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Machine Learning-Based Matching Medium
Design for Implant Communications

Erdem Cil, Cemre Cadir, Omer A. Kati, H. Birkan Yilmaz, Member, IEEE, and Sema Dumanli, Member, IEEE

Abstract—Matching media are used in various applications
to increase the power transmitted into the human body. The
selection of the optimum matching medium permittivity is not
a straightforward task, as the optimum value maximizing the
transmitted power depends on the thickness of the matching
medium and the electromagnetic properties of the target tissue.
In this paper, a computationally heavy empirical approach
and a machine learning-based approach are utilized for the
selection of the matching medium. The empirical approach
demonstrates that the matching medium can increase the |S21|
values up to 8 dB, which is validated with measurements. Next, a
machine learning-based tool is proposed to predict the optimum
matching medium permittivity for any target tissue and any
matching medium thickness. A one-dimensional convolutional
neural network followed by a multi-layer perceptron is trained
with the simulated average Poynting vector magnitudes for
muscle and fat as target tissues. The average Poynting vector
magnitude and the dipole length for given system parameters
are predicted by the trained artificial neural network. The
accuracy is calculated by comparison with the results of the
empirical analysis and found to be 1% and 12.3% mean absolute
percentage error for dipole length and average Poynting vector
magnitude, respectively. The proposed tool decreases the time
required to milliseconds.

Index Terms—Convolutional neural networks, implants, in-
body link, machine learning.

I. INTRODUCTION

IN recent years, a continuously growing interest has been
observed in the utilization of implantable devices in

medical applications [1]. A great number of implantable
devices have already been developed to be used in diverse
medical applications such as health monitoring [2], [3] and
medical treatment [4], [5] and the number of such devices
is estimated to further increase in the coming years [6]. An
implant may require establishing a wireless link with an on-
body or an off-body device. This wireless link is commonly
referred to as an in-body link [7]. It must be noted that
establishing a reliable and high-quality in-body link is a
challenging task.

The losses related to the in-body link can be classified
into three categories: propagation losses, near-field losses
and reflection losses at the air-human body boundary.
The propagation loss is much higher for an in-body link
compared to a link over the air due to the highly dissipative
nature of human tissues, which can not be avoided [8].

C. Cadir, Omer A. Kati and S. Dumanli are with the Department of
Electrical and Electronics Engineering, Boğaziçi University, 34343, Turkey,
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On the other hand, near-field losses and reflection losses
can be engineered. Near-field losses occur both in the
implant and the wearable end of the in-body link due
to lossy human tissues having conductivity (σ) [9], and
the reflection losses are caused by the difference between
the relative permittivities of air and human tissues [10].
When all these challenges are combined, they may lead to
a significant deterioration of the in-body link.

The work presented in this paper focuses on the near-
field and the reflection losses. Inserting a lossless controlled
environment between the wearable antenna and the human
body can help tackle these challenges. Such an environment
is frequently referred to as the matching medium (MM)
or the bolus layer [11]. Naturally, the optimum relative
permittivity of an MM that ensures the highest reduction in
reflection depends on various physical and electromagnetic
(EM) properties of the specific case in which the medium is
to be utilized. Particularly, parameters such as the thickness
of the medium, the EM properties of the target tissue, hence
the frequency, and the depth of the implant strongly affect
the optimum value of the relative permittivity. Therefore,
the selection of an MM for a specific case is a complicated
problem and there is a lack of a well-established method
in the current state of the art [12].

In the literature, there are many studies that make use
of an MM without investigating whether the used value of
relative permittivity is the optimum value that maximizes
the power transmitted into the human body for the studied
case [13]–[21]. As for the studies investigating the optimum
relative permittivity for a specific case, the optimum relative
permittivity is often determined for different tissue types
via analytical studies or repeated numerical analyses. For
instance, analytical studies that focus on the determination
of the optimum relative permittivity for medical microwave
applications are presented in [22]–[24]. However, all these
studies assume the wave to be a plane wave, ignoring the
near-field losses. In [25] and [26], a numeric human chest
model embedded in an infinite MM is used along with a
plane wave assumption and a wire spiral antenna, respec-
tively, to examine the optimum relative permittivity value
in the 1-6 GHz Ultrawideband (UWB) implant communi-
cations. In [27], the optimum relative permittivity of a 1
to 20 mm-thick matching layer is numerically examined by
using a multilayered model (skin, fat, muscle) for different
frequencies ranging from 1 GHz to 6 GHz. Similarly, in
[28], the authors use a multilayered numeric model covered
with an external matching layer to investigate the effect
of the relative permittivity of the matching layer on the
power loss reduction in the 403 MHz Medical Implant
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Fig. 1. The comparison of the proposed study with the related studies.

