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Robust Access Point Clustering
in Edge Computing Resource Optimization

Nour-El-Houda Yellas ID , Selma Boumerdassi ID , Alberto Ceselli ID , Bilal Maaz ID , Stefano Secci ID

Abstract—Multi-access Edge Computing (MEC) technology
has emerged to overcome traditional cloud computing limi-
tations, challenged by the new 5G services with heavy and
heterogeneous requirements on both latency and bandwidth. In
this work, we tackle the problem of clustering access points
in MEC environments, introducing a set of clustering models
to be deployed at the pre-provisioning phase. We go through
extensive simulations on real-world traffic demands to evaluate
the performance of the proposed solutions. In addition, we
show how MEC hosts capacity violation can be decreased when
integrating access points clustering into the orchestration model,
by investigating on solution accuracy when applied on held-
out users traffic demands. The obtained results show that our
approach outperforms two state-of-the-art algorithms, reducing
both memory usage and execution time, by 46% and 50%,
respectively, in comparison to a baseline algorithm. It surpasses
the two methods in gaining control over MEC hosts capacity
usage for different maximum achieved occupancy levels on MEC
hosts.

Index Terms—Multi-access Edge Computing, RAN virtualiza-
tion, Access Point Clustering, MEC Resource Allocation.

I. INTRODUCTION

THE Multi-access Edge Computing paradigm was initially
developed for running services close to the end devices,

in order to lower latency and improve user experience. De-
spite the fact that MEC infrastructure hosts can be densely
distributed at the edge, resource limitation and robustness
against traffic fluctuations are important challenges to handle
by network service providers. New technologies such as Net-
work Functions Virtualization (NFV) and Software-Defined
Networking (SDN) were proposed in the last decade; their
consideration into network architecture design is to push the
technology barriers toward virtualized infrastructures at Radio
Access Network (RAN) subsystems as well [1], including both
the centralization of the control and the virtualization and
softwarization of all involved network functions.

Radio function virtualization leads to additional flexibility
in a segment historically more rigid than core networks, due
to the lower importance of routing in these environments.
This flexibility can help to meet the growing and unpre-
dictable demands of mobile users, and also allows the use
of standard hardware to reduce costs for Mobile Network
Operators (MNOs) and delay capital expenditures. In addition,
MEC technology allows to cope with users demand variation,
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since network reconfiguration becomes an easier operation to
perform [2].

Indeed, while MEC infrastructures are recognized as a 5G
key enabler, the reverse is also true: 5G can be consid-
ered a key enabler for MEC infrastructures, thanks to NFV
technology [3]. The deployment of virtualization facilities in
the access network, for 5G functions and RAN functions,
can therefore favor the deployment of MEC infrastructure
elements. The so-favored deployment of application servers
near end users can increase user bitrates and reduce end-to-
end latency [4].

Several MEC hosts deployment scenarios are considered
in practice; at the macro Base Station (BS) site, at the
core network or even between them at the so-called Central
Offices (CO) and/or Points-of-Presence (PoP), depending on
the service requirements [5].

In order to have a complete control of service deployment
at the MEC infrastructure, the ETSI standards call for the
development of orchestration service elements, with the aim
of efficiently managing the available resources on MEC hosts.
Hence, the automation of the aforementioned task is deemed
as one of the important challenges to address. In other words,
the inclusion of both the access and core network functions
into MEC hosts requires to handle the task of assigning base-
station Access Points (APs) to MEC facilities, while taking
into consideration the computing capacity needed to handle
AP traffic demands.

Scalability and robustness are major challenges that arise
when dealing with MEC resource orchestration problems [6].
In this work, we shed a light on the scalability-robustness
challenge by extending a MEC orchestration framework from
[7]. We propose a portfolio of AP clustering algorithms,
to integrate as a preprocessing phase to the actual orches-
tration problem, scheduling AP-to-MEC facility assignments
over time. Our clustering algorithms are meant to show the
flexibility we can benefit from MEC orchestration, while
evaluating the impact in terms of robustness when considering
heterogeneous demands profiles.

The main contributions of this work are as follows:
• We formulate a collection of AP clustering algorithms

that we integrate into a MEC orchestration baseline
algorithm [7], with the aim of reducing both execution
time and memory usage, while integrating robustness
criteria in the orchestration problem;

• We train the proposed frameworks using a real-world
dataset, composed of demands collected at two different
regions in France;

• We apply the resulting assignment plans on held-out data,
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in order to assess how well the proposed assignment plans
can adapt to access point changing demands by evaluating
the violation of servers capacity;

• We finally compare our algorithms to two different
approaches from the state-of-the-art. Numerical results
show that our algorithms outperform these existing solu-
tions in terms of robustness and computing performance.

The paper is organized as follows. In Section II, we give
an overview about existing works. We define the AP-to-MEC
assignment problem and the proposed formulations of the
clustering models in Section III. We evaluate the performance
of our algorithms in Section IV. We draw conclusions in
Section V.

II. STATE OF THE ART
In the following, we provide the necessary background

on virtualization in edge computing infrastructures, network
analytics and optimization.

A. Access Network Virtualization
MEC is one of the 5G key enabler technologies; its combi-

nation with NFV can be of a great benefit for mobile network
operators, since the management operations can be held by
the NFV architecture, more precisely via its Management and
Orchestration (MANO) subsystem [8].

Several works exist in the area of MEC-NFV MANO,
proposing algorithms or architectures taking advantage from
the presence of MEC-NFV systems. For instance, [9] ad-
dresses the relationship between MEC and other technologies
that are considered as 5G enablers such as NFV and SDN:
the authors propose an architectural framework where an SDN
controller is responsible for management operations in a MEC-
NFV environment, hence being able to reconfigure the network
stack to take into consideration orchestration decisions such as
the assignment of APs to MEC hosts. Other works focus on
VNF placement in a MEC environment [10], [11], balancing
the placement across multiple MEC locations. A clustering
scheme for network service chaining is proposed in [12], in
order to minimize end-to-end service latency in MEC. More
details about the MEC architecture and different orchestration
and deployment scenarios are presented in [13].

