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This article concerns the stability of a drop on a wall for which the contact angle, w  , varies from place to place. Such a wall may allow unstable equilibria of the drop, i.e. ones for which small perturbations to equilibrium grow, making the equilibrium unrealisable in practice. This will be referred to as dynamic instability and is one of the two versions of instability considered. The other arises from consideration of potential energy, which is the sum of surface (liquid/gas, liquid/solid and solid/gas) components and the gravitational potential energy. Equilibria are extrema of the potential energy with respect to variations of drop geometry which preserve its volume. An equilibrium is said to be statically stable if it is a local minimum of the potential energy for volume-preserving perturbations of the drop. The relationship between static and dynamic stability is the main subject of this paper. The liquid flow is governed by the incompressible Navier-Stokes equations. To allow for the moving contact line, a Navier slip condition with slip length  is used at the wall, as is a prescribed contact angle,

, at the contact line, where x , y are Cartesian coordinates on the wall. The perturbation is assumed small, allowing linearization of the governing equations and, in the usual manner of stability analysis, complex modes having the time dependency st e are introduced. This leads to an eigenvalue problem with eigenvalue s , the sign of whose real part determines dynamic stability/instability. A quite different eigenvalue problem, which describes static stability/instability is also derived. It is shown that, despite this difference, the conditions for dynamic and static instability are in fact the same. This conclusion is far from evident a priori, but should be good news for interested numerical analysts because determination of static stability is much less numerically costly than a dynamic stability study, whereas it is the latter which gives a true determination of stability.

Introduction

Progress in the fabrication of surfaces whose properties vary from point to point (see [START_REF] Bonn | Wetting and spreading[END_REF]) has led to an interest in the dynamics of liquid drops on such a surface. For instance, among the considerable literature on this subject, [START_REF] Vellingiri | Droplet spreading on chemically heterogeneous substrates[END_REF] concerns the slow spreading of a two-dimensional drop on a heterogeneous wall using lubrication theory, while [START_REF] Savva | Droplet dynamics on chemically heterogeneous substrates[END_REF] treats the three-dimensional case. A drop may approach equilibrium at large times, but only if the equilibrium is stable, i.e. departures from equilibrium, when small enough, decay with time. Equilibria which are unstable are not realised in practice. Thus, when studying equilibria, it is important to decide if a given equilibrium is stable or not.

Prior to considerations of their stability, it should be noted that the equilibria of the interfaces between immiscible fluids, such as those considered here, result from extrema of potential energy, which is the sum of gravitational and surface contributions (resulting from surface tension). Studies of such equilibria, both physical and mathematical, go back a very long way (see e.g. [START_REF] Bostwick | Stability of Constrained Capillary Surfaces[END_REF], especially the beginning of section 2, and [START_REF] Finn | Equilibrium Capillary Surfaces[END_REF]). [START_REF] Wu | How do chemical patterns affect equilibrium droplet shapes?[END_REF] concerns computational approaches for heterogeneous surfaces.

For systems like the drop attached to an inhomogeneous wall considered here, there are two notions of stability (see [START_REF] Bostwick | Stability of Constrained Capillary Surfaces[END_REF], whose main topic is stability and which discusses both types). On the one hand, there is dynamic instability, defined earlier, for which the timedependent problem predicts growth of the perturbation to equilibrium. On the other hand, there is another notion of stability, namely static stability, which arises from considerations of the potential energy defined above. The drop is said to be statically stable if the equilibrium provides a minimum of potential energy for small volume-preserving perturbations. Static stability is the main subject of section 2 of [START_REF] Bostwick | Stability of Constrained Capillary Surfaces[END_REF], while section 3 of that paper provides a review of work on dynamic stability. With the heterogeneous case in mind, [START_REF] Brinkmann | A general stability criterion for droplets on structured substrates[END_REF] considers static stability, while the stability of 2D droplets has been studied in [START_REF] Ewetola | Control of droplet evaporation on smooth chemical patterns[END_REF].

We are thus faced with two approaches to stability: dynamic and static. There is no obvious a priori relationship between the two. Indeed, there is no notion of potential energy in the usual theory of hydrodynamic stability, so dynamic and static stability are not always equivalent. An example in which the static and dynamic stability criteria differ is that of the Kelvin-Helmholtz instability of a horizontal interface with gravity and surface tension between homogeneous, inviscid fluids of different densities (see [START_REF] Rabaud | The Kelvin-Helmholtz instability, a useful model for windwave generation?[END_REF], at the beginning of section 3). In that case, the system is always statically stable for light over dense fluid, whereas it can be dynamically destabilised by flow. When static and dynamic instability criteria disagree, it is the dynamic one which gives a true indication of stability.