Radiocommunications Service (MedRadio) band. However,
the analytical and numerical analyses performed in these
studies only provide the optimum value for the specific
case examined in the corresponding study. In addition, the
numerical approach is computationally heavy and time-
consuming, which turns the optimization for different cases
into an overwhelming process.

This paper presents a novel machine learning (ML) based
approach to ease the selection of the MM for different
cases. Due to the rapid growth and diversity of available
data, ML has become a technology that is being frequently
used to find an optimized solution to a given problem in
a wide variety of applications, including electromagnetics
and antennas [29], [30]. ML’s popularity in concepts related
to electromagnetics is rooted in its ability to improve the
computational cost when solving complex electromagnetic
problems with a data-driven approach [31]. The studies on
developing ML-based techniques for electromagnetics and
antennas include but are not limited to antenna design and
optimization [32]–[36], beamforming in antenna arrays [37],
[38], direction of arrival estimation [39], [40], EM scattering
[41], [42], and EM compatibility [43].

The novelty of this study is twofold. Firstly, over 200 cases
are considered to empirically find the optimum MM per-
mittivities for four different scenarios with three different
target tissues (muscle, brain, fat) at 2.4 GHz. The impact of a
well-designed MM is demonstrated for muscle and brain as
target tissues with measurements. To demonstrate the gap
filled with this study, a comparison of the proposed study
with the studies implementing an MM in the literature
in terms of four essential aspects is provided in Fig. 1.
Secondly, after showing the impact of the MM in the studied
cases, a more generalized ML-based tool that predicts the
average Poynting vector magnitude (APVM) and the dipole
length for given system parameters is proposed. The trained
artificial neural network (ANN) is later used for showing the
relationship between MM permittivity and APVM values.
The output of the ANN was in line with the empirical results
for different target tissues.

 
Fig. 2. The setup used to empirically determine the optimum permittivities
of the MM for three different tissues (hM M : MM thickness, hai r : air
thickness).

II. THE EMPIRICAL APPROACH

A. Data Generation with Simulations

In order to empirically find an optimum MM design for
three different antenna - human body separations (1 cm, 2
cm, 3 cm) and three different target tissues (muscle, brain,
fat), an extensive number of simulations are conducted
with ANSYS High Frequency Structure Simulator (HFSS)
[44]. The EM properties of these tissues at 2.4 GHz are
tabulated in Table I [45], [46]. The simulation setup consists
of a tissue-mimicking numerical phantom representing the
target tissue, an MM, and an on-body wire dipole antenna,
as visualized in Fig. 2. MM thicknesses of 1 cm and 2 cm
are investigated. In addition, an air layer of 0 cm or 1 cm
thickness is placed in between the MM and the on-body
antenna, resulting in four different cases with the MM. Here,
an air layer of 0 cm thickness means that the MM and on-
body antenna are in contact. The conductivity of the MM
is set to 0 S/m for all cases, and its relative permittivity is
varied from 2 to the target tissues’ relative permittivity in
increments of 2, resulting in 205 different cases in total. For
all 205 cases, more than 700 simulations are performed to
optimize the dipole length for the operation at the 2.4 GHz
resonant frequency. To eliminate the effect of an implant
antenna, the simulated Poynting vectors are utilized for
measuring the transmitted power levels. The APVM values
are calculated inside the target tissue at depths of 4 cm,
3 cm, 2 cm, and 1 cm. The calculation is done with
the HFSS fields calculator by taking the integral of the
Poynting magnitudes on a rectangle surface of 1 cm × 2.5
cm and dividing by the total area. The optimum values
are determined by comparing the calculated APVM values.
As an example, Fig. 3 shows the APVM values as the MM
permittivity changes at 4 cm depth, taking muscle as the
target tissue. The APVM values change depending on the
relative permittivity of the MM, resulting in a different
optimum value for every different target tissue and the
thickness of the MM and air layer. Finally, in order to
demonstrate the effect of a well-designed MM, simulations
are run for the cases where no MM is present between the
tissue and the dipole antenna, that is, only an air layer of
1 cm, 2 cm or 3 cm is present between the tissue and the
dipole. These 9 cases are going to be referred to as the
benchmark cases.
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Fig. 3. Simulated (empirical) APVM at 4 cm depth with respect to the ϵr
of the MM for different cases in the muscle tissue at 2.4 GHz.