In [14], a study was conducted on how a MEC infrastructure
should be planned, that is, where MEC facilities should be
placed, as a function of different MEC resource placement
policies. A take-away result is that for a large metropolitan
area network as the one of Paris, France, the number of MEC
facilities ranges from 5 to 20. The workload was equivalent
to plan for as much as one virtual machine per mobile user,
which can be considered as an upper bound, and that for a
network of approximately 180 thousands users with 606 BSs.
The authors used real data volume information from a french
mobile network.

From a radio-access perspective, architectures have evolved
toward the virtualization and disaggregation of its control-
plane and data-plane functions to improve interference coor-
dination and resource efficiency. This evolution started with
the Centralized/Cloud RAN (C-RAN), in 2010, where the
innovation consisted in disaggregating AP facilities into two

main units: Radio functions assured by Remote Radio Heads
(RRHs) that are deployed on cell sites, and Base Band
computation functions provided by BaseBand Units (BBUs).
BBUs are then centralized at so-called BBU pools, hence tak-
ing advantage from the centralization for resource allocation
and scaling [15]. More recently, the C-RAN evolution has been
integrated in 5G systems, where a more dense deployment
of base stations is needed for a more flexible infrastructure,
leading to a generalized virtualized or software-defined RAN
(vRAN or SD-RAN) environment. In vRAN, the equivalent of
the BBU function can be split into two units, the Centralized
Unit (CU) and the Distributed Unit (DU), in order to facilitate
the virtualization and radio scheduling tasks [16], while the
radio part is called Radio Unit (RU). Splitting radio processing
functions is known as ‘functional split’ [15] and it enables
to choose the functions that turn on cell sites and those that
will be offloaded to CUs, with different splitting options [17],
possibly in a dynamic (runtime) and flexible (different options
decisions for different segments and times) fashion.

Many works investigate on how to combine vRAN and
MEC technologies [18]. In [19] the authors implement a MEC
platform on the vRAN front-haul, and evaluate the QoS for
end users for two different locations of MEC hosts. Authors
in [1] propose a MEC vRAN joint design problem, introducing
an optimization framework that aims to simultaneously find
the best functional split of BSs and MEC service placement,
taking into account flow routing. The integration of vRAN
with SD-x system lead to the Open RAN (O-RAN) initiative,
which has the goal to disaggregate software and hardware and
to create open interfaces for more flexibility. Many O-RAN
software releases exist today already [20]. In [21], the authors
discuss the RAN evolution including the detailed description
of the O-RAN reference architecture.

The standpoint we adopt in this article is the one of an
operator running a MEC infrastructure the operator leverages
on, for converging MEC applications and virtualized network
functions. Hence APs are assigned to MEC hosts facilities in
a dynamic way by means of MANO operations, leveraging
on a programmable network stack between APs and MEC
infrastructure, hence going largely beyond the legacy situation
where APs are statically assigned to COs and PoPs. In our
work, we therefore do not need to delve into the details related
to, for instance, functional splitting and the actual coexistence
of NFV and MEC systems; on the other hand, our model has
to take into consideration the traffic fluctuations deriving from
the AP to MEC host assignments and related MEC switching
operations.

B. Clustering in MEC Orchestration
Given the natural limitations of MEC facilities or hosts in

terms of computing resources, resource orchestration is an
important task to optimize its utilization, particularly important
when considering the environmental footprint of edge com-
puting [22]. Thus, operations that consist of re-assigning APs
to other MEC hosts need to be deployed; this is needed to
ensure that a number of desirable key performance indicators
(KPIs) are met, as for instance maximizing resource uti-
lization, increasing resiliency against network and computing
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impairments, and increasing robustness against load variations
in time and space.

Often, data analytics techniques are used in MEC design
frameworks, so as to take into account dynamic load and
communication channel states. For instance, stream or online
data-analytics is needed in mobile computation offloading
frameworks, where tasks offloading online decisions need to
be made. In this direction, a feedback prediction model of
average resource usage (RAM and CPU) and offloading time
is proposed in [23]. In [24], the authors tackle the offloading
decision for MEC applications where the performance is
evaluated using real-world dataset. Reference [25] aims at
offloading intensive computing tasks for energy saving by
optimizing resource allocation, and [26] presents solutions
for computation offloading in edge servers for internet of
connected vehicles. Near-real-time or offloading data analytics
is indeed often considered when addressing MEC design
problems.

Leveraging on network data analysis is a common require-
ment for clustering techniques in C-RAN and MEC environ-
ments. In [27] [28] the authors propose a clustering scheme for
APs, where APs of each cluster share the same data processing
units that are centralized in datacenters to optimize costs and
energy consumption in vRAN. Another example is [29], where
the authors aim at predicting mobile traffic generated by a
cluster of APs to anticipate MEC resource orchestration using
real-world dataset. In [30] the authors propose an AP geo-
clustering technique, while taking into account the spatial
distribution of mobile traffic. The main goal is to define MEC
clusters as a set of AP and users served by the same MEC host,
so that the whole area is partitioned into MEC clusters, in order
to offload the core network by maximizing intra MEC hosts
communications. Similarly, in [7] where the authors apply the
temporal clustering model proposed in [31] on demands of a
real-world dataset, and integrate it into an orchestration model;
the temporal clustering consists of grouping together similar
mobile network profiles using the traffic volume generated by
APs at a time slot: this allows to retrieve a reduced number of
profiles, with a similarity assessment based on traffic volume
and traffic distribution.

Recently, the authors in [32] propose an access point
clustering scheme extending K-means to use 3D Hyperbolic
distance, using access points locations and traffic demands; the
algorithm groups together APs with complementary demands
behaviors, that is, not grouping together APs with similar
demand behavior to avoid idle states during off-peak hours.
A similar approach is presented in [33], where the goal is to
reduce the number of reconfiguration handovers, i.e., change
of BBUs for base stations, also called later in this manuscript
as switching operation.

Among all the previous works, either spatial diversity or
load changes over time are considered in the clustering and
AP-to-cloud facility assignment modeling. Taking both the
spatial and temporal dimensions is however often not explicitly
modeled. The resolution approach in [7] does model both time
and space dimensions when determining an assignment plan
by means of an optimization model; the approach consists
in applying decomposition techniques, to obtain an extended

formulation which is then optimized by a branch-and-price
algorithm.

