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Closed-loop-based observer approach for tunneling current parameter estimation in an
experimental STM?

Gildas Besançona,∗, Alina Vodaa, Andrei Popescua

aUniv. Grenoble Alpes, CNRS, Grenoble INP1, GIPSA-lab
38000 Grenoble, France

Abstract

This paper is about parameter estimation in quantum effect of tunneling current, and is based on an experimental device of Scanning
Tunneling Microscope (STM) type. Since this effect needs feedback control in order to be obtained and kept, a closed-loop stability
analysis is first presented prior to any estimation. Then, in this context of closed-loop operation, an observer approach is proposed
to estimate the couple of parameters which characterize the tunneling current (nonlinear) model. An extension of this observer
technique to topography estimation is also discussed, and all the methodologies are illustrated with experimental data.

Keywords: Tunneling current, proportional integral control, nonlinear system, stability analysis,

state observer, parameter identification.

1. Introduction

Tunneling effect is a quantum phenomenon which was first
used by G. Gamow in 1928 to explain radioactivity [3]. It trans-
lates into what is called tunneling current when describing the
electrical current that can be measured between a conductive5

tip and a surface subject to a voltage applied between them, and
with a relative distance lower than 1 nm. This effect is typi-
cally at the heart of the so-called Scanning Tunneling Micro-
scope (STM), invented in 1981 by G. Binnig and H. Roher [4],
and allowing to obtain information about a surface, provided10

that some appropriate control is applied. This intrinsic need
for feedback gave rise to advanced control studies from the end
of 1990’s on, as in [5, 6] for instance, where inversion-based
techniques were considered, in [7], where a variable structure
control was studied, in [8, 9], where methodologies of robust15

digital pole placement with sensitivity function shaping were
proposed, in [10] with a multivariable Linear Quadratic Inte-
gral approach, up to more recent works as in [11, 12] present-
ing self-tuning PI control, [13] about MIMO H∞ robust control,
[14] with robust observer-based control, or even in the very re-20

cent reference [15] proposing a MEMS-based STM system.

In fact, tunneling current does admit a model, basically as
an exponential law of the distance between tip and sample sur-
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face, but with parameters depending on the operation condi-25

tions (such as materials and environment) [16]. The knowl-
edge of such parameters is yet useful, for the control design on
the one hand (see e.g. [17]), but also for topography applica-
tions of STM for instance, where the surface variations over a
sample can be retrieved via this tunneling current model (e.g.30

as in [18]), or even in other possible tunneling applications
[19, 20]. This motivates the study of estimation techniques
for those paramaters. In [17] for instance, a frequency-based
closed-loop identification is proposed for an STM operation,
providing in particular one of the two crucial coefficients of tun-35

neling current model, and motivated by control improvement.
In the present paper instead, a time-domain direct approach is
studied, with observer techniques combining and extending our
preliminary results of [1] for the case of one parameter to be
estimated, and [2] for the case of two parameters, and rather fo-40

cused on topography imaging improvement. The latter means
that here the control is used for the estimation purpose, with
a full stability analysis for the closed-loop system being pro-
vided, while the observer approach improves those of [1, 2],
and includes an extension discussion towards surface variations45

estimation. This observer approach thus provides a unifying
framework for both tunneling current calibration and possible
surface imaging, as an alternative to classical off-line current
characterization (e.g. curve fitting) and control-based imaging
[16]. In addition, it provides more information (two parame-50

ters) with less constraints (no dither for instance) than in so-
called ’gap modulation methods’ [11, 12], leading to some self-
calibration tool, and possible quantitative analysis (see proposi-
tions 1 and 2 hereafter). Finally, all the proposed methodologi-
cal developments are also illustrated with real data recorded on55

an experimental prototype of STM type developed in Gipsa-lab
[21, 22], and can enrich the area of measurement and control at
nanoscale that has been attracting an increasing attention in the
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last decade (as in [23, 24, 25, 26, 27, 28, 29] for instance, and
references therein).60