TABLE I
EM PROPERTIES OF THE MUSCLE, BRAIN AND FAT TISSUES AT 2.4 GHZ

Tissue Relative Permittivity Conductivity (S/m)
Muscle 52.8 1.71
Brain 39.2 1.8

Fat 10.8 0.26

The optimum permittivities and the corresponding dipole
lengths are tabulated in Table II. As mentioned before, the
dipole lengths are optimized for each case. Fig. 4 presents
the return loss graphs only for the optimum MM cases and
the benchmark cases listed in Table II. The return loss at
2.4 GHz is greater than 10 dB for all the cases, although
Fig. 4 is limited to muscle as the target tissue for the
sake of conciseness. The effect of the MM on the power
transmitted into the human body is evaluated by examining
the Poynting vector field distributions at the corresponding
depths. For instance, the Poynting vector fields plotted at
2.4 GHz and at 1 cm depth in the fat tissue for different
cases studied can be seen in Fig. 5. One must note that
the data used to present these Poynting vector field plots
are exported in 0.5 mm steps from the simulations and
then interpolated. The Poynting vectors calculated with
the optimum MM are greater than their corresponding
benchmark cases. The effect of the MM becomes more
substantial as the separation between the antenna and
the human body increases. In addition, Table II provides
quantitative data supporting these arguments.

B. Validation

A setup is prepared to validate the results of the empir-
ical search for an optimum MM detailed in Section II-A.
The validation is performed through both simulations and
measurements for muscle and brain as the target tissues.
The setup consists of a rectangular patch antenna as the
implant antenna, a dipole antenna as the on-body antenna,
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Fig. 4. Optimized |S11| of the dipole antenna for different cases with
muscle as the target tissue.
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Fig. 5. Simulated Poynting vector magnitudes (W/m2) for different cases
at 1 cm depth in the fat tissue at 2.4 GHz. The figures at the left-hand
side visualize the different cases studied, and the figures at the right-hand
side show the corresponding Poynting vector magnitude plots on a cross-
sectional area at 1 cm depth in the fat tissue for (a) 1 cm, (b) 2 cm, (c) 3
cm antenna - human body separation.
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TABLE II
OPTIMUM VALUES FOR THE RELATIVE PERMITTIVITY OF THE MM, THE

CORRESPONDING DIPOLE LENGTHS AND THE INTEGRALS OF THE POYNTING

VECTOR MAGNITUDES COMPUTED OVER A 10 CM BY 10 CM AREA AT 4 CM, 2
CM, 1 CM DEPTHS FOR MUSCLE, BRAIN AND FAT, RESPECTIVELY

Tissue
MM Air Optimum Dipole Computed

Thickness Thickness MM Length Integral
(cm) (cm) ϵr (mm) (mW)

Muscle

1
0

2 49.9 0.18
2 18 24.9 0.21
1

1
26 59.9 0.2

2 20 59.8 0.19
0 1, 2, 3 * 59.9 0.16, 0.07, 0.04

Brain

1
0

8 32.9 0.92
2 32 21.5 0.84
1

1
24 60.3 0.84

2 34 60.3 0.76
0 1, 2, 3 * 59.9 0.67, 0.33, 0.17

Fat

1
0

6 35.9 7.13
2 6 36.9 6.47
1

1
14 59.9 5.81

2 14 60.9 5.9
0 1, 2, 3 * 59.9 5.48, 3.06, 1.77

(a) (b)

Fig. 6. The models and the parameterized dimensions of the antennas
used in the simulations and the measurements. (a) the implant patch
antenna. (b) the on-body dipole antenna.

a container, an elevator platform for the implant antenna,
two boxes for the MM (one for 1 cm thickness and one for
2 cm thickness), tissue-mimicking phantoms and MM.