The authors in [34] extend the model in [7] anticipating
the spatial clustering by means of preprocessing, so that
both memory usage and execution time can be reduced us-
ing variable aggregation, hence granting important computing
resource gains. In this paper, we extend the framework in [34]
to include a more variate set of clustering fitness functions,
comparing them in terms of reliability. Reliability is hereafter
meant as the capacity of not exceeding the allocated computing
capacity under varying traffic loads. We demonstrate how,
thanks to the preliminary spatial clustering, we can integrate
different orchestration flavors to make the MEC orchestration
decision framework more robust against traffic fluctuations,
while taking into consideration secondary performance indi-
cators.

III. ORCHESTRATION MODEL

In our resource orchestration model we focus on assigning a
set of APs belonging to a MNO infrastructure, to the available
MEC facilities.

A Set of all access points.
C Set of all clusters of access points.
K Set of all MEC hosts.
T = {1, . . . , τ} Ordered set of τ time slots.
T ′ = {2, . . . , τ} subset of T excluding the first time slot.
T ′′ = {1, . . . , τ − 1} subset of T excluding the last time slot.
dti Parameter, represents the traffic demands of AP i

at time slot t.
dtc Parameter, represents the demands of the cluster

c at time slot t.
d′ti Parameter, represents the variance of demands,

of the same period of each week for AP i (for
example, if the number of samples of the dataset
corresponds to w weeks, d′ti is then, the variance
of all demands of AP i at the same time period t
over all the w weeks).

d̄i Parameter, represents the average of traffic de-
mands of access point i through all the time slots.

cij Parameter, identifier of the pairwise clustering
criterion;

Q Parameter, represents the capacity of each MEC
host. All MEC hosts have the same capacity.

δij Parameter, represents the (complete link) distance
between the two AP clusters i and j;

δ̃ Parameter, represents the maximum distance be-
tween each couple of AP that belongs to the same
cluster.

lnk Parameter, distance between the two MEC hosts
n and k.

mck Parameter, distance between the APs in cluster c
and the MEC host k.

xtck Real non-negative variable, representing the frac-
tion of APs belonging to cluster c that are as-
signed to MEC host k at time slot t.

ytcnk Real non-negative variable, representing the frac-
tion of APs belonging to cluster c that are
switched from MEC host n to MEC host k at
time slot t.

zij Binary variable, takes value of 1 if APs cluster
i is paired to APs cluster j to form a cluster, 0
otherwise.

TABLE I: Notations.

We decompose the MEC orchestration problem into two
independent but connected phases: a pre-processing phase that
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consists of grouping together APs into clusters based on some
criteria, and a second phase that holds the assignment of the
resulting clusters to the MEC hosts with available capacity.
The assignment task takes into consideration the distance
between access point to MEC hosts to which it is assigned
to, thus representing the user costs, also called the assignment
cost in the remainder of the paper. We propose to trigger
assignment operations for each time period, where the duration
of a time period can go from few seconds up to few hours.
Since MEC hosts capacity is limited, and due to users traffic
variations, VM resource migration can be required; these
operations yield a deployment cost of the network, referred
to as switching cost.

In the following, we introduce the complete orchestration
framework in details. First, we present the AP-to-MEC as-
signment problem as a Mixed Integer Linear Program (MILP).
Second, we introduce the preproccessing phase with the clus-
tering approaches.
Table I lists the notations used.

The proposed framework is based on a training process
that consists of using historical data i.e., access point traffic
demands, to identify the parameters of a model. We define two
different models, one model that groups together APs based
on a given criterion at the clustering phase, and a second one
that assigns the resulting clusters to the available MEC hosts
at the orchestration phase.

A. AP-to-MEC assignment

The goal of the orchestration framework is to assign a group
of APs belonging to a given geographic area, to a set of MEC
hosts. We consider the possibility of having a cluster composed
of only one AP, in this case, the model represents a single AP
assignment problem, which refers to the baseline algorithm.
Let us consider a user equipment (UE) connected to an AP; the
assignment operation of its traffic to a given MEC host yields
a cost defined by the access latency. We assume that hosting
demands of a given AP on a MEC host consists of allocating
one Virtual Machine (VM) for each UE. On the other hand,
and unlike traditional datacenters, MEC hosts have limited
capacity, thus switching AP demands from a MEC host to
another is sometimes requested in order to cope with traffic
variation. Given the lower traffic granularity at MEC hosts,
switching operations entails a cost for operators because it
could generate service-level-agreement violations and hence
a VM workload variation across MEC hosts to get back to
nominal conditions.

We adapt the model in [7], that we present by equations

from (1) to (7).

min
∑
t∈T

∑
c∈C

∑
(n,k)∈
K×K

dtclnky
t
cnk +

∑
t∈T

∑
c∈C

∑
k∈K

dtcmckx
t
ck (1)

s.t.
∑
c∈C

dtcx
t
ck ≤ Q ∀k ∈ K, ∀t ∈ T (2)∑

k∈K

xtck = 1 ∀c ∈ C,∀t ∈ T (3)

xtck =
∑
n∈K

ytcnk ∀c ∈ C, ∀k ∈ K, ∀t ∈ T ′ (4)

xtck =
∑
n∈K

yt+1
ckn ∀c ∈ C,∀k ∈ K,∀t ∈ T ′′ (5)

xtck ∈ [0, 1] ∀c ∈ C,∀k ∈ K,∀t ∈ T (6)
ytcnk ∈ [0, 1] ∀c ∈ C, ∀n, k ∈ K,∀t ∈ T (7)

The objective formulated in (1) aims to find an assignment
plan for each cluster of APs to the set of MEC hosts for each
period of time, where each cluster can be composed of one
or multiple APs. We aim to minimize both assignment and
deployment costs.

In (2) we ensure that the overall demands assigned to a
MEC host must not exceed its capacity. Constraints (3), (6)
and (7) give the possibility to assign a cluster of APs to one
or more MEC hosts for each time slot. In fact, in this case,
the AP demands can be split and assigned to different MEC
hosts. If we have the nearest MEC host with a very small
available capacity, the proposed solution allows us to assign
the remaining demands to other MEC hosts.

Constraints (4) and (5) ensure the balancing of demand
flows for each cluster, each MEC host and each time slot.
More precisely, the right-hand side of (4) represents the overall
fraction of demands of APs belonging to cluster c incoming
to MEC host k at time t, possibly being switched from other
MEC hosts; this needs to be consistent with the value of the
corresponding xtck variable. Similarly, the right-hand-side of
each (5) represents the overall fraction of demands of APs
belonging to cluster c outgoing from MEC host k at time t,
possibly being switched to other MEC hosts. Since the left-
hand-sides are identical, (4) and (5) impose incoming and
outgoing demand fractions to be equal.