The paper is thus organized as follows: section 2 first states
the tunneling current modeling problem under consideration
(based on our STM prototype), and section 3 provides a full
closed-loop stability analysis when considering a simple pro-65

portional integral control design. The proposed observer-based
approach for estimation of tunneling current parameters is then
presented in section 4, and extended to the estimation of surface
variations. Section 5 is dedicated to illustrative results based on
experimental data, while section 6 finally concludes the paper.70

2. Modeling problem

The main problem we consider is that of estimating param-
eters of tunneling current (exponential) model. To that end, let75

us rely on a typical STM operation where tunneling current is
measured. Such an operation means that a sharp conductive tip
is approached close enough to a conductive sample, with a bias
voltage being applied between both of them. The tip is driven
by a piezo actuator fed via a voltage amplifier, while the tunnel-80

ing current is measured via an appropriate sensor and used in a
feedback loop to control the tip vertical position. This overall
configuration is summarized by figure 1 hereafter, where u de-
notes the input driving voltage, ua its amplified version, it the
tunneling current which is established, and ym its measurement85

(the feedback control loop is in grey dashed line).
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Figure 1: Tunneling current control.

For a formal dynamical description of this operation, we will
refer to a corresponding prototype of Gipsa-lab [21], with a
120kHz PSt 150 actuator for the vertical motion, a 13kHz high90

gain sensor for current measurement, and a 4kHz voltage am-
plifier for piezo feeding, shown in figure 2.

Mathematically, the main characteristics of each element can
be summarized as follows:95

• The current sensor dynamics can be captured by a first
order model of the form:

ẋ1(t) = −a1x1(t) + it(t)
ym(t) = cx1(t) + νy(t) (1)
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Figure 2: STM prototype (Gipsa-lab).

where x1 denotes its state variable, a1 represents its band-
width, c adjusts its DC gain, and νy represents some pos-
sible additive noise in its measurement ym.

• The voltage amplifier can be also represented by a first
order model as:

ẋ2(t) = −a2x2(t) + u(t)
ua(t) = c2x2(t) (2)

where x2 is its state variable, and a2, c2 gather bandwidth
and gain parameters.100

• The piezoactuator dynamics can be reduced to its DC
gain only, denoted by Gp, since in our prototype it is
much faster than the current sensor and the voltage am-
plifier.

Now the tunneling current can be obtained as a function of
the distance between the tip and the sample surface [16], which
can be expressed as:

d = zs − zt (3)

where zt refers to the vertical position of the tip, and zs to that
of the sample surface, both here considered downwards, with
respect to a given reference (as in figure 3).
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Figure 3: Tip and sample positions.
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Formally, it is an exponential function of d, when d is small
enough, as follows:

it(t) = gVbexp(−kd(t)) i f d < di

= 0 i f d ≥ di
(4)

where di is typically around 1 nm, k, g are positive constants
depending on the materials (tip, sample), and Vb is the positive
constant bias voltage which is applied (as shown in figure 1).
Now using model (2) and piezo gain Gp, we have:

zt = Gpua = Gpc2x2 (5)

As for zs, it is clear that when operating at a fixed horizontal
position of the tip (only vertical motion along z axis), then it is
a constant zs0. Notice that in a scanning mode, where the tip is
moved in the horizontal direction above the sample, then zs will
change according to surface variations, that is zs(t) = zs0+δzs(t).
Finally, tunneling current model becomes:

it(t) = αexp(−β(δ̄zs(t) − x2(t))) (6)

with α := gVbexp(−kzs0) (if d is kept below di), β := kGpc2 and
δ̄zs := δzs

Gpc2
.

The main modeling issue we consider is that of getting esti-
mates for α and β, which both contain parameters a priori un-
known. To that end, we will consider a vertical motion opera-
tion only (that is with δzs = 0), with an appropriate control so
that distance d allows for tunneling current, giving rise to an
overall dynamical model as:

ẋ1(t) = −a1x1(t) + αexp(βx2(t))
ẋ2(t) = −a2x2(t) + u(t)
ym(t) = cx1(t) + νy(t)

(7)

where a1, a2, c are assumed to be known beforehand, and α, β105

are to be identified.
We will also show how estimates of the latter can then be used
to further determine δ̄zs in case of scanning, and thus the sample
surface variations by using the knowledge on piezo and voltage
amplifier gains Gpc2.110

But the preliminary step is to ensure that the tunneling current
can indeed be established, and kept under control, prior to any
estimation. This is studied in next section.