The patch antenna as seen in Fig. 6(a) is designed to
operate in the 2.4 GHz Industrial, Scientific and Medical
(ISM) Band on a 1.91 mm-thick Rogers RT/duroid 6006 (ϵr

= 6.15) substrate [47]. The dimensions of the patch and the
offset of the feed from the centre are 25mm×10mm and
10 mm, respectively. The substrate has a size of 44.1mm×
29.1mm. A 1 mm spacing is introduced around the patch in
order to decrease the near-field losses. The implant antenna
is prototyped using LPKF S103. The dipole antenna as seen
in Fig. 6(b) is designed to operate in the 2.4 GHz ISM band
for 8 different cases and 6 benchmark cases. The radius
of the dipoles is 0.225 mm. Each dipole is fed with a 62
mm long RG402 semi-rigid coaxial cable and a 29 mm long
bazooka balun.

The container is made of plexiglass and 30 cm × 30 cm ×
20 cm in size. The elevator platform and the boxes are 3D
printed using polylactic acid (PLA). The tissue-mimicking
phantoms and MM are prepared using the ingredients
tabulated in Table III. The mixture consisting of these
ingredients is continuously stirred while it is heated up to
80◦C, where solidification takes place. The mixtures are then

TABLE III
AMOUNT OF EACH INGREDIENT USED FOR THE PREPARATION OF THE

TISSUE-MIMICKING PHANTOMS

Ingredient Muscle Tissue Brain Tissue
Water (L) 3.4 2

Oil (L) 0.7 1
Dish Detergent (L) 1.2 1

Cornstarch (g) 450 400

TABLE IV
MEASURED EM PROPERTIES OF THE PREPARED TISSUE-MIMICKING

PHANTOMS AND MM AT 2.4 GHZ

Relative Permittivity Conductivity (S/m)
Muscle Tissue 51.5 1.73
Brain Tissue 39.6 1.71

MM1 2.7 0.001
MM2 5.1 0.06
MM3 20 0.5
MM4 27 0.61
MM5 35 1.1

allowed to cool to room temperature. Their EM properties
are measured using a Speag DAKS probe and tabulated
in Table IV. As previously listed in Table II, the required
MM relative permittivity values selected by the empirical
approach for muscle and brain as the target tissues are 2,
18, 20, 26 and 8, 24, 32, 34, respectively. The developed MM
are mapped to the required MM as follows: ϵr = 2 - MM1,
ϵr = 8 - MM2, ϵr = 18 and ϵr = 20 - MM3, ϵr = 24 and ϵr

= 26 - MM4, ϵr = 32 and ϵr = 34 - MM5. As can be seen
in Table IV, the prepared MM have non-zero conductivity.
The impact of their conductivity values is compensated for
while the measurements are presented.

The bottom part of the container is filled with iso-
tonic (0.3%) water absorbed silica to minimize EM wave
penetration. The rest of the container is filled with the
tissue-mimicking phantom. The implant antenna is placed
on its elevator platform along with its cabling, and the
surroundings of the antenna are covered with parafilm as
can be seen in Fig. 7(a). The calibration is performed right
before the implant antenna at the end of the coaxial cable.
The elevator platform is immersed into the phantom as
in Fig. 7(b). Note that the depth of the implant can be
adjusted via the holes on the walls. An adjustable platform
is preferred for the implant antenna, as the depth of the
implant in real-life applications varies depending on in
which part of the body it will be implanted. For example, a
muscle implant is generally implanted deeper than a head
implant. Therefore, here, it is set to 4 cm for the muscle
tissue and 2 cm for the brain tissue. The box is filled with
the prepared MM as shown in Fig. 7(c) and placed on top
of the tissue-mimicking liquid as seen in Fig. 7(d). The final
measurement setup along with the dipole antenna placed
on the MM can be seen in Fig. 7(e).