B. Multi-objective AP clustering
The idea of performing access points spatial clustering

as a preprocessing to the optimization problem is to, from
the one hand, take more robust decisions with respect to
traffic variations by grouping together APs that satisfy a given
performance target and, from the other hand, decrease both
execution time and memory space of (1)-(7) thanks to variable
aggregation and constraints reduction.

We propose an extension of the spatial clustering model pro-
posed in [34]. In order to ease reaching optimal configurations
we set an iterative pairwise access point clustering instead of
grouping an indeterminate number of APs together.

The motivation is to use simpler combinatorial models by
merging two APs as an AP pair, based on a different set of
criteria. Depending on the scales of the problem (i.e., number
of APs), this pairwise clustering can be iterated so as to group,
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BS Traffic Demands

Spatial Clustering Preprocessing

Load Difference-
based Clustering

Load Correlation-
based Clustering

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij =

∑
t∈T

|dti − dtj|

card(T )
∀i, j ∈ Ā

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T |dti−dtj|∀i, j ∈ Ā

Original Traffic Demands Variance of Traffic Demands

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T ratioi j∀i, j ∈ Ā

ratioi j =
Rij ∗Rj i√
σi ∗
√
σj
∀i, j ∈ Ā

Rij =
∑
t∈T

dti − dtj
2

, Rj i =
∑
t∈T

dtj − dti
2
∀i, j ∈ Ā

σi =

√∑
t∈T

(dti − d̄i)2, σj =

√∑
t∈T

(dtj − d̄j)2∀i, j ∈ Ā

min or max
∑

i∈Ā,j∈Ā:δij
≤δ̃

cij ∗ zij

cij = maxt∈T ratio′i j∀i, j ∈ Ā

ratio′i j =
R′ij ∗R′j i√
σi ∗
√
σj
∀i, j ∈ Ā

R′ij =
∑
t∈T

d′i
t − d′tj

2
, R′j i =

∑
t∈T

d′j
t − d′iti

2
∀i, j ∈ Ā

σ′i =

√∑
t∈T

(d′i
t − d̄′i)2, σ′j =

√∑
t∈T

(d′j
t − d̄′j)2∀i ∈ Ā

MEC Orchestration Algorithm

Fig. 1: MEC Orchestration Framework Options.

at a second stage, two pairs of APs within a cluster; as so on
so forth, if needed, further hierarchical clustering can happen.
We then apply the orchestration decision on the set of resulting
clusters.

The clustering criterion is meant to allow granting a ro-
bustness flavor to the orchestration model, namely in terms of
robustness against load variation in time. The goal is to reduce
MEC host capacity violations.

The generic clustering mathematical formulation is as fol-
lows:

min or max
∑

i∈Ā,j∈Ā

cij ∗ zij (8)

s.t.
∑
j∈Ā

zij + zji = 1 ∀i ∈ Ā (9)

zij = 0 ∀i, j ∈ Ā : δij > δ̃ (10)
zij ∈ {0, 1} ∀i, j ∈ Ā

The set Ā contains one element for each AP cluster. The
objective function in (8) aims at minimizing (maximizing,
respectively) the clustering cost value expressed using the
criterion parameter cij which defines the degree of similarity
or difference according to which elements (access points or
clusters of access points) are grouped in the same cluster. More
precisely, it is given by the sum of costs for those pairs of AP
clusters which are joined.

Constraints (9) ensure that each cluster i ∈ Ā is paired to
exactly one other cluster (either i is paired to some j, or j
exists, which is paired to i). Constraints (10) ensure that such
a pairing is made only among AP clusters whose distance
does not exceed a given threshold. Note that having zij =1
implies the creation of a cluster that merges APs (resp. groups

of APs) i and j together, in which case all other z variables
involving i are set to 0, to technically keep consistency (i.e.
all nodes with degree one) on the directed graph model we
employ.

Initially, Ā = A. That is, single APs are paired. Then, single
elements of Ā are replaced by the pairwise clusters which are
formed. After all replacements are made, new cluster criterion
parameters and distances are computed for the elements of
Ā, and the clustering process is iterated. For each iteration,
we compute the distance between each couple of APs that
belong to different clusters. Only clusters with distances that
are lower than the threshold are grouped together. We propose
two classes of criteria as in the following.

1) Clustering-based on load differences
This class of criteria aims at grouping together access points

depending on the demand differences without taking into
consideration AP demand profiles. We propose four different
criteria:
• MIN-MAX. To reduce the absolute value of the differ-

ence in demands for each couple of APs during all the
time periods. The goal is to obtain clusters with similar
demands for each period of time. In fact, this criterion
represents an enhanced version of the single-one used in
[34].

• MIN-SUM. To minimize the average of differences in
demands for all the time periods, for each couple of
APs belonging to the same cluster. The goal is to group
together APs where the average of their demands is
minimized through all time slots.

• MAX-MAX. To group each couple of access points
where the difference between their demands for each time
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slot is maximized. This criterion yields clusters of APs
with highly different traffic demands.

• MAX-SUM. To maximize the average of demand differ-
ences of each couple of APs and for all the time periods
in order to produce clusters of APs that behave differently
through time.

2) Clustering-based on load correlation
This class of criteria uses different forms of correlation

among AP load, taking into consideration the AP demand
profiles. We propose four different criteria:
• MIN-CORR. To find negatively correlated couples of

APs to group them together into the same cluster. To do
so, we propose an expression that defines the relationship
between demands of each couple of APs expressed as a
ratio. Minimizing this ratio leads to a maximization of
the difference in APs demand profiles.

• MAX-CORR. To search for couples of APs where the
correlation between their demands is maximized through
time in order to have positively correlated demands in
the same cluster. In this way, the resulting clusters group
together APs with highly similar demand profiles.

• MIN-CORR-VAR. To have couples of APs with nega-
tively correlated variance of demands. In order to achieve
this objective, we minimize the correlation of the variance
of demands of APs i and j. An access point with high
demand variance will be then merged with an AP having
low demand variance.