3. Closed-loop operation with stability

The purpose in this section, is to show how a simple PI con-
troller can ensure tunneling current regulation with stability. To
that end, let us first omit the measurement noise, and use the fact
that the sensor dynamics are here faster than the voltage ampli-
fier dynamics. This means that the output can be expressed as:
y(t) := c

a1
αexp(βx2(t)), and model (7) can be reduced to the

following one:

ẋ2(t) = −a2x2(t) + u(t)
y(t) = α1exp(βx2(t)) (8)

with α1 := c
a1
α, a2, β, positive constants.115

It is also clear that a regulation target i∗t on it directly translates
into a regulation target y∗ on y.
We then have the following:

Theorem 1. Given a constant reference y∗ for y in system (8),
for any gains λ0, λ1 > 0, and any initial condition in (8), the PI
control law:

u(t) = −λ0

∫ t

0
(y(τ) − y∗)dτ − λ1(y(t) − y∗) (9)

ensures that limt→∞|y(t) − y∗| = 0.

Proof. The result can be established by using Lyapunov argu-
ments: notice first that the closed-loop system (8)-(9) can writ-
ten as follows

ẋ0(t) = α1 exp(βx2(t)) − y∗

ẋ2(t) = −a2x2(t) − λ0x0(t) − λ1[α1 exp(βx2(t)) − y∗)]
(10)

with x0 :=
∫ t

0
(y(τ) − y∗)dτ.

Now set x∗2 := 1
β
log

(
y∗

α1

)
, and x∗0 := − a2 x∗2

λ0
. Then the closed-

loop system can be restated in terms of errors x̃0 := x0 − x∗0 and
x̃2 := x2 − x∗2 as:

˙̃x0(t) = α1 exp(β(x̃2(t) + x∗2)) − y∗
˙̃x2(t) = −a2 x̃2(t) − λ0 x̃0(t) − λ1(α1 exp(β(x̃2(t) + x∗2)) − y∗)]

(11)
For this system, let us consider a candidate Lyapunov function
of the form:

V(x̃) :=
1
β

[α1exp(β(x̃2 + x∗2)) − y∗] − y∗ x̃2 +
λ0

2
x̃2

0 (12)

where x̃ gathers x̃0 and x̃2.
Clearly V(0) = 0 and V is positive definite w.r.t. x̃0. Let us now
check that this also true for x̃2, that is V2(x̃2) := 1

β
[α1exp(β(x̃2 +

x∗2)) − y∗] − y∗ x̃2 is always positive when x̃2 , 0.
Noting that y∗ = α1exp(βx∗2), by the mean value theorem, we
have

V2(x̃2) = α1exp(β(x0
2))x̃2 − y∗ x̃2

= α1[exp(β(x0
2)) − exp(βx∗2)]x̃2

(13)

with x0
2 lying between x∗2 and x̃2 + x∗2 = x2.

If x2 < x∗2, then x0
2 < x∗2 and consequently exp(β(x0

2)) < exp(βx∗2),
while x̃2 < 0, meaning that V2(x̃2) > 0.
Similarly, if x2 > x∗2, then x0

2 > x∗2 and consequently exp(β(x0
2)) >

exp(βx∗2), with x̃2 > 0, leading again to V2(x̃2) > 0. One can
finally conclude that V2 is indeed positive definite.
So V is a positive definite function, obviously globally defined
and radially unbounded. It is also globally differentiable, and
we can compute:

V̇ = [α1exp(β(x̃2 + x∗2)) − y∗] × [−a2 x̃2 − λ0 x̃0
−λ1(α1exp(β(x̃2 + x∗2)) − y∗)]
+λ0 x̃0(α1exp(β(x̃2 + x∗2)) − y∗)

(14)

which gives

V̇ = −λ1α
2
1(exp(β(x̃2 + x∗2)) − exp(βx∗2))2

−a2α1 x̃2(exp(β(x̃2 + x∗2)) − exp(βx∗2)) (15)

From this, V̇ is negative definite in x̃2 (it is clear that x̃2 and120

exp(β(x̃2 + x∗2)) − exp(βx∗2) are of same signs).

