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Hydrodynamic flows in compliant channels are of great interest in physiology and microfluidics. In
these situations, elastohydrodynamic coupling leads to: (i) a nonlinear pressure-vs.-flow-rate rela-
tion, strongly affecting the hydraulic resistance; and (ii), because of the compliance-enabled volume
storage, a finite relaxation time under a step-wise change in pressure. This latter effect remains
relatively unexplored, even while the time scale can vary over a decade in typical situations. In this
study we provide time-resolved measurements of the relaxation dynamics for thin and soft, rectan-
gular microfluidic channels. We describe our data using a perturbative lubrication approximation
of the Stokes equation coupled to linear elasticity, while taking into account the effect compliance
and resistance of the entrance. The modelling allows to completely describe all of the experimen-
tal results. Our work is relevant for any microfluidic scenario wherein a time-dependent driving is
applied and provides a first step in the dynamical description of compliant channel networks.

To force the movement of fluid through a narrow chan-
nel, a pressure drop must be applied between its en-
trance and exit. If the bounding walls of this simple
flow domain are compliant, their pressure-induced defor-
mation can strongly affect the flow as compared to the
non-compliant case. This elastohydrodynamic coupling
is often encountered, and the pipe-flow case is referred to
as soft hydraulics [1]. Particularly, the flow modification
can give a non-linear pressure-vs.-flow-rate relation [2, 3],
with the flow resistance changing by an order of magni-
tude or more. Upon a pressure change, however, the
relaxation to a new deformation profile is not instanta-
neous. The pipe thus settles into a new configuration
over a little-investigated, pressure-dependent time scale
that is the main focus of this Letter.

Elastohydrodynamics (EHD) was historically studied
in the context of lubrication of rough, solid contacts [4–
6], often for heavy mechanical applications and remains
a key ingredient in modern tribology [7]. Conversely,
the lubrication of soft materials has attracted increas-
ing attention in the last decades [8–12] due in part to
the relevance of the topic in biology and microtechnolo-
gies. Several important examples of the former class of
problems include joint lubrication [13], eyelid wiper me-
chanics [14], and the deformation of blood vessels under
flow-induced pressure [15–18] — the latter at stake, for
example, in atherosclerosis [19]. At microscales, EHD
interactions may affect the transport of blood cells [20]
because of the emergent lift forces arising from the fluid-
mediated soft-substrate deformation [21].

Concerning soft technologies, microfluidics is of signif-
icant interest [22]. Indeed, microchannels are typically
made with soft elastomers —typically polydimethylsilox-
ane (PDMS)— since these materials are transparent, al-
low fast prototyping and are easily demolded with fi-
delity [23, 24]. Compliance is a key attribute for applica-

tions such as organ-on-a-chip [25, 26] or wearable tech-
nologies [27, 28]. Targeted actuation of deformable pipes
also allows to generate and manipulate flows at the scale
of a single channel [29–31], or in complex networks [32]
as in the plant kingdom [33]. Finally, soft components
can be used to make pressure-controlled valves serving
as building blocks for the logic gate components that are
key to state-of-the-art microfluidic devices [34–36].

While many soft-hydraulics-based studies focus on the
steady state, compliance is also expected to have dynamic
effects. This deformability leads to volume storage ca-
pacity [37], schematically indicated in Fig. 1(a), which
in addition to changing the resistance of a narrow chan-
nel, implies a characteristic response time of the system
by analogy with electronics [38, 39], see Fig. 1(b). This
dynamic response was used for example to attenuate par-
asitic fluctuations in syringe-pump driven flows [40], and
limits the production rate in stop-flow lithography [41].

With dynamical aspects of soft hydraulics already find-
ing applications, it is imperative to systematically and
quantitatively characterize the temporal response of com-
pliant microchannels. Here we experimentally and theo-
retically investigate the response of thin, soft microfluidic
channels to step-wise pressure perturbations. We use an
EHD model in the lubrication limit applied to such de-
vices. As previously [2, 3, 42], such an approach allows
to rationalise the nonlinear relation between pressure and
flow rate. Then, performing a perturbation analysis and,
crucially, specifying the capacitance and resistance of
the peripheral components, the pressure-dependent re-
laxation dynamics of the entire experimental system is
revealed. Our approach includes an asymptotic analysis
of the general high- and low-pressure limits, along with
the full crossover requiring complete specification of the
microsystem.