The main objective of this paper is to show that, perhaps surprisingly, the two types of stability are in fact equivalent for the problem considered here. From a numerical point of view, this is interesting because the determination of static stability/instability involves a two dimensional calculation, whereas dynamic stability calculations are intrinsically 3D, hence considerably more computer intensive. Furthermore, dynamic stability analysis involves additional parameters. In the present model, these are the Ohnesorge number, Oh , which measures the importance of viscosity, and the slip length,  , which arises from the contactline model described below. Such parameters do not influence static stability/instability and, when the static and dynamic approaches to stability can be shown to yield the same results, as here, the many numerical dynamic stability calculations involved in an exhaustive parametric study are unnecessary.

The model of drop dynamics uses the incompressible Navier-Stokes equations in the liquid and assumes an inviscid gas with constant pressure, a p . The moving contact line is problematic because the usual model, i.e. the Navier-Stokes equations with a no-slip condition at the wall, implies an unacceptable singularity at the contact line (see e.g. [START_REF] Moffatt | Viscous and resistive eddies near a sharp corner[END_REF][START_REF] Huh | Hydrodynamic model of steady of a solid/liquid/fluid contact line[END_REF]). There is no agreed definitive model [START_REF] Bonn | Wetting and spreading[END_REF][START_REF] Sui | Numerical simulations of flows with moving contact lines[END_REF], but one which is frequently used allows slip at the wall via a Navier condition in which slip is proportional to shear rate, the constant of proportionality being referred to as the slip length and denoted  (which is typically much smaller than the drop size). Such a model was used by [START_REF] Hocking | The spreading of a drop by capillary action[END_REF] to treat the case of the slow spreading of a liquid droplet on a wall using matched asymptotic expansions, while [START_REF] Cox | The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow[END_REF] extended this approach to more general cases. More recently, models of this type have been employed in numerical studies (see e.g. [START_REF] Afkhami | A mesh-dependent model for applying dynamic contact angles to VOF simulations[END_REF][START_REF] Sui | Validation and modification of asymptotic analysis of slow and rapid droplet spreading by numerical simulation[END_REF][START_REF] Maglio | Numerical simulation of sliding drops on an inclined solid surface[END_REF][START_REF] Solomenko | A level-set method for large-scale simulations of three-dimensional flows with moving contact lines[END_REF]). In this paper, we use a Navier condition at the wall and a prescribed contact angle w  . Inhomogeneity is expressed by variations of   , w x y  with respect to the Cartesian coordinates x and y , which specify the location on the wall.

The paper is organised as follows. Section 2 describes the overall mathematical model, its linearization for small perturbations and the resulting energy equation. Section 3 is the heart of the paper. Section 3.1 derives an eigenvalue problem which provides a precise quantification of static stability/instability. Section 3.2 develops the theory of dynamic instability. Section 3.3 first shows that the dynamic stability characteristics of the equilibrium are independent of the Ohnesorge number, Oh . It then examines the limit Oh 0  and concludes that the notions of dynamic and static stability are equivalent for the present problem. Finally, section 4 concerns the case of a two-dimensional drop without gravity and derives explicit stability conditions for that case.

Modelling

A liquid drop, attached to an inhomogeneous plane wall, is surrounded by gas which is supposed inviscid and of constant pressure, a p . The liquid/gas interfacial surface tension,  , is assumed constant, as are the liquid density and dynamic viscosity,  and  . The problem is nondimensionalized using L ,   equal to the Bond number, a measure of the significance of gravity. We will later consider the limit Oh 0  , in which case we expect viscosity to be negligible over most of the drop, outside a thin boundary layer at the wall in which viscous effects are significant.

Using Cartesian coordinates, the spatial position vector is

  , , x y z  x
, where the wall lies at 0 z  and the drop in 0 z  (see figure 1). Note that there is no requirement that the wall be horizontal. The wall boundary conditions are

x x u u z     , y y u u z     , 0 z u  0 z  , (2.3) 
where  , taken constant, is the slip length, while the angle at which the liquid/gas interface meets the wall has the prescribed value

  0 , w x y     .
The kinematic and stress boundary conditions

0 F F t      u. , (2.4) 
      Oh T a p p        n. u u n , (2.5) 
apply at the liquid/gas interface, which is described by  

, 0 F t  x .
Here,  represents the interface curvature and n is a unit normal vector to the interface, directed from the liquid towards the gas. Note that, as usual when using the model (2.3), we have in mind that  is small, though this is not assumed in what follows. 