3



Consequently, we get stability by Lyapunov’s second method.
We can finally conclude to (global) asymptotic stability by us-
ing La Salle’s invariance principle (see e.g. [30]): V̇ = 0 indeed
means x̃2 = 0, and this being constantly true in time means that125

x̃0 = 0 as well. Hence the set {x̃ ∈ IR : V̇(x̃) = 0} contains no
other solution than 0, and we can conclude that 0 is globally
asymptotically stable. H

Notice that if the presence of measurement noise is taken into
account, a local version of this stability result can be established
as well (that is when the output which is used is ym as in (7)).
In that case indeed, closed-loop system (11) becomes:

˙̃x0(t) = α1 exp(β(x̃2(t) + x∗2)) − y∗ + νy(t)
˙̃x2(t) = −a2 x̃2(t) − λ0 x̃0(t)

−λ1(α1 exp(β(x̃2(t) + x∗2)) − y∗)] − λ1νy(t)
(16)

where νy can be assumed to be a zero-mean white noise.
This gives rise to a possible local representation of variations
δx̃ of x̃ around 0 as:

δ̇x̃0(t) = α1βδx̃2(t) + νy(t)
δ̇x̃2(t) = −a2δx̃2(t) − λ0δx̃0(t) − λ1α1βδx̃2(t) − λ1νy(t)

(17)
Hence, mean values of δx̃0 and δx̃2 satisfy a second order noise-
free linear state equation, for which 0 is obviously asymptoti-130

cally stable for any λ0, λ1 > 0.
It can also be noted that gain λ1 can increase noise effects in
the closed-loop system, meaning that low values should be pre-
ferred.

135

From the above stability analysis, one can finally conclude
that no matter what are (positive) values of α, β, a proportional-
integral control law stabilizes the operation at any desired value
for the tunneling current, for any λ0, λ1 > 0.140

In practice, they can be tuned experimentally, or based on fea-
tures of model (17) for instance. But the important point is that
this allows to settle experimental conditions for possible esti-
mation of tunneling current model: use vertical motion to get
the current, and use PI control to keep it under control. Next145

section is dedicated to the actual model estimation in such a
context.

4. Tunneling current parameter estimation

4.1. Tunneling current model

Considering again model (7), and assuming some appropri-150

ate closed-loop operation for instance as in previous section,
one can now focus on the estimation of parameters α, β in tun-
neling current model (6) (with δ̄zs = 0 in the vertical operation
case).
To that end, the idea here is to proceed in two steps: first esti-155

mate the tunneling current itself, and then estimate its parame-
ters α and β.

Tunneling current estimation. For this first step, let us only
consider the sensor model (1), for which the problem translates
into unknown input estimation, where it is the unknown input.
There are various possible approaches to solve it, and one can
for instance use the so-called control-based observer method
of [31], in a similar fashion as it was applied in [18] for surface
reconstruction: the idea in short is to drive an observer copying
the dynamics of (1), by its input copying it, in such a way that
its output tracks the measured output ym.
A simple control strategy for this tracking problem can clearly
take the form of a Proportional-Integral one, giving rise to the
following observer for it:

˙̂x0(t) = cx̂1(t) − ym(t)
˙̂x1(t) = −a1 x̂1 + v(t)
v(t) = −k0 x̂0(t) − k1(cx̂1(t) − ym(t))

ît = v(t)

(18)

for some k0, k1 > 0.
In the noise-free case, it has been shown in [31] that this system
indeed provides an estimate ît for it as accurately as desired by160

appropriate tuning of k0, k1.
In order to take noise into account, let us more precisely state
the following:

Proposition 1. System (18) for model (1) (with it bounded) en-
sures that for any k0 > 0, k1 ≥ 0, and any initial conditions,
x̂0, x̂1 remain bounded, and ît approaches it according to the
following transfer functions:

Ît(s) = Fi(s)It(s) + Fν(s)N(s)
with :

Fi(s) =
k1cs + k0c

s2 + (a1 + k1c)s + k0c

Fν(s) =
k1s2 + (k1a1 + k0)s + k0a1

s2 + (a1 + k1c)s + k0c

(19)

where s stands for Laplace variable, and Ît, It, N refer to Laplace
transforms of ît, it, ν respectively.165

The proof is obtained by direct computations, and the remark
that for any positive k0, k1, all transfer functions only have poles
with strictly negative real parts.