• MAX-CORR-VAR. To maximize the correlation of de-
mand variance between couples of APs belonging to the
same cluster, with a view to have each couple of AP with
demand variance that are positively correlated grouped
into the same cluster. Thus, an AP having high variance
in its demands through time will be merged with an AP
of the same demand profile.

We embed in Figure 1 the mathematical expression for each
criterion. The complete mathematical formulations are given
in the Appendix.

IV. EXPERIMENTAL RESULTS
In the following, we first describe the dataset, then we

provide a numerical evaluation of our MEC orchestration
approaches using different metrics while comparing them to
two approaches from the state-of-the-art.

We solve the resource orchestration problem using the
eight clustering variants in Section III-B and the following
additional algorithms:
• ‘MECA’: solving the reference orchestration model with-

out spatial clustering, i.e., (1) to (7), this refers to the
baseline MEC assignment algorithm, which we refer to
in the following as the benchmark;

• ‘HYPERBOLIC’: solving the reference orchestration
model with the HYPERBOLIC-KMEANS spatial clus-
tering at the state-of-the-art [32];

We also refer to ‘MECA-CS+’ as solving the reference
orchestration model with MIN-MAX spatial clustering in
the pre-processing phase (enhancement of the MECA-CS
algorithm in [34]);

A. Dataset and simulation setting
We used a real traffic dataset from a national mobile network

made available in the frame of the French ANR CANCAN
(Content and Context based Adaptation in Mobile Networks)
project. The dataset gives us access points downlink volume
information every 10 minutes for a period of three months
in 2019, for Paris and Lyon metropolitan area networks. The
collection process takes into consideration both 3G and 4G
connections and records data on a per-user basis that are
aggregated at the AP level. Paris dataset contains a larger
amount of demands when compared to Lyon dataset. In fact,
we have chosen 1908 base stations for the area of Paris and
332 for the area of Lyon 1 We split our datasets into two parts:
we used the first two-thirds to train both the clustering and
orchestration models, and the remaining third, i.e., held-out
data, to evaluate the quality of the solution.

For the clustering algorithms described in Section III-B,
we perform (i) for the Lyon dataset, only once the pairwise
clustering, so clusters of two APs are formed, while (ii) for the
Paris dataset, we perform two pairwise clustering iterations, to
decrease the memory usage and execution time otherwise too
high given the higher number of APs. Indeed, the number of
hierarchical pairwise clustering iterations can be customized
based on the trade-off between execution time and assignment
cost, as discussed hereafter.

For the simulations, we generate MEC facilities locations
using a variant of the K-means clustering method, called
weighted K-means, such that each MEC host location is the
centroid of a given group of APs; the weight is represented
using APs demands dispersion. In this way, MEC hosts posi-
tions are generated depending on the access points demands
profiles. We fix the number of MEC facilities to 20 servers for
both Lyon and Paris datasets. Then, we randomly generate 10
different configurations for MEC hosts locations with the aim
of producing different inputs to train our MEC orchestration
algorithm.

We implemented our model in AMPL (A Mathematical
Programming Language) [35] using CPLEX as the linear
solver [36]. We run our algorithms on an Ubuntu Server 14.04
LTS virtual machine with 64 GB of RAM and 8 × 2.5 GHz
CPU cores.

B. Numerical evaluation
We analyze the quality of the solution based on the follow-

ing metrics:
• the memory usage and execution time: represented by the

execution time (s) and maximum memory usage (GB);
• the assignment and switching costs;
• the total cost gap convergence in percentage, against the

benchmark;
• the distribution of BS-to-MEC distances during the pe-

riod of the training (refers to a representative week) in
kilometers;

• the number of switching operations.
We use for this evaluation Lyon dataset.

In Table II, we summarize the average ± standard deviation
of the aforementioned metrics results.

1The content of the dataset is private, additional details cannot be provided.
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Models Execution Time (s) Memory (GB)2 Assign. Cost e+10 Switch. Cost e+9 GapOrchestration Clustering
MECA-CS+ 753.84 ±160.50 0.902 ±0.034 7.99 7.79 ±0.169 3.74 ±0.53 1.31 ±0.02
MIN-SUM 838.44 ±208.75 1.727 ±0.049 7.99 7.65 ±0.139 3.69 ±0.58 1.29 ±0.03
MAX-MAX 1066.5 ±283.41 0.340 ±0.019 8.002 6.75 ±0.252 4.07 ±0.5 1.14 ±0.01
MAX-SUM 1003.9 ±191.74 0.621 ±0.028 8.002 6.60 ±0.249 4.05 ±0.52 1.12 ±0.08
MIN-CORR 969.65 ±243.9 0.688 ±0.034 8.002 6.57 ±0.239 4.08 ±0.56 1.12 ±0.01
MAX-CORR 576.63 ±124.80 1.288 ±0.059 7.99 7.42 ±0.147 3.63 ±0.61 1.24 ±0.03
MIN-CORR-VAR 900.00 ±160.11 0.552 ±0.018 8.002 6.63 ±0.23 4.00 ±0.51 1.13 ±0.01
MAX-CORR-VAR 915.83 ±235.25 0.716 ±0.022 7.99 7.59 ±0.18 3.59 ±0.48 1.27 ±0.03
HYPERBOLIC 376.97 ±79.73 787.9 ±46.65 7.90 6.82 ±0.25 4.11 ±0.51 1.16 ±0.013
MECA (benchmark) 2025.4 ±473.68 - 15.80 5.84 ±0.224 3.90 ±0.55 1

TABLE II: Average ± standard deviation of the evaluation metrics for the different algorithms.

Figures 2 to 6 depicts the distributions for each of the
aforementioned metrics. We now draw our observations on
these results as follows.

1) Execution time
Figure 2 reports the distribution of execution times

experienced with each case. We can remark that the slowest
algorithm is the benchmark (MECA) solution where the
average execution time exceeds half an hour. In fact, applying
the clustering algorithm in the preprocessing, as done for the
other cases, helps reduce the execution time as proven in [34].