The microfluidic chips used here consisted of in-
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Figure 1. (a) Schematics of the microfluidic setup, including a
flow sensor, a pressure sensor and a soft channel. (b) Equiva-
lent electronic circuit, the flow sensor modelled with an ideal
resistance r0, the pressure sensor by a capacitance c0, and
the soft channel with a series of infinitesimal resistances and
capacities. (c) Imposed pin and measured p0 and q as a func-
tion of t. The shifted, imposed pressure pin,∞ = 1301 mbar,
p0,∞ = 862 mbar and q∞ = 1058 nL/min denote the long-
time steady-state values of their associated signals.

let/outlet circles of radius dc = 1.0 mm and rectan-
gular channels with length L = 4.0 cm between the
inlet/outlet centers. The channel widths were w =
{200, 500, 1000, 2000} µm, with uncertainty of order a few
micrometers, and undeformed heights h0 = 5.0±0.1 µm.
The moulds were characterized with a mechanical pro-
filometer (Bruker Dektak Stylus Profiler). Liquid reser-
voirs were connected to chips using plastic tubing with
negligible hydraulic resistance and compliance (PEEK,
IDEX 1581, ID 0.25 mm, OD 1/32" of typical length
50 cm). The microchannels were fabricated using stan-
dard soft lithography [43] from PDMS (Momentive RT
615 A & B) including 10 wt.% cross-linker, and cured at
170 °C for 15 minutes.

Flow and pressure sensors (Elveflow MFS1 and MPS2)
provided time-resolved measurements of the flow rate q
and pressure p0, relative to atmospheric pressure, at the
chip inlet. Ultra-pure water (Milli-Q, 18.2 MΩ cm, vis-
cosity η = 1.00±0.02 mPa s) was driven using a pressure
controller (Elveflow OB1 mk3+), with constant pressure,
pin, imposed across the input sensors and the microchan-
nel, see Fig. 1(a). While the system is at steady state,
pin, was suddenly dropped by a constant amount, δpin,
and the responses q(t) and p0(t) were recorded until a
new steady state was reached; a selection of raw data
is also shown in the Supplementary Material section S.I
(SM, see Ref. [44]).

Figure 1(c) shows one set of recorded signals for pin(t),
p0(t), and q(t) after a sudden pressure drop. Each sig-
nal is shifted to its long time steady-state value, denoted
pin,∞, p0,∞, and q∞, respectively. Remarkably, while the
imposed pressure pin varied on a time scale of just 0.1 s,

p0 and q reach new steady states after a much longer
transient time, of order 10 s, depending on the initial in-
put pressure and channel geometry. In the following we
study the dependence of q∞ and τexp on p0,∞ and w.

In Fig. 2 is shown the scaled relation between the
dimensionless flow rate Q∞ and pressure P0,∞ for all
of the chip geometries used here. While the raw data
is shown in Supplemental Material [45], section S.II,
here the pressure is normalized by the natural scale
p∗ = E∗h0/w with the semi-infinite slab case [2, 46] giv-
ing E∗ ≈ EY/0.5427(1 − ν2); ν and EY are the Poisson
ratio and Young’s modulus of the material [47]. The flow
rate is normalized by p∗/rc, with rc = 12ηL/wh30 the hy-
draulic resistance of a rectangular channel [48]. Such a
normalization gives a single master curve, and, in con-
trast to rigid pipe flow [48, 49], the flow-rate response of
these channels is nonlinear for all the tested geometries.
Indeed, when the pressure is increased the driving force
increases; meanwhile the channel’s resistance decreases
due to its inflated geometry.