One can then notice that k0, k1 can be chosen according to
desired tracking performances, with appropriate attenuation of
noise effect. A simple tuning can for instance be as follows:

k0 =
a2

1

4c
, k1 = 0 (20)

which yields a second order behaviour with characteristic poly-
nomial

P(s) = s2 + a1s +
a2

1

4
that is a natural pulsation equal to a1

2 and a damping coefficient
equal to 1.
Notice that various other tuning strategies could be used, in-
cluding H∞ optimal design as in [32] for instance.
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From this, the measurement noise effect can be attenuated on170

the tunneling current estimate (see also [33] for a subsequent
interest in surface imaging). However if the noise level is low
enough, then this first estimation step can be skipped, and an
estimate for tunneling current can simply result from approxi-
mation (8).175

Tunneling parameter estimation. As soon as an estimate ît is
obtained for tunneling current it, a new output can be built from
its Logarithm yi := log(ît).
From equation (6) indeed (with δ̄zs = 0), we obviously have:

log(it) = log(α) + βx2 (21)

and from dynamics of x2 in equation (7), we get:

dlog(it)
dt

(t) = −a2log(it(t)) + a2log(α) + βu(t) (22)

Setting ξ :=

log(it)
log(α)
β

, we obtain a linear state equation of the

form
ξ̇(t) = A(u(t))ξ(t) (23)

with

A(u(t)) =

−a2 a2 u(t)
0 0 0
0 0 0


Now considering yi = log(ît) as the measurement for this sys-
tem, and the fact that ît approaches very well it after some tran-
sient (from equation (19)), a first order approximation allows to
consider:

yi(t) = log(it(t)) + δ(t) = Cξ(t) + δ(t) (24)

where C =
(
1 0 0

)
and δ is a disturbance due to possible

mismatch between ît and it (formally indeed, if ît = it + ν̄ for
small disturbance ν̄, then log(ît) = log(it) + 1

it
ν̄ + O(ν̄2)).

Since state-space representation (23)-(24) becomes linear time-
varying whenever u is chosen, a Kalman observer can be di-180

rectly designed to get estimates for log(α) and β, with the fol-
lowing result:

Proposition 2. An observer for system (23)-(24) of the form:
˙̂ξ(t) = A(u(t))ξ̂(t) − K(t)[Cξ̂(t) − yi(t)]

K(t) = M(t)CT /w
Ṁ(t) = γM(t) + A(u(t))M(t) + M(t)AT (u(t))

−M(t)CT CM(t)/w + V

(25)

ensures that:

(i) if δ is a zero mean white noise of intensity ∆, then (ξ̂(t) −
ξ(t))2 is minimized in mean value when γ = 0, V = 0, w =185

∆;

(ii) if δ vanishes, then ‖ξ̂(t) − ξ(t)‖ exponentially decays to
zero for any γ > 0, w > 0, V ≥ 0 whenever u is bounded
and satisfies the regular persistency condition:

∃T, α > 0 and t0 ≥ 0 s.t. ∀t ≥ t0,∫ t+T
t Φu(τ, t)T CT CΦu(τ, t)dτ ≥ αI

(26)

where Φu(t, τ) is the transition matrix for (23).

(iii) if δ is bounded, then ‖ξ̂(t) − ξ(t)‖ remains bounded under
same conditions as in item (ii) (ISS property of the error
system w.r.t. input δ).190

Item (i) is a direct consequence of Kalman result (see e.g. [34]),
while items (ii) and (iii) result from the fact that under condi-
tion (26), M−1 can define a quadratic Lyapunov function for the
error system (in ξ̂ − ξ) [35, 36].
Notice that one could even enhance the estimation, by taking195

into account filter model of (19) for noise δ. One can also im-
plement a reduced order version of this observer (as in [37]) or
a directly reduced design (as in [2]).