We can also notice that the MAX-CORR has the lowest
execution time among the eight proposed algorithms, followed
by MECA-CS+. The highest execution times are yield by the
algorithms based on load difference which are MAX-MAX
and MAX-SUM, respectively.
The HYPERBOLIC clustering is globally the fastest one
with an average of 376 s; due to the fact that the number
of APs per cluster is not fixed, which generates clusters
with a higher number of APs compared to the other models,
hence reducing both the memory usage and execution time,
as shown in [34]. However, this gain in the MEC-to-AP
assignment phase comes at the expense of a much longer
pre-processing phase time as shown in Table II. This time,
moreover, increases with the dataset size: tests with the Paris
dataset show that HYPERBOLIC clustering needs more
than 24 hours to be trained versus few dozen of seconds for
the other cases performing iterative pairwise clustering.

2) Maximum RAM usage
From Table II, all the clustering-based algorithms are com-

parable in this respect; we record a slight difference between
the HYPERBOLIC and all the other cases. We can remark
that the benchmark algorithm is the most memory-consuming
(almost the double than the others).

We can also notice that the standard deviation is null
(therefore omitted), i.e., changing the MEC hosts positions
does not affect the maximum memory usage.

2The maximum memory usage metric was the same for each of the MEC
hosts configurations, because we do not change the data size for each of the
proposed configurations.
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Fig. 2: Orchestration execution time.

3) Assignment and switching costs
Figure 3 plots the distribution of both the assignment and

the switching costs. Figure 3a shows that the benchmark
algorithm (MECA), which is clustering-preprocessing free,
has the lowest assignment cost. Indeed, as shown in [34],
solving the orchestration problem for a set of clusters of
APs forces the algorithms to propose the same orchestration
plan for the AP belonging to the same MEC host, where
some APs will not be assigned to the closest MEC host.
Regarding the other algorithms, solutions grouping together
APs with different demands through time have the lowest
average assignment costs, i.e., MIN-CORR, MIN-CORR-
VAR and MAX-SUM, whereas, the worst cases refer to the
algorithms based on both MIN-SUM and MIN-MAX, which
group together similar AP traffic demands. This shows that
assigning APs with complementary demands profiles to the
same MEC hosts reduces the assignment costs.

Figure 3b presents the distribution of switching costs.
MAX-CORR-VAR and MAX-CORR, which group together
APs with maximized correlation, have the smallest switch-
ing costs with an average of 3.59 × e+9 ± 0.48 × e9 and
3.63 × e+9 ± 0.61 × e9, respectively. On the other hand,
HYPERBOLIC clustering has the highest switching costs
values with an average of 4.11× e9 ± 0.51× e9. This shows
that grouping APs with similar demand profiles allows having
convenient assignment plans that last for longer periods of
time compared to the other algorithms.
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Fig. 3: Costs distribution

4) Convergence gap
Figure 4 shows the distribution of the convergence gap

obtained by each of the aforementioned algorithms. By con-
vergence gap we indicate the relative difference between the
best solution (expressed by the total cost) produced by each
of the clustering-based algorithms and the benchmark, within
a given execution time limit.
The orchestration algorithms based on models that maximize
the difference in demands (resp. minimize the correlation
coefficient of APs of the same cluster) have the lowest total
costs. We can also notice that these algorithms have the lowest
assignment costs but not necessarily the lowest switching cost.
This confirms that assigning APs with complementary demand
profiles to the same cluster produces lower assignment costs.

5) BS-to-MEC distance
Figure 5 presents the distribution of access points to MEC

facilities distances aggregated during a period of 1 week and
for all the proposed MEC locations, for each of the algorithms.
Benchmark gets the lowest distances, that is, the number of
APs that are assigned to their closest MEC hosts is bigger
compared to the other algorithms.

The other approaches are comparable, except HYPER-
BOLIC that gives slightly lower distances.

6) Switching operations
Figure 6 shows the number of switching operations on each

MEC host during a period of 1 week. The benchmark gives
the lowest number, followed by the algorithms that minimize
the difference in traffic demands, i.e., MIN-MAX and MIN-
SUM, while HYPERBOLIC yields the highest number of
switching operations. In fact, this does not imply a lower
switching cost, as can be seen in Figure 3b because it depends
on the switched traffic demand of each of the base stations.

As a final remark on this part, it is worth stressing that
assignment cost and execution time metrics are negatively
correlated: the lower the execution times, the higher the assign-
ment costs. For example, MAX-MAX requires the highest

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

ME
CA
-C
S
+

MI
N-
SU
M

MA
X-
MA
X

MA
X-
SU
M

MI
N-
CO
RR

MA
X-
CO
RR

MI
N-
CO
RR
-V
AR

MA
X-
CO
RR
-V
AR

ME
CA

HY
PE
RB
OL
IC

G
a
p

Fig. 4: Gap ratio against Benchmark.

103

104

MECA-C
S
+

MIN
-S

UM

MAX-M
AX

MAX-S
UM

MIN
-C

ORR

MAX-C
ORR

MIN
-C

ORR-V
AR

MAX-C
ORR-V

AR
MECA

HYP
ERBOLIC

B
S
-t

o
-M

E
C

 d
is

ta
n
ce

s 
(K

m
)

Fig. 5: Distribution of the AP-to-MEC hosts distances.



9

0

50

100

150

200

250

300

MECA-C
S
+

MIN
-S

UM

MAX-M
AX

MAX-S
UM

MIN
-C

ORR

MAX-C
ORR

MIN
-C

ORR-V
AR

MAX-C
ORR-V

AR
MECA

HYP
ERBOLIC

N
u
m

b
e
r 

o
f 

S
w

it
ch

in
g
 O

p
e
ra

ti
o
n
s
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execution time when compared to the proposed solutions, but it
yields lower assignment costs than MAX-CORR (6.75e+10 vs
7.42e+10), where this latter represents the fastest approach. We
can also notice that solutions generating the lowest switching
costs, require less running time.

C. Robustness Analysis
In this part, we evaluate the robustness of the proposed

solutions over time, i.e., the impact of applying the resulting
orchestration plans on held-out (test) data. For that purpose,
we evaluate the violation of MEC host capacity produced by
each solution when applied to both the Lyon and Paris datasets.