Fig. 8(a) and Fig. 8(b) show the simulation and the mea-
surement results for the transmission coefficient between
the dipole and the patch antenna for the muscle tissue,
respectively. The corresponding |S21| values at 2.4 GHz for
seven different cases are tabulated in Table V. It can be

ACCEPTED MANUSCRIPT / CLEAN COPY



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2022.3140497, IEEE
Transactions on Antennas and Propagation

5

(a) (b)

(c) (d)

(e)

Fig. 7. The components and the preparation of the measurement setup.
(a) The implant antenna placed on the elevator platform covered with
parafilm. (b) The elevator platform placed inside the container. (c) The box
filled with the MM. (d) The box placed on the tissue-mimicking phantom.
(e) The complete measurement setup with the dipole antenna.

observed that the MM does not improve the |S21| values
for 1 cm separation between the on-body antenna and the
human body. However, when the separation is increased,
the effect of the MM becomes substantial. For instance,
for 2 cm separation, it can be seen that MM increases
the |S21| value at 2.4 GHz from approximately -30 dB to
approximately -25 dB. Similarly, for 3 cm separation, MM
improves the |S21| value by approximately 8 dB. Note that
the measured values are corrected to compensate for the
non-zero conductivity values of the developed MM. For
this correction, each measurement case including an MM is
simulated first with the non-conductive MM and next with
the corresponding conductive MM. The difference between
the simulated |S21| values are added to the measured values.

Fig. 8(c) and Fig. 8(d) show the simulation and the
measurement results for the brain tissue, respectively. The
corresponding |S21| values at 2.4 GHz are tabulated in Table
V. As can be seen, the |S21| value is increased from approx-
imately -22 dB to approximately -18 dB for 2 cm separation
and the improvement in the |S21| value is approximately 8

TABLE V
SIMULATED AND CORRECTED MEASURED |S21| VALUES FOR DIFFERENT

CASES FOR THE MUSCLE TISSUE AND THE BRAIN TISSUE AT 2.4 GHZ

Tissue

Muscle Brain

hM M ,hai r Simul. Corrected Meas. Simul. Corrected Meas.

(cm), (cm) |S21| (dB) |S21| (dB) |S21| (dB) |S21| (dB)

0, 1 -24.3 -24.4 -16.7 -16.3

1, 0 -24.7 -25.2 -18.1 -17.9

0, 2 -29.8 -30.3 -22.3 -22

1, 1 -24.5 -24.4 -17.2 -16.7

2, 0 -25.2 -27 -19.6 -21.8

0, 3 -33.8 -34 -26.6 -26.1

2, 1 -25.1 -25 -18 -17.2

TABLE VI
INTEGRALS OF THE POYNTING VECTOR MAGNITUDES COMPUTED OVER A 1.5

CM BY 2.5 CM AREA AND THE SIMULATED |S21| VALUES FOR THE SINGLE

LAYER AND THE REALISTIC HUMAN HEAD MODEL

Computed Integral (mW) |S21| (dB)
Single-layer 0.15 -47.6

Realistic 0.14 -45.2

dB for 3 cm separation. The improvement in the measured
2 cm thick MM case is lower than the estimated one for the
brain tissue due to the direct contact between the on-body
antenna and the conductive MM that leads to high near-
field losses. Note that the conductivity of the MM developed
for that case is particularly higher due to its high water
content. In an ideal setup, an MM with no conductivity
would be used, eliminating this problem.

It can be noticed that this work uses single-layer tissue
models as target tissues, whereas the human body consists
of layers of different tissues in real life. Hence, one may
ask whether the results obtained in this work can be
extended to a multi-tissue realistic human body model.
In order to investigate this, two simulation setups are
prepared. The first setup includes a homogeneous single-
layer head model, whereas the second setup includes an
ANSYS human head phantom model (Male-4 mm accuracy)
with different tissues. The implant antenna is placed at 4 cm
depth. The case with 2 cm thick MM and 0 cm thick air layer
is selected for this investigation. The results are tabulated
in Table VI. It can be seen that the |S21| and the computed
integral values agree very well for the two different head
models. Hence, the results of the single-layer tissue models
can be extended to multi-tissue realistic models. Moreover,
a single-layer model may be preferable during the design
as it decreases the simulation time without significantly
affecting the accuracy.