4.2. Surface variation estimation200

Let us finally notice here that whenever α and β are esti-
mated at a given horizontal position of the tip above the sam-
ple, then the tip can be moved in a scanning way, and the same
observer approach allows to get an estimate for sample vertical
variations δzs with respect to the value of the original position.
In that case indeed, the tunneling current will vary as in equa-
tion (6), which means that:

log(it(t)) = −βδ̄zs(t) + βx2(t) + log(α)

Using again the dynamics of x2, and considering that time vari-
ations of δ̄zs can be neglected for the observer design, we get a
state equation as:

˙̄ξ(t) =

(
−a2 −a2β

0 0

)
ξ̄(t) +

(
βu(t) + a2log(α)

0

)
(27)

with ξ̄ =

(
log(it)
δ̄zs

)
.

Using again output equation (24), we obtain a linear model for
which a Kalman observer can be again designed, with similar
properties as in proposition 2 regarding the effect of mesure-
ment disturbance.
More precisely, the observer can be built for model (27) restated
as:

˙̄ξ(t) =

(
−a2 −a2β̂

0 0

)
ξ̄(t) +

(
β̂u(t) + a2 l̂og(α)

0

)
+ δz(t)

y(t) =
(
1 0

)
ξ̄(t) + δ(t)

where β̂ and l̂og(α) are the obtained parameter estimates, and δz

gathers the effects of possible estimation errors δβ, δα on those

parameters:
(
(a2δ̄zs − u)δβ − a2δα

0

)
.

Here, clearly condition (26) is satisfied whenever β̂ has con-
verged (or is replaced by its steady state estimate), and all prop-205

erties of proposition 2 (i) to (iii) hold w.r.t. disturbance vector(
δz

δ

)
. Finally, an estimate for δzs can be obtained from the one

ˆ̄δzs of δ̄zs as Gpc2
ˆ̄δzs.

The overall estimation methodolgy can be summarized by fig-
ure 4 hereafter.210
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Figure 4: Overall observer structure.

5. Experimental results

Let us illustrate here the proposed methodology with ex-
periments on our prototype of figure 2. In this propotype, the
known parameters of current sensor and voltage amplifier mod-215

els (1), (2) can be summarized as in Table 1 below.

a1 26π × 1e3 [s−1]
a2 8π × 1e3 [s−1]
c 8.17 × 1e13 [V.A−1.s−1]

Table 1: STM known parameters.

The approach consists in operating the STM in closed-loop to
obtain tunneling current as discussed in section 3, and in such
a way that the corresponding control signal u(t) satisfies condi-
tion (26) of proposition 2 in section 4, so that parameter esti-220

mation can indeed be achieved.
Let us first point that an operation under a simple square ref-
erence profile for the output is appropriate for this estimation
purpose: in that case indeed, u chosen as in (9) will also clearly
have a square profile, and it can be checked that condition (26)225

is in its turn satisfied for system (23) in that case.
Let us then consider a closed-loop operation for vertical tip mo-
tion, with a Proportional-Integral controller as in proposition 1,
and with a square wave as a reference, of 1Hz, and varying be-
tween 0.25 and 2V .230
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Figure 5: Measured output under PI control (solid line) vs square wave refer-
ence (dotted line).

The PI parameters are chosen empirically as λ0 = 1.5, and
λ1 = 0.007 (much smaller than λ0, as commented before).
The corresponding regulation performance is shown in figure
5, with reference in dashed (red) line and output in solid (blue)
line. The corresponding control input u is presented in figure 6.235

Notice that in order to better emphasize the proposed estima-
tion methodology, some drift effects which are quite common
with such devices [38] have been removed beforehand in those
signals.

0 0.5 1 1.5 2 2.5 3 3.5

time (sec)

2.92

2.925

2.93

2.935

u 
(V

)

Input voltage

Figure 6: Control input under square reference variations.