In Fig. 3 is shown p0 − p0,∞ as a function of time in
a 200 µm-wide channel for several p0,∞. Straight lines
in semi-log axis suggest that the relaxation is exponen-
tial, with an experimental relaxation time τexp. Extract-
ing this time with exponential fits, the inset of Fig. 3
shows τexp as a function of p0,∞. The relaxation time de-
creases by a factor of 5 across the accessible range of p0,∞.
Since deformation allows the channel to store a pressure-
dependent volume of fluid, the microfluidic chips used
here are liquid-storage capacitors. The channels also ex-
hibit resistance, so that they are essentially RC fluidic
circuits [38, 48]. To quantitatively rationalize the non-
linearity of q∞ with p0,∞, as well as the dependence of
τexp on p0,∞, we propose the following elastohydrody-

Figure 2. Dimensionless steady-state flow rateQ∞ = q∞rc/p
∗

as a function of the dimensionless steady-state inlet pressure
P0,∞ = p0,∞/p

∗ for soft and thin channels of different widths
as indicated. The solid line indicates the model of Eq. 5. Error
bars are smaller than symbol size. The fitting parameters p∗

and rc are shown in insets.
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Figure 3. Experimental shifted inlet pressure p0 − p0,∞ as a
function of time t for the relaxation toward different steady
states p0,∞, for a 200 µm-wide soft channel. The inset shows
the measured relaxation time τexp, obtained by exponential
fit of the data, as a function of p0,∞. Error bars are smaller
than symbol size.

namic model.
Considering the one dimensional limit since h0 � w �

L, we denote h(x, t) the time-dependent height of the mi-
crochannel along the center line and along the flow direc-
tion, x, and p(x, t) the pressure field within the channel.
In the lubrication limit, the Reynolds equation [50] ex-
presses conservation of volume for incompressible, New-
tonian fluids:

∂th =
1

12η
∂x
(
h3∂xp

)
. (1)

Since the former equation introduces the unknown fields
h(x, t) and p(x, t), an elastic model is needed to connect
the height profile to the pressure field. Even though the
height profile varies in both the x and y directions as
described in detail by Christov and coworkers [3, 42], we
consider a local linear elastic response of the surrounding
material along the center line:

h(x, t) = h0 +
w

E∗
p(x, t) . (2)

To close the problem, we consider the boundary con-
dition at the outlet p(L, t) = 0. At the inlet, we need to
account for the peripheral sensors. By analogy with elec-
tronics, the setup is described using the circuit depicted
in Fig. 1(b). The flow sensor, composed of a thin hard
glass capillary, is assumed an ideal resistance r0. The
pressure sensor, including deformable parts, is modelled
with a negligibly-resistant capacity c0 = dΩ/dp0 where
Ω is the volume of fluid stored in the sensor. Flux con-
servation at channel inlet then reads:

pin − p0
r0

− c0
dp0
dt

=

(
−wh

3

12η
∂xp

)∣∣∣∣
x=0

. (3)

Non-dimensionalizing, we take: h = h0H, x = LX,
t = τcT with τc = 12ηwL2/h30E

∗ as in Ref. [41], and
pressures take the form p = p∗P . Then, combining Eq. 1
and Eq. 2, we obtain the elastohydrodynamic equation
for the pressure field within the chip:

∂TP = ∂X

[
(1 + P )

3
∂XP

]
. (4)

In the steady state, with a constant inlet pressure P0,∞
and null outlet pressure, a single integration of Eq. 4
gives P∞(X) =

[
(1−X)((1 + P0,∞)4 − 1) + 1

]1/4 − 1.
From this pressure profile, we compute the steady flux
Q∞ using the square-bracketed term of Eq. 4:

Q∞ =
1

4

[
(1 + P0,∞)

4 − 1
]

=
1

4
Π , (5)

having introduced Π = (1 + P0,∞)
4 − 1. Equation 5 has

a similar form to the expressions given previously [3, 42].
The data of Fig. 2 show excellent agreement with this
model for all the tested chips, and for channel-height vari-
ations up to 160%. The fitting parameters for each chip,
p∗ and rc, follow the expected scaling with w, as can be
seen in the insets. The slope of the straight line of the
bottom inset provides a measurement of E∗ = 2.62 ±
0.06 MPa. This corresponds to EY = 1.07 ± 0.03 MPa
which is consistent with the typical value for this PDMS.