III. THE MACHINE LEARNING-BASED APPROACH

The ML-based approach studied in this work aims to
determine the optimum MM permittivity by considering the
properties of the target tissues together with the desired
MM and air layer thicknesses. For this purpose, an ANN
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Fig. 8. Simulated and corrected measured |S21| between the implant antenna and the on-body antenna for different cases.

model that predicts the dipole length and the AVPM for
a given setting is proposed. This proposed ANN model is
remarkably fast compared to the simulations, allowing one
to predict the dipole length and the AVPM in the order
of milliseconds. After obtaining a number of predictions
by sweeping different MM permittivities, the case with
the highest AVPM is selected as the optimum case. The
associated MM permittivity is determined as the optimum
for the specified setting. The proposed ANN model consists
of a one-dimensional convolutional neural network (CNN)
and fully connected (FC) layers.

This section consists of four parts. First, the generation of
the data set and the data representation are explained. Next,
the ANN structure is demonstrated, and the experiment
details and results are given.

A. Data Set

As previously mentioned in Subsection II-A, a total of 205
cases that differ from each other in MM thickness, air layer
thickness, target tissue type, and MM relative permittivity
are examined during the empirical approach. For the ML-
based approach, the simulation results obtained in the

empirical approach are used as the data set. From these
205 different cases, randomly selected cases with muscle
(25 cases) and brain tissues (20 cases) are split as the test
set. The remaining cases with muscle (73 cases), brain (59
cases), and fat tissues (28 cases) are employed for training
and validation purposes in a 5-fold cross-validation scheme.

Each data sample (case) is represented with a two-
channel one-dimensional image slice and three numerical
inputs for defining the setup. The first channel of the
image slice denotes the relative permittivity, whereas the
second one denotes the conductivity. The image slice is a
vertical cut of the system from the on-body antenna to the
implant surface, where pixels represent layers with equal
thicknesses, as illustrated in Fig. 9(a). The input dimension
is fixed to 210 so that the resolution is high enough to
get only a single pair of EM properties corresponding to a
single pixel for all considered depths and MM thicknesses.
The physical distance between the on-body antenna and
the implant surface is not constant for all cases due to the
varying thicknesses of the MM and the air layer. Thus, the
physical thickness of a pixel depends on the data sample
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(a) Physical illustration of the input image slice.

(b) The overall structure.

(c) The CNN structure.

(d) The MLP structure.

Fig. 9. The artificial neural network structure.

TABLE VII
INPUTS AND OUTPUTS OF THE NEURAL NETWORK

Inputs

Vertical Cut Image Slice 210×2
Resonant Frequency

Depth of the Implant Antenna
Stepsize of the Input Image Slice

Outputs
APVM

Electrical Length of the Dipole

and is fed as a numerical input in units of millimeters.
Other numerical inputs mark the deviation of the resonant
frequency from 2.4 GHz in units of GHz and the depth
of the implant antenna in centimeters. The channels of
the input are normalized by dividing each channel with
the explicit limits for the relative permittivity and the
conductivity of the human body tissues [45], [46], which
are 82.41 and 3.41 S/m, respectively. The outputs are the
APVM value and the electrical length of the dipole. Both
outputs are scaled to the (0, 1) range before training for
faster convergence. The inputs and outputs are summarized
in Table VII.

B. Proposed ANN Model

The proposed ANN structure is depicted in Fig. 9. It starts
with two branches, a CNN and FC layer, which are then
joined and followed by a multi-layer perceptron (MLP) (Fig.
9(b)). CNN is used to process the input image slice, and the

FC layer aims to equate the dimension of the numerical
inputs to the dimension of the CNN outputs.