      G.x    , (2.7) 
where D  is the interior of the drop. Equilibria are extrema of (2.7) under variations of drop geometry which maintain its volume equal to 1. An equilibrium will be referred to as statically stable if (2.7) is a local minimum for volume-preserving perturbations. Note that the equilibrium condition is independent of Oh and  .

Linearization

Here we consider small perturbations to a given equilibrium. Let p denote the difference between the perturbed and equilibrium pressures. Thus, (2.1) gives

2 Oh p t          u u. u u , (2.8) 
which, given smallness of the perturbation, is linearized by dropping the convective term to obtain

2 Oh p t        u u .
(2.9)

(2.2) and (2.3) are already linear.

Figure 2: Coordinate system 1 q , 2 q , d . d is the distance from the equilibrium interface. 1 q and 2 q are the coordinates of the point P .

Let   d x be the signed distance from the equilibrium liquid/gas interface:

  0 d  x represents that interface, while   0 d  x inside and   0 d  x
outside the equilibrium drop.

Define coordinates 1 q and 2 q on the equilibrium interface. These coordinates are extended off that interface by attributing to a point x the values of q  ( 1, 2

  ) of the nearest point, Equilibrium interface = constant x q    d x

 

P q  P , on the interface (see figure 2). Thus, 1 q , 2 q and d provide a coordinate system for points near the equilibrium interface. It can be shown that constant 1 q and 2 q gives a straight line which intersects the surfaces of constant d orthogonally. Thus, 0 d q     . , while

1 d   follows from the definition of   d x . The perturbed interface is represented by   , d q t    , corresponding to         , , F t d q t     x x x .
  , q t   expresses the perturbation in the interfacial position. It may be considered as a function defined on the equilibrium interface and extended to other locations by

    , q t     x . Since 0 d q     . , 0 d     .
. The interfacial kinematic condition, (2.4), yields

d t         u. u.
(2.10)

on the perturbed interface. The second term on the right-hand side is second order in the perturbation and is therefore dropped, while d   n at leading order, hence the linearized kinematic condition

t     u.n . (2.11)
Given the smallness of the perturbation, (2.11) is applied on the equilibrium interface, rather than the perturbed one.

The treatment of (2.5) is considerably more technical and the details are relegated to section A.1. The analysis relies on the differential geometry of the equilibrium interface and, in particular, its metric tensor, g  , which gives the distance, ds , between two infinitesimally separated points on the interface as 2 ds g dq dq

   
(see e.g. [START_REF] Lawden | An introduction to tensor calculus and relativity[END_REF], section 29), where, here and henceforth, the summation convention applies to repeated indices. It is found that

        Oh T p            n. u u n x , (2.12) 
where  is given by (A.7) and  is the Laplace-Beltrami operator, defined by

1 g g q q g                  , (2.13)
which is the natural extension of the 2D Laplace operator to curved surfaces and general coordinates (see [START_REF] Lawden | An introduction to tensor calculus and relativity[END_REF], equation (43.8)). Here, g is the determinant of the matrix g  and g  is its inverse. The linearized kinematic and stress conditions, (2.11) and (2.12), apply on the equilibrium interface with n being the equilibrium normal vector.

It remains to express the condition of prescribed contact angle. Figure 3 shows the equilibrium contact line in the q  plane. The equilibrium liquid/gas interface, henceforth denoted by i S in physical space, is represented by i  , the contact line by i  and   is the vector in the q  plane which is orthogonal to i  , directed outwards from i  and normalised using 1 g       . The contact-line condition is derived in section A.2 and takes the form

  g J q          x , (2.14) 
where   J x is given by (A.45). Despite its recondite appearance, the left-hand side of (2.14) has a simple interpretation. It is the derivative of  at the contact line, taken in the direction tangential to i S , normal to the contact line and outwards from i S . The linearized problem consists of the incompressibility condition and momentum equation, (2.2) and (2.9), within the equilibrium drop, (2.3) at the wall, the kinematic and stress conditions, (2.11) and (2.12), on the equilibrium interface and (2.14) at the equilibrium contact line. In principle, initial conditions are also required. The condition that the perturbed and equilibrium drops have the same nondimensional volume (namely 1) is (to first order)

0 i S dS    , ( 2.15) 
where the integral is taken over the equilibrium interface, i S . This condition constrains the initial  , but if it is satisfied initially, integration of (2.2) over the drop, followed by use of the divergence theorem, 0 z u  at the wall and (2.11) at the interface, shows that it continues to be satisfied at subsequent times (an expression of drop volume conservation).

i  2 q   i  1 q 2.