For this purpose, we use the set of parameters initially
defined in [7] in order to estimate the degree of controlling
MEC hosts capacities by each algorithm. We assess the
performance for different maximum occupancy rates achieved
by MEC hosts, while changing the capacity sizes. We choose
high utilization levels in the interval between 71% to 95.5%.
The analyzed parameters are as follows:
Capacity Overload Average∑

t∈T

∑
k∈K

max

{∑
c∈C

dtc ∗ xtck −Q, 0

}
/(Q× | T | × | K |)

(11)
This index (called SUM-SUM in [7]) gives the average of the
demands exceeding the MEC host capacity over all the time
periods.
Violation Rate

| {(t, k) :
∑
c∈C

dtc∗xtck−Q ≥ 0,∀t ∈ T, ∀k ∈ K} | /(| T | × | K |)

(12)
This index (called SUPPORT in [7]) computes the percent-

age of number of violations that occurred over all periods of
times.
Excess Demand Average∑

c∈C,k∈K:dt
c∗x

t
ck−Q≥0

∑
c∈C

(dtc ∗ xtck −Q)/Q

|
{

(t, k) :
∑

c∈C d
t
c ∗ xtck −Q ≥ 0,∀t ∈ T, ∀k ∈ K

}
|

(13)

This index (called SUM-SUM-SUPPORT in [7]) is used to
show the relationship between the amount of excess demands
and the total number of violations.

Note that our take-away on this aspect is that, in an
operational carrier grade environment, when the actual assign-
ment operation yields a capacity violation, the service is not
interrupted but runs instead in a degraded mode, given the
actual computing scheduler management of peak overloads by
means of resource sharing policies.

We represent the obtained results using the percentage gap
with respect to the benchmark, computed as the ratio between
the (i) difference between a given algorithm value and the
benchmark value and (ii) the benchmark value.

For the sake of readability, we report only the results for
the fastest algorithms from the previous analysis: MECA-
CS+, MIN-SUM, MAX-CORR, MIN-CORR-VAR and
HYPERBOLIC.

1) Lyon dataset
Figure 7 reports the robustness gaps with respect to the

benchmark, as a function of the maximum MEC host uti-
lization, for the five aforementioned approaches, for the Lyon
dataset.

In terms of capacity overload (Figure 7a), we can observe
that:

• When the maximum utilization is less than 75%, the gap
is null: all the algorithms yield the same overload as the
benchmark.

• For a maximum utilization level up to 84%, MIN-
CORR-VAR yields the same overload as the benchmark
and then increases it for higher utilization levels, whereas,
all the other algorithms decrease the overload; the highest
difference happens with an utilization level equal to 77%
with a decrease of 68% for MAX-CORR algorithm and
34% for the two others (MECA-CS+ and MIN-SUM).

• For a maximum utilization greater than 84%, cases merg-
ing complementary APs profiles (MIN-CORR-VAR and
HYPERBOLIC) increase the capacity overload. This is
reduced when using models that group together APs with
similar demands (MECA-CS+, MIN-SUM and MAX-
CORR), i.e., these algorithms give an assignment with
better robustness.

• MECA-CS+, MIN-SUM and MAX-CORR lower the
capacity overload when compared to the benchmark for
each of the utilization levels greater than 75%. This shows
that clustering AP demands in the preprocessing phase
does not necessarily reduce the server capacity overload.
In fact, the solution quality depends on the clustering
criterion.

In terms of violation rate (Figure 7b), we can observe that:

• Except for HYPERBOLIC that yield the same number
of violations for a maximum occupancy level equal to
71%, the other algorithms produce fewer violations when
compared to the benchmark for a maximum utilization
level less than 75%.

• MIN-CORR-VAR and HYPERBOLIC yield a higher
number of capacity violations when the maximum occu-
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Fig. 7: Robustness results as a function of the maximum MEC host utilization - Lyon dataset.

pancy ratio is greater than 77% and 81%, respectively,
when compared to the benchmark. On the other hand,
MIN-SUM produces less violations when the maximum
level of utilization is less than 87%.

• Both MECA-CS+ and MAX-CORR have a better viola-
tion robustness, i.e., they produce less violations through
all the maximum levels of occupancy when compared
to the benchmark and to the other algorithms. This can
be justified by the fact that these two approaches propose
assignment patterns for groups of APs with less variations
on their total demands through time.

Since it is easier to fit AP demands separately into their
closest MEC hosts when training the model, the likelihood
of reaching full MEC hosts capacity increases too when
compared to clusters-to-MEC assignment. However, hosting
high outlier demands generated in the test set data will be
more difficult in the latter case above. On the other hand,
the assignment of traffic demands using clustering-based al-
gorithms during the training phase, tend to be more balanced
as assignment operations should be carried out for the demands
of all APs belonging to the same cluster. This can justify the
fact that clustering APs before their assignment to MEC hosts
can help in reducing servers capacity violation when applied
on held-out data.

In terms of capacity excess (Figure 7c), we can remark that:
High values of the excess demands average refer to
relatively low violation number compared to the amount
of demand overload. Similarly, small values of the excess
demands indicate that there is a relatively large num-
ber of capacity violations when compared to capacity
overload.For a maximum capacity utilization between
71% and 75% all the models produce higher capacity
excess on average when compared to the benchmark,
except for HYPERBOLIC. For a maximum occupancy
less than 76% and 79% when using MECA-CS+, and
MIN-SUM and MAX-CORRELATION, respectively,
even though the capacity overload and the violation
rate are both reduced compared to the benchmark, they
produce higher average of excess of demands. This can
be explained by the fact that these cases are generating

relatively high excess demands, compared to the number
of violations which makes the ratio bigger (in contrast to
the benchmark, where the number of violations tend to be
relatively low compared to capacity excess). For a level of
occupancy greater than 79%, the excess is reduced when
using clustering approaches, except for HYPERBOLIC
that produces the same average of excess demands as
the benchmark for the highest maximum utilization level.
This can be explained by the fact that the clustering
algorithms yield a proportionally higher number of vio-
lations in comparison to the demands excess (in contrary
to the Benchmark that produces relatively high capacity
overloads compared to the its number of violations).
In fact, applying the resulting assignment on held-out
demands shows that training the orchestration model with
Lyon dataset using clusters built based on the similarity of
their traffic demands produces assignment and switching
plans that are more suitable for traffic fluctuations. Thus,
MECA-CS+, MIN-SUM and MAX-CORR outperform
both the algorithms from the state-of-the-art where they
reduce the capacity excess of demands for any maximum
occupancy level.