Addressing the time-dependent problem, we linearize
Eq. 4, introducing δP (X,T ) = P (X,T ) − P∞(X). At
O(δP 1) and after the change of variables X̃ = Π(1−X)
and T̃ = Π2T , we obtain:

∂T̃ δP = ∂2
X̃

[
X̃3/4δP

]
. (6)

Looking for separable solutions of Eq. 6, we propose
δP (X̃, T̃ ) = A(X̃)B(T̃ ). Using the boundary condition
for δP = 0 at X̃ = 1, we obtain Bλ(T̃ ) = exp(−λT̃ ),
confirming the experimentally observed exponential pres-
sure decay; it remains to determine the allowed val-
ues of λ. Considering the spatial part, we have [51]
Aλ(X̃) = αλX̃

−1/4C 4
5

(
8
√
λ

5 X̃5/8
)
, where αλ is an in-

tegration constant. The function Cν is a linear com-
bination of Bessel functions, here of the form Cν(x) =

Y 4
5

(
8
√
λ

5

)
Jν(x)−J 4

5

(
8
√
λ

5

)
Yν(x), satisfying the bound-

ary condition at the channel exit.
For the boundary condition at the channel entrance,

the full solution P∞ + δP (X̃, T̃ ) can be injected into the
dimensionless version of Eq. 3. Such a substitution gives
a constraining equation on the eigenvalues, λ, after eval-
uation at X̃0 = 1 + Π:

1

RX̃3/8
0

(
T
√
λΠ− 1√

λΠ

)
=
C− 1

5

(
8
√
λ

5 X̃
5/8
0

)
C 4

5

(
8
√
λ

5 X̃
5/8
0

) , (7)

where we introducedR = r0/rc and T = τ0/τc. Recalling
that the experimentally measured pressure relaxations of
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Fig. 3 are well described by simple exponential decays,
and if λs denotes the smallest allowed value of λ satisfying
Eq. 7, the experimentally measured time scale is then
assumed to be

τexp
τc

=
1

Π2
λ−1s (Π,R, T ) . (8)

This relation shows that the relaxation time scale is a
function of the pressure through Π, and in particular de-
pends on the details of the input resistance and capaci-
tance, here reflected through the dimensionless R and T .

To the best of our knowledge, there is no analytic so-
lution for λs through Eq. 7; nevertheless, the asymptotic
behavior can be assessed. At low pressure, there is no sig-
nificant channel deformation (p0 � p∗) such that the chip
is an ideal resistance. We do not expect the relaxation
time to be pressure dependent in this limit. Conversely
at high pressure, the deformation makes the resistance
of the chip pressure dependent. According to Eq. 5, we
have a chip resistance, and thus a timescale, that scales
as P−30,∞. With these ideas in mind, we look for asymp-
totic, power-law solutions to Eq. 7, λs ≈ β2Πγ , where
β and γ are constants. Injecting such a solution into
Eq. 7 and using asymptotic developments of the Bessel
functions (Supplemental Material [45], section S.III), we
confirm the aforementioned power laws, with

τexp
τc

=
1

β2
: Π� 1 , (9)

τexp
τc

=
1

β2P 3
0,∞

: Π� 1 . (10)

Here, β satifies T β2 − Rβ cot(β) − 1 = 0 and T β/R =
J−1/5 (8β/5) /J4/5 (8β/5) in the low- and high-Π limits;
we note also that T and R may differ in these limits.