The CNN (Fig. 9(c)) part of the model consists of one-
dimensional convolutional layers of varying kernel width
with up to 16 filters and a maximum pooling layer of kernel
width 4. The flattened CNN outputs are concatenated with
the FC layer outputs and fed into MLP. The MLP (Fig. 9(d))
part has 6 FC layers consisting of 2, 16, 32, and 64 neurons,
For all layers, ReLU activation is used.

C. ANN Experiments

Experiments are carried out by implementing the pro-
posed ANN model with Keras library [48] and using the
data set derived from simulation output for various cases of
brain, muscle, and fat tissues. Adam optimizer with learning
rate 0.001 and mean square error (MSE) loss is utilized.
Moreover, mean absolute error (MAE) and mean absolute
percentage error (MAPE) are monitored.

The network is trained with a batch size of 32 for
3000 epochs. Excluding the test set samples, 5-fold cross-
validation is employed on the data set. The model with the
best performance is determined by monitoring MSE, MAE,
and MAPE on the validation set. This model is trained on
the dataset using all 5 folds for 3000 epochs to achieve the
final trained model.

D. Results

The proposed ANN structure is chosen carefully by in-
specting the joint errors of the dipole length and the AVPM
on the training and validation sets, which is the usual way of
proposing an ANN model. A model with an ideal structure
should learn the cases in the training set and generalize
well, i.e., predict the cases in the validation set with low er-
ror. To illustrate that the proposed model conforms to these
goals compared to the similar models, three 5-fold cross-
validation experiments are run by changing the number
of filters (for CNN) and neurons (for FC). The number of
filters and neurons is increased with a factor of 1.5 and 2
to yield two model structures of higher complexity. Then,
the number of filters and neurons is halved to get a lower-
complexity model. These three models and the proposed
model are trained using a 5-fold cross-validation scheme.
The results of these experiments are reported in Table VIII.
As can be seen, the training and validation errors of the
model with the lowest complexity cannot reach the level of
the proposed model, suggesting that its’ expressive power is
not enough. The model with the highest complexity cannot
converge to learn the cases in the training set. Also, the
training time increases with the complexity of the model.
Thus, the proposed model matches the desired complexity
level while achieving a satisfactory estimation performance.

The average and best case errors for the 5-fold cross-
validation is given in Table IX and Table X. The best case is
selected with respect to the smallest MAPE on the validation
set for the APVM since the results indicate that this output
is harder to estimate compared to the other one. To make
the best use of the available data set, the selected ANN
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TABLE VIII
MSE, MAE AND MAPE FOR JOINT DIPOLE LENGTH [mm] AND APVM
[W/m2] ON THE TRAINING AND VALIDATION SETS FOR 5-FOLD CROSS

VALIDATION OF THREE STRUCTURES WITH HALF, ORIGINAL, AND DOUBLE

NUMBER OF FILTERS

Set ANN Structure MSE MAE MAPE

Train
Half 0.000194 0.007116 1.248411

Original 0.000041 0.004128 0.716885
One and a Half 0.000288 0.008006 1.436288

Double 0.290524 0.380760 50.421369

Valid
Half 0.001120 0.015322 2.736528

Original 0.000849 0.013065 2.343896
One and a Half 0.002000 0.018200 3.238683

Double 0.290510 0.380752 50.423455

TABLE IX
MSE, MAE AND MAPE FOR APVM [W/m2] ON THE TRAINING AND

VALIDATION SETS FOR 5-FOLD CROSS VALIDATION

Set Case MSE MAE MAPE

Train
Average 0.435003 0.276674 45.53026

Best 0.000215 0.010768 7.649216

Valid
Average 0.435753 0.310152 53.73685

Best 0.025948 0.06674 16.71386
Train (5 folds) 0.002623 0.024548 12.68722

model is used as the initial point and it is trained on all
5-folds of the data set, and the resulting training errors are
reported in Table IX and Table X.