2) Paris dataset
Figures 8 depict the robustness metrics results for the Paris

dataset. In terms of capacity overload (Figure 8a) we have the
following observations:

•••• Except for HYPERBOLIC, all other algorithms reduce
the capacity overload of the MEC hosts for each given
utilization level.

• The highest reduction occurs at a utilization of 71%,
with a decrease of 68% for the observed approaches. On
the other side, the lowest decrease is recorded when the
utilization level is equal to 93.5% with a reduction of
18% for MECA-CS+, 15% for MIN-CORR-VAR, 8%
for MAX-CORR and 5% for MIN-SUM.

• When the maximum utilization is less than 85%, HY-
PERBOLIC lowers the overload demands compared to
the benchmark and increases it for higher utilization
levels, where it achieves the max growth of 11% when
this latter is equal to 93%.
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Fig. 8: Robustness results as a function of the maximum MEC host utilization - Paris dataset.

Looking at the violation rate (Figure 8b), we can assert that:

• MECA-CS+, MAX-CORR and MIN-CORR-VAR re-
duce the number of violations for all the given utilization
levels. As already explained, using clustering models
at the preprocessing phase leads to finding the same
assignment plan for each group of AP; fitting the total
amount of their demands all together is then more dif-
ficult compared to single AP assignment problem. Thus,
proposing solutions that ensure balanced availability on
MEC hosts capacity is more likely to happen with cluster-
based assignment. In addition, grouping access points
based on their demands can help to assign groups of
AP presenting less variance on their demands through
time, which can justify the fact that some clustering-based
algorithms outperform others.

• When the maximum utilization is less than 83%, MIN-
SUM decreases the number of violations in comparison
to the benchmark, and increases it for an utilization
between 83% and 93%. As mentioned before, this latter
produces less demands excess for such utilization levels.
This can be justified by the fact that this approach
generates high violations with low excess of demands.

• HYPERBOLIC decreases the number of violations by
at most 30% when the servers maximum usage level is
equal to 71%. On the other hand, for a capacity utilization
level greater than 78%, the number of violations raises
when compared to the Benchmark.
When the occupancy level is greater than 93%, we get
a decrease in the number of violations for all the cases
when compared to the benchmark.

Finally, the results in Figure 8c show that:

• Even though both the capacity overload and the violation
number difference percentage values are monotonously
increasing, there is a variability in the average of excess
demands. This can be explained by the fact that this
ratio is related to the amount of excess demands per
each violation. Having a high violation number with
low demand overload yields a larger average of excess
demands and vice versa.

• All the clustering algorithms decrease the average of

excess demands for all maximum utilization levels, except
for HYPERBOLIC when this latter is greater than 87%.

All in all, the results provided in Figure 8 show the
contribution of iterated pairwise clustering when integrated to
the orchestration algorithm and trained using traces from a
highly heterogeneous metropolitan area network as the Paris
one. When the robustness against traffic fluctuations is higher,
the number of violations and the excess of capacity are reduced
even for the highest MEC infrastructure utilization levels.

It is worth mentioning that, overall, MECA-CS+ and
MAX-CORR provide the most accurate results when applied
to both Lyon and Paris datasets.

V. CONCLUSIONS AND PERSPECTIVE

In this paper we proposed a collection of access point
clustering models aiming at grouping base station APs in a
robust way with respect to their assignment to edge computing
facilities. By leveraging on state-of-the-art orchestration algo-
rithms for the assignment problem, we have evaluated the per-
formance of the proposed approaches using real-world traffic
demands, while comparing them to other two state-of-the-art
approaches. Through extensive simulations and evaluation in
terms of different performance metrics, we show under which
conditions the algorithms we propose reveal to be the most
efficient ones. We further compared the four fastest clustering
algorithms with two state-of-the-art algorithms in terms of
robustness against traffic fluctuations, and using two different
city datasets. Among many important observations showing
the general superiority of our approaches with respect to the
state-of-the-art ones, a promising finding is that the robustness
of the algorithms is higher with larger traffic source diversity.
As the proposed clustering approaches can be applied on other
assignment frameworks than the one used in this work, further
works may concentrate on their usage for combined MEC and
vRAN orchestration, including multiple decision points such
as in functional splitting, also addressing different objectives
such as based on additional quality-of-service criteria.
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APPENDIX A
SPATIAL CLUSTERING MODELS MATHEMATICAL

FORMULATIONS

MIN-MAX:

min
∑

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T |dti − dtj | ∀i, j ∈ Ā∑
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-SUM:

min
∑

i∈Ā,j∈Ā

cij ∗ zij

cij =

∑
t∈T
|dti − dtj |

card(T )
∀i, j ∈ Ā∑

j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MAX-MAX:

max
∑

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T |dti − dtj | ∀i, j ∈ Ā∑
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MAX-SUM:

max
∑

i∈Ā,j∈Ā

cij ∗ zij

cij =

∑
t∈T
|dti − dtj |

card(T )
∀i, j ∈ Ā∑

j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-CORR:

min
∑

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T ratioi j ∀i, j ∈ Ā

ratioi j =
Rij ∗Rji√
σi ∗
√
σj

∀i, j ∈ Ā

Rij =
∑
t∈T

dti − dtj
2

, Rji =
∑
t∈T

dtj − dti
2

∀i, j ∈ Ā

σi =

√∑
t∈T

(dti − d̄i)2, σj =

√∑
t∈T

(dtj − d̄j)2 ∀i, j ∈ Ā

∑
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MAX-CORR:

max
∑

i∈Ā,j∈Ā

cij ∗ zij

cij = maxt∈T ratioi j ∀i, j ∈ Ā

ratioi j =
Rij ∗Rji√
σi ∗
√
σj

∀i, j ∈ Ā

Rij =
∑
t∈T

dti − dtj
2

, Rji =
∑
t∈T

dtjd
t
i

2
∀i, j ∈ Ā

σi =

√∑
t∈T

(dti − d̄i)2, σj =

√∑
t∈T

(dtj − d̄j)2 ∀i, j ∈ Ā

∑
j∈Ā

zij + zji = 1 ∀i ∈ Ā

zij = 0 ∀i, j ∈ Ā : δij > δ̃

zij ∈ {0, 1} ∀i, j ∈ Ā

MIN-CORR-VAR:
same as MIN-CORR, where we use d′i

t instead of dti.
MAX-CORR-VAR:
same as MAX-CORR, where we use d′i

t instead of dti.