The estimation step can then be addressed: first obtaining an es-240

timate for tunneling current, via system (18), with parameters
as in (20), and then estimating its parameters as in (25), here
choosing empirically w = 0.04, V = Id3×3, and γ = 25. The
corresponding results are displayed in figures 7 and 8 respec-
tively (where β/a2 is shown instead of β, for scaling reasons).245
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Figure 7: Estimation result for tunneling current it under square reference vari-
ations.
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Figure 8: Estimate for parameter log(α) (top dashed line) and β/a2 (bottom
solid line).

It can be seen that an estimate ît for tunneling current is
indeed very rapidly obtained, and estimates for its parameters
converge to some steady values in less than one second: the es-
timate for log(α) reaches the value of about −891, and that of250

β/a2 the value of 297.
In order to get some validation for those values, let us first un-
derline that from the knowledge on piezo and voltage amplifier
gains, we have Gpc2/a2 = 18, from which the tunneling ex-
ponential rate is identified as k̂ = 16.5, and this value is fully255

consistent with the one formerly obtained by some offline iden-
tification with the same prototype [22] (a theoretical value is
about 20 [16]).
On the other hand, if we consider that g reduces to so-called
conductance quantum equal to 77.5µS [16], we can get from260

l̂og(α) and k̂ (together with known bias voltage Vb, of about 1V
here) an estimate for zs0, and combine it with an estimate of zt,
which can be obtained from log(ît), l̂og(α) and β̂, to get an es-
timate of the tip-sample distance: it is shown in figure 9, where
it can be checked to be consistent with expected values (here265

varying between about 0.8 and 0.65 nm).
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Figure 9: Estimated tip-sample distance under square reference variations.

Finally, in order to illustrate the possible estimation of surface
variations with the same approach, such variations are simu-
lated in the control values. This simulation is made so as to270

emulate surface variations consistent with graphite atom orga-
nization (see e.g. [14]), and with a scanning speed of about 100
nm/s: referring to the distance of about 250 pm between two
atoms seen as at ’highest positions’ in such a case, and a height
variation in between chosen as 0.2 nm in view of typical STM275

pictures, the control used in the observer is modified as if the tip
had to follow a sine profile variation with peak-to-peak magni-
tude of 0.2 nm, and frequency of 400 Hz.
The observer is then designed as in subsection 4.2, based on
estimates of tunneling current and its parameters, and under the280

Kalman form of (25), keeping w = 0.04, V = Id3×3 and in-
creasing γ to 25× 1000 so as to make the observer fast enough.
The corresponding estimation results are shown in figures 10
and 11: the first one presents the surface estimation vs its ’sim-
ulated’ sine reference (where a zoom on very first times empha-285

sizes the estimation speed), and the second one focuses on the
related error (which can be seen to be roughly lower than 10%
of the sine magnitude, as highligthed by dashed lines).
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Figure 10: Estimated surface variations (solid line) vs its emulated sine wave
(dashed line).

Remark. As an extension comment, let us notice that in the290

case when parameter k may vary during scanning, as empha-
sized for instance in [12], the methodology here proposed could
be adapted, by considering some updates of tunneling current
parameters from time to time over the fly. By adjusting ob-
server tuning coefficients indeed, estimates can in fact be ob-295

tained here in less than 0.01s (picking γ larger than 25x100
for instance), as illustrated by figure 12 hereafter. As a con-
sequence, with a scanning rate of about 100 nm/s, current pa-
rameters could be adjusted about every nanometer. Going up to
video rate, as dicussed in [39] for instance, can be part of future300

developments.
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Figure 12: Parameter estimation results towards updating during scanning.

6. Conclusion

The problem of parameter estimation in tunneling current
exponential model has been considered. Since obtaining tun-
neling current needs closed-loop operation prior to any pos-305

sible identification, a stability analysis when using a simple
Proportional-Integral controller has been first presented. On
the basis of such an operation, an observer approach has then
been proposed for the current model, further extended to sur-
face variations estimation. All the methodology has been illus-310

trated with experimental data, and the use of such a calibration
approach will be next studied in various possible applications
of such an STM operation.

Acknowledgment

This work has been partly supported by the LabEx PERSY-315

VAL-Lab (ANR-11-LABX-0025-01) funded by the French pro-
gram Investissement d’Avenir.

References
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