the channel entrance,
the full solution P∞(X) + δP (X̃, T̃ ) can be injected into
the dimensionless version of Eq. 3. Such a substitution
gives a constraining equation on the eigenvalues, λ, after
evaluation at X̃0 = 1 + Π, i.e. the channel entrance:

1

RX̃3/8
0

(
T
√
λΠ− 1√

λΠ

)
=
C− 1

5

(
8
√
λ

5 X̃
5/8
0

)
C 4

5

(
8
√
λ

5 X̃
5/8
0

) , (7)

with R = r0/rc and T = τ0/τc where τ0 = r0c0 is the
inlet time scale. Recalling that the experimentally mea-
sured pressure relaxations of Fig. 3 are well described
by simple exponential decays, and denoting λs smallest
eigenvalue satisfying Eq. 7, the experimentally measured
time scale is then assumed to be

τt
τc

=
1

Π2
λ−1s (Π,R, T ) , (8)
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in accordance with the definition of T̃ . This relation
shows that the relaxation time scale is a function of the
pressure through Π, and in particular depends on the
details of the input resistance and capacitance, here re-
flected through the dimensionless R and T .

We are not aware of analytic solutions for Eq. 7; nev-
ertheless, the asymptotic behavior can be assessed. At
low pressure, there is no significant channel deformation
(p0 � p∗) such that the chip is an ideal resistance. We do
not expect the relaxation time to be pressure dependent
in this limit. Conversely at high pressure, the deforma-
tion makes the resistance of the chip pressure dependent.
According to Eq. 5, we have a chip resistance, and thus a
timescale proportional to P−30,∞. We thus look for asymp-
totic, power-law solutions to Eq. 7, λs ≈ β2Πγ , with
constant β and γ. Using asymptotic developments of the
Bessel functions (SM, §S.IV), we confirm the power laws:

τt
τc

=
1

β2
: Π� 1 , (9)

τt
τc

=
1

β2P 3
0,∞

: Π� 1 . (10)

Here, β satisfies T β2 −Rβ cot(β) − 1 = 0 and T β/R =
J− 1

5
(8β/5) /J 4

5
(8β/5) in the low- and high-Π limits; we

also note that T and R may differ in these limits.
For intermediate pressures, Eq. 8 is solved numeri-

cally for prescribed values of {Π,R, T }, thus necessitat-
ing characterizations of the input r0 and c0. The former
was determined by measuring pin,∞ versus q∞ in the pres-
ence of the flow meter only. The data (SM §S.V) are
well described by a straight line, giving r0 = 2.50± 0.01
kPa s/nL, consistent with a rigid glass capillary of di-
ameter 25 µm and length 2.4 cm filled with water of vis-
cosity η = 1.0 mPa s [47]. The value of c0 is assessed
by plugging the circuit at the pressure sensor outlet and
removing the microchannel, assuming that the resulting
relaxation time satisfies τ0 = r0c0. The inset of Fig. 4
shows τ0 as a function of p0,∞ for such a plugged exper-
iment, indicating a clearly nonlinear inlet capacity.

Assuming that the non-trivial capacity at the chan-
nel inlet is dominated by trapped air, we use the ideal
gas law to estimate c0 = c1(1 + p0,∞/patm)−2 + c2. Here
patm=101 kPa is the atmospheric pressure, c1 = Ωa/patm,
with Ωa the trapped air volume at atmospheric pressure.
The second term, c2, describes any other linear capacity,
is assumed to be connected to the atmosphere and is thus
in parallel with c1. The solid line in the inset provides an
excellent fit using this ideal-gas-like inlet capacity, with
c1 = 20.9 ± 0.1 nL kPa−1 and c2 = 0.2 ± 0.1 nL kPa−1

� c1. The value of c1 corresponds to a resting gas vol-
ume of 2.1 µL, which compares reasonably to the internal
volume of the pressure sensor of 7.5 µL as provided by the
manufacturer.

Making a full test of the model for our complete mi-
crofluidic system, Figure 4 shows the normalized relax-
ation time τt/τc as a function of P0,∞ for all channel

Figure 4. τt/τc as a function of P0,∞ for four channels of dif-
ferent widths, color map as in Fig. 2. Single, typical error bars
are shown for each data set. Solid lines represent numerical
solutions of the model of Eq. 8 using ideal input resistance
and an ideal-gas-like input capacitance, with dashed lines the
asymptotic developments (Eqs. 9 and 10), for the 200 µm-wide
channel. Inset: τ0 as a function of p0,∞ for the plugged ex-
periment. Error bars are smaller than symbol size. The solid
line is a fit to the model including an ideal gas capacitance.

widths used here. The solid lines represent the numeri-
cal solution of the problem (Eqs. 7 and 8), where Eq. 7
is solved numerically using the aforementioned ideal re-
sistance value and the ideal-gas, pressure-dependent ca-
pacitance. For this data the best-fitting values were
c1 = 8.6 ± 0.4 nL kPa−1 and c2 = 2.1 ± 0.2 nL kPa−1,
respectively. Here the larger value of c2 corresponds well
to the linear capacity of the circular channel inlet, ap-
proximated by c2 ≈ d3c/E

∗ ≈ 1 nL kPa−1. The smaller
value of c1 suggests that less air was trapped compared to
the calibration. We additionally show the asymptotic be-
haviors, where the equations for prefactors β were solved
graphically using the limiting values of T and R. Our
model describes the data well over more than one decade
of normalized pressures and four chip geometries, all fit-
ted using the same c1 and c2, the experiments having
been performed sequentially.

In conclusion, we have used time-resolved pressure and
flow-rate measurements to characterize the relaxation dy-
namics of compliant microfluidic channels. We recover
the well-known, quartic pressure-vs.-flow-rate relation for
straight, rectangular channels. Additionally, we mea-
sured a full series of pressure-dependent relaxation time
scales resulting from step-wise pressure perturbations in
a series of chip widths. Our main results are: (i) the chip
inlet impedance cannot be neglected; and (ii), there is a
strong pressure dependence on the relaxation time scale
that cannot be simply predicted by dimensional analysis.
A perturbation analysis of the lubrication-approximated
microflow problem, coupled to a linear elasticity of the
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channel walls and considering the inlet impedance, ac-
counts fully for the measured time scales. In a more
general context, ours is a simple unit of any potential
compliant flow network. Our analysis could thus be ex-
ploited in a broad range of micro-biological, and micro-
technological contexts already finding applications.
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