In order to obtain the smallest eigenvalue, λs, for inter-
mediate pressures, Eq. 8 must be solved numerically for
prescribed values of {Π,R, T }, thus necessitating char-
acterisations of the input r0 and c0. Our input resis-
tance was determined by measuring pin,∞ versus q∞ in
the presence of the flow meter only. The data (see Sup-
plemental Material [45], section S.IV) are well described
by a straight line, from which we obtain r0 = 2.50± 0.01
kPa s/nL, consistent with a rigid glass capillary of di-
ameter 25 µm and length 2.4 cm filled with water of vis-
cosity η = 1.0 mPa s [48]. The value of c0 is assessed
by plugging the circuit at the pressure sensor outlet and
removing the microchannel, assuming that the resulting
relaxation time satisfies τ0 = r0c0. The inset of Fig. 4
shows τ0 as a function of p0,∞ for such a plugged exper-
iment, indicating a clearly nonlinear inlet capacity.

Assuming that the capacity at the channel inlet is
dominated by a compression/dilatation of trapped air,
and using the ideal gas law, we estimate c0 = c1(1 +
p0,∞/patm)−2 + c2. Here patm=101 kPa is the atmo-
spheric pressure, c1 = Ωb/patm, and Ωb is the trapped

Figure 4. τexp/τc as a function of P0,∞ for four channels of
different widths (the color map is the same as for Fig. 2 ).
For clarity, a single, typical error bar is shown for each data
set. Solid lines represent the numerical solution of the model
of Eq. 8 and dashed lines are the asymptotic developments,
shown only for the 200 µm-wide channel. The inset shows τ0
as a function of p0,∞ for the plugged experiment. Error bars
are smaller than symbol size. The solid line is a fit to the
model including an ideal gas capacitance.

air volume at atmospheric pressure. The second term
describes any other linear elasticity. The solid line in the
inset provides an excellent fit using this ideal-gas domi-
nated inlet capacity, with c1 = 20.9 ± 0.1 nL kPa−1 and
c2 = 0.2 ± 0.1 nL kPa−1 � c1. The value of c1 corre-
sponds to a resting gas volume of 2.1 µL, which compares
reasonably to the internal volume of the pressure sensor
of 7.5 µL as provided by the manufacturer.

Making a full test of the model for our complete mi-
crofluidic system, Figure 4 shows the normalized relax-
ation time τexp/τc as a function of P0,∞ for all channel
widths used here. The solid lines represent the numeri-
cal solution of the problem (Eqs. 7 and 8), where Eq. 7
is solved numerically using the aforementioned ideal re-
sistance value and the ideal-gas, pressure-dependent ca-
pacitance. For this data the best-fitting values for c1
and c2 were 8.6 ± 0.4 and 2.1 ± 0.2 nL kPa−1, respec-
tively. Here the larger value of c1 corresponds well to
the linear capacity of the channel inlet, approximated by
c2 ≈ d3c/E

∗ ≈ 1 nL kPa−1. We additionally show the
asymptotic behaviors, where the equations for prefactors
β were solved graphically using the limiting values of T
and R. Our model describes the data well over more
than one decade of normalized pressures and for four chip
geometries all fitted using the same c1 and c2, the exper-
iments having been performed sequentially.

In conclusion, we have used time-resolved pressure and
flow-rate measurements to characterize the relaxation dy-
namics of compliant microfluidic channels. First, we re-
cover the well-documented, quartic pressure-vs.-flow-rate
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relation for straight, rectangular channels. Additionally,
we measured a full series of pressure-dependent relax-
ation time scales resulting from step-wise pressure per-
turbations in a series of chip widths, keeping the length
and height of our chips constant. The nontrivial pressure-
dependent relaxation rate is in accordance with our theo-
retical model, this latter based on a perturbation analysis
of the lubrication-approximated microflow problem of a
straight microfluidic channel. Such a lubrication anal-
ysis couples to a linear elasticity of the channel walls,
and accounts fully for the the resistance and capacity ef-
fects of the previously-unconsidered, yet experimentally
ubiquitous, microfluidic input peripheries. In a more
general context, ours is a simple unit of many poten-
tial compliant flow networks, and our analysis thus could
be applicable to a broad range of micro-biological, and
micro-technological applications already finding applica-
tions but hitherto quantitatively characterized.