By employing the trained model on the test set, the errors
are calculated for individual samples. Then, 10% of the test
samples with the highest and lowest absolute percentage
error (5% each) in APVM estimation are trimmed. In Fig.
10, the ANN estimations of APVM and dipole length are
compared with the empirical values. In Fig. 10(a), it is
observed that the deviations of APVM estimations from
the empirical values are limited, and there are only a few
significant deviations. As seen in Fig. 10(b), the dipole
length estimations are nearly perfect.

In the test set, the resulting mean errors are given in Table
XI and Table XII. It is observed that lower APVM values are
more likely to be estimated with a higher percentage error.
The reason is the scarcity of training data samples having
low APVM. Our model can predict the APVM greater than
0.25 W/m2 with 12.3% MAPE and the dipole length with 1%
MAPE over all cases.
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Fig. 10. The comparison of empirical and estimated outputs (ANN).

TABLE X
MSE, MAE AND MAPE FOR THE DIPOLE LENGTH [mm] ON THE TRAINING

AND VALIDATION SETS FOR 5-FOLD CROSS VALIDATION

Set Case MSE MAE MAPE

Train
Average 0.038217 0.144298 0.443574

Best 0.032637 0.139636 0.412054

Valid
Average 0.306984 0.290243 0.879405

Best 0.650546 0.45318 1.364362
Train (5 folds) 0.064463 0.191067 0.590357

TABLE XI
MSE, MAE AND MAPE FOR APVM [W/m2] ON THE TEST SET

Tissue APVM [W/m2] MSE MAE MAPE

Muscle
All 0.014478 0.057418 13.83549

<0.25 0.000574 0.016261 16.63462
>0.25 0.027802 0.096861 11.15298

Brain
All 0.020684 0.06621 16.78219

<0.25 7.37E-05 0.007368 47.67077
>0.25 0.023049 0.072962 13.2376

All
All 0.017083 0.061109 15.07237

<0.25 0.000508 0.015086 20.73374
>0.25 0.025142 0.083486 12.3196

One of the goals of this study is to find the relative
permittivity value that gives the maximum APVM value for
different cases. The ANN estimations are generally able to
reflect the relationship between the MM permittivity and
APVM. As an example, three cases for different tissues are
given in Fig. 11 showing the APVM values corresponding
to selected MM permittivity. The general trend is in line
with the empirical data for most cases. The peaks of the
empirical and estimated APVM are nearly at the same MM
permittivity values for all cases in Fig. 11. The AVPM value
itself does not play an important role when choosing the
optimum MM permittivity, and instead where the peaks
occur is of interest. Thus, the ANN approach is promising,
and its limitations can be overcome by increasing the size
of the data set.

IV. CONCLUSION

In this paper, over 200 cases are considered in order
to empirically determine the optimum MM permittivity
values at 2.4 GHz for four different scenarios and three
different target tissues (muscle, brain, fat). The effect of
a well-designed MM on the power transmitted into the
human body is demonstrated for muscle and brain tissues
through measurements. It is shown that the |S21| values
can be enhanced up to 8 dB with the introduction of
the MM. Next, a more generalized ML-based tool for
the selection of the optimum MM is presented. A one-
dimensional convolutional neural network followed by a

TABLE XII
MSE, MAE AND MAPE FOR THE DIPOLE LENGTH [mm] ON THE TEST SET

Tissue MSE MAE MAPE
Muscle 0.296405 0.359924 1.126493
Brain 0.143705 0.250347 0.79608

All 0.232308 0.313928 0.987801
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Fig. 11. Simulated (empirical) and estimated (ANN) APVM with respect to the relative permittivity of the MM for different cases. The vertical lines
show where the peaks occur, which leads to finding the optimum MM permittivity.

multi-layer perceptron is trained with the simulated APVM
and dipole length values. The developed tool can predict
the dipole length and APVM values greater than 0.25 W/m2

with 1% and 12.3% MAPE, respectively. ANN estimator can
show the relationship between MM permittivity and APVM
by changing the input MM permittivity. A good coherence
is observed between MM permittivity and APVM values
from ANN output with minor deviations for different target
tissues. Since the inputs of the ANN are flexible, the ANN
estimator can be extended to accommodate layered MM
and target tissues. As a future direction, we plan to increase
the size of the data set to improve the ANN performance
and better generalization.
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