The authors thank Ivan C. Christov, Thomas Salez,
Stéphane Jouenne and Andreas Carlson for fruitful dis-
cussions. The authors benefited from the financial sup-
port of the Agence Nationale de la Recherche (ANR)
under the CoPinS (ANR-19CE06-0021) grants, and of
the Institut Pierre-Gilles de Gennes (Equipex ANR-10-
EQPX-34 and Labex ANR-10-LABX-31), PSL Research
University (Idex ANR-10-IDEX-0001-02). Total Ener-
gies is also gratefully acknowledged for financial support
under contract TOTAL DS3700 – CNRS 2019200804.

∗ joshua.mcgraw@cnrs.fr
[1] I. C. Christov, Journal of Physics: Condensed Matter 34,

063001 (2021).
[2] T. Gervais, J. El-Ali, A. Günther, and K. F. Jensen, Lab

on a Chip 6, 500 (2006).
[3] I. C. Christov, V. Cognet, T. C. Shidhore, and H. A.

Stone, Journal of Fluid Mechanics 841, 267 (2018).
[4] R. Stribeck, Kugellager für beliebige Belastungen

(Springer, 1901).
[5] R. Gohar and A. Cameron, Nature 200, 458 (1963).
[6] K. Johnson, J. Greenwood, and S. Poon, Wear 19, 91

(1972).
[7] J. Hansen, M. Björling, and R. Larsson, Scientific Re-

ports 10, 22250 (2020).
[8] S. Leroy and E. Charlaix, Journal of Fluid Mechanics

674, 389 (2011).
[9] Y. Wang, C. Dhong, and J. Frechette, Physical review

letters 115, 248302 (2015).
[10] B. Saintyves, T. Jules, T. Salez, and L. Mahadevan,

Proceedings of the National Academy of Sciences 113,
5847 (2016).

[11] Z. Zhang, V. Bertin, M. Arshad, E. Raphaël, T. Salez,
and A. Maali, Phys. Rev. Lett. 124, 054502 (2020).

[12] V. Bertin, Y. Amarouchene, E. Raphaël, and T. Salez,
Journal of Fluid Mechanics 933, A23 (2022).

[13] S. Jahn, J. Seror, and J. Klein, Annual Review of
Biomedical Engineering 18, 235 (2016).

[14] M. Jones, G. Fulford, C. Please, D. McElwain, and M. J.
Collins, Bulletin of Mathematical Biology 70, 323 (2008).

[15] K. Perktold and G. Rappitsch, Journal of biomechanics
28, 845 (1995).

[16] C. A. Figueroa, I. E. Vignon-Clementel, K. E. Jansen,
T. J. Hughes, and C. A. Taylor, Computer methods in
applied mechanics and engineering 195, 5685 (2006).

[17] M. Heil and A. L. Hazel, Annual review of fluid mechanics
43, 141 (2011).

[18] M. Hirschhorn, V. Tchantchaleishvili, R. Stevens,
J. Rossano, and A. Throckmorton, Medical engineering
& physics 78, 1 (2020).

[19] C. A. Taylor, T. J. Hughes, and C. K. Zarins, Annals of
biomedical engineering 26, 975 (1998).

[20] H. S. Davies, D. Débarre, N. El Amri, C. Verdier, R. P.
Richter, and L. Bureau, Physical review letters 120,
198001 (2018).

[21] J. M. Skotheim and L. Mahadevan, Phys. Rev. Lett. 92,
245509 (2004).

[22] H. Xia, J. Wu, J. Zheng, J. Zhang, and Z. Wang, Lab
on a Chip 21, 1241 (2021).

[23] Y. Xia and G. M. Whitesides, Annual Review of Materi-
als Science 28, 153 (1998).

[24] K. Raj M and S. Chakraborty, Journal of Applied Poly-
mer Science 137, 48958 (2020).

[25] D. Huh, B. D. Matthews, A. Mammoto, M. Montoya-
Zavala, H. Y. Hsin, and D. E. Ingber, Science 328, 1662
(2010).

[26] J. U. Lind, T. A. Busbee, A. D. Valentine, F. S.
Pasqualini, H. Yuan, M. Yadid, S.-J. Park, A. Kotikian,
A. P. Nesmith, P. H. Campbell, et al., Nature materials
16, 303 (2017).

[27] S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang,
J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, et al.,
Science 344, 70 (2014).

[28] J. C. Yeo, C. T. Lim, et al., Lab on a Chip 16, 4082
(2016).

[29] D. P. Holmes, B. Tavakol, G. Froehlicher, and H. A.
Stone, Soft Matter 9, 7049 (2013).

[30] F. J. Meigel, P. Cha, M. P. Brenner, and K. Alim, Phys-
ical Review Letters 123, 228103 (2019).

[31] E. Virot, V. Spandan, L. Niu, W. M. Van Rees, and
L. Mahadevan, Physical Review Letters 125, 058102
(2020).

[32] J. W. Rocks, A. J. Liu, and E. Katifori, Physical Review
Letters 126, 028102 (2021).

[33] K. Park, A. Tixier, M. Paludan, E. Østergaard, M. Zwie-
niecki, and K. H. Jensen, Phys. Rev. Fluids 6, 123102
(2021).

[34] B. Mosadegh, C.-H. Kuo, Y.-C. Tung, Y.-s. Torisawa,
T. Bersano-Begey, H. Tavana, and S. Takayama, Nature
physics 6, 433 (2010).

[35] J. A. Weaver, J. Melin, D. Stark, S. R. Quake, and M. A.
Horowitz, Nature Physics 6, 218 (2010).

[36] P. N. Duncan, T. V. Nguyen, and E. E. Hui, Proceedings
of the National Academy of Sciences 110, 18104 (2013).

[37] D. C. Leslie, C. J. Easley, E. Seker, J. M. Karlinsey,
M. Utz, M. R. Begley, and J. P. Landers, Nature Physics
5, 231 (2009).

[38] K. W. Oh, K. Lee, B. Ahn, and E. P. Furlani, Lab on a
Chip 12, 515 (2012).

[39] D. J. Preston, P. Rothemund, H. J. Jiang, M. P. Nemitz,
J. Rawson, Z. Suo, and G. M. Whitesides, Proceedings
of the National Academy of Sciences 116, 7750 (2019).



6

[40] Z. Jiao, J. Zhao, Z. Chao, Z. You, and J. Zhao, Microflu-
idics and Nanofluidics 23, 1 (2019).

[41] D. Dendukuri, S. S. Gu, D. C. Pregibon, T. A. Hatton,
and P. S. Doyle, Lab Chip 7, 818 (2007).

[42] X. Wang and I. C. Christov, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences 475, 20190513 (2019).

[43] Y. Xia and G. M. Whitesides, Angewandte Chemie In-
ternational Edition 37, 550 (1998).

[44] The supplementary material contains a selection of raw
data for the time-dependence of flow rate and pressures;
asymptotic analysis of the eigenvalue equation; and flow
sensor calibration data, see [URL to be input by the pub-
lisher] .

[45] See Supplemental Material at [URL will be inserted
by publisher] for a selection of raw data for the time-
dependence of flow rate and pressures; raw pressure-
vs-flow-rate data; asymptotic analysis of the eigenvalue
equation; and flow sensor calibration data.

[46] X. Wang and I. C. Christov, Physics of Fluids 33, 102004

(2021).
[47] We note that the infinitely thick limit is expected when

the thickness of the upper, flexible wall is roughly twice
the width of the channel, which is always the case here.
With the reported value [52] of ν=0.495, we have E∗ ≈
2.44EY.

[48] H. Bruus, Theoretical Microfluidics (Oxford University
Press, 2008).

[49] P. Tabeling, Introduction to Microfluidics, 1st ed. (Ox-
ford University Press, 2010).

[50] A. Oron, S. H. Davis, and S. G. Bankoff, Reviews of
modern physics 69, 931 (1997).

[51] DLMF, “NIST Digital Library of Mathematical Func-
tions,” http://dlmf.nist.gov/, Release 1.1.5 of 2022-03-
15, f. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[52] A. Müller, M. C. Wapler, and U. Wallrabe, Soft Matter
15, 779 (2019).