Energetics

Based on the linearized problem, it is shown in section A.4 that 

                               e : e , (2.16) 
where D , w S are the equilibrium drop volume and wetted wall area,

    / 2 T     e u u is
the strain-rate tensor,

  2 1 2 s D E dv E     u , (2.17)   2 2 1 2 i s S C E g dS J ds q q                               (2.18)
and C is the equilibrium contact line. (2.16) describes the evolution of the total drop mechanical energy, E . Both terms on the right-hand side are negative or zero and express dissipation of energy. The first has the familiar form for volumetric viscous dissipation (see e.g. [START_REF] Batchelor | An introduction to fluid dynamics[END_REF], equation (3.4.5) for the dimensional version, where the second term in brackets is zero because here the flow is incompressible), while the other is due to slip at the wall. Turning attention to (2.17), the first term on the right-hand side evidently represents the kinetic energy of the drop. The second, given by (2.18), combines surface and gravitational potential energies, the gravitational contribution appearing via  (see (A.7)). For the small, volume-preserving perturbations considered here (recall that  satisfies (2.15), so the perturbation is indeed volume preserving),   s E  is the difference between the perturbed and equilibrium values of (2.7), correct to second order in the perturbation. The first-order difference is zero because (2.7) is an extremum for volume-preserving perturbations to equilibrium, while   s E  is the second-order difference. If s E is positive for all nonzero  satisfying (2.15), the equilibrium is statically stable.

Stability

Static stability

With the eventual aim of characterising static stability using eigenvalues, consider the problem of finding extrema of  

s E  among   q   on i S for which 0 i S dS    , 2 1 i S dS    . (3.1)
It is shown in section A.5, using the calculus of variations, that  are negative it is said to be statically unstable. Finally, when 0   is an eigenvalue and all others are positive, the equilibrium will be referred to as statically neutral. Note that 0 n   arises if there are equilibria infinitesimally close to the given one.

  0           (3.2) and g J q          , (3.3 
An example is provided by a drop on a homogeneous wall, for which neighbouring equilibria can be obtained by small displacements parallel to the wall. However, when the wall is inhomogeneous, as we have in mind here, we expect all n  to be nonzero in general. This does not mean that the special case 0   is unimportant, indeed it is required for static neutrality.

Dynamic stability

The fact that the linearized problem contains no time-dependent coefficients allows complex solutions of the form

  st e  u u x  ,   st p p e   x  ,   st q e      . ( 3.7) 
Such solutions are often referred to as modes in the hydrodynamic stability community. The idea here is that the general solution can be expressed as a linear combination of modes, each of which can be studied separately. (2.9) and (2.2)

imply 2 Oh s p     u u    , (3.8) 0   .u  . ( 3.9) 
(2.3) gives the wall condition

x x u u z       , y y u u z       , 0 z u   0 z  . ( 3.10) 
(2.11) and (2.12) provide the linearized kinematic and interfacial stress conditions The complex eigenfunctions, u  , p  and  , determine the spatial structure (amplitude and phase) of modes. Note that for modes with real s , the eigenfunctions can be chosen real, in which case the entire modal solution is real. On the other hand, if 0 i s  , the complex conjugate of the modal solution is also a solution. Thus, for each complex mode, there is a conjugate mode. A physically meaningful perturbation must be real and this requires a suitable linear combination of modes and their conjugates. Note that there may be several modes associated with a given eigenvalue, i.e. it admits of two or more linearly independent choices of eigenfunctions.

s  u.n   , (3.11) 
      Oh T p          n. u u n      , ( 3 

It is shown in section

A.7 that   2 2 2 * * 2Oh Oh w y x s D D S u u s dv sE dv dS z z                       u e : e        , (3.15) 
where

    / 2 T     e u u    ,   * 2 2 i s S C E g dS J ds q q                                , (3.16) 
and * denotes complex conjugation. There are clear similarities between equations (3.15) and (2.16). Note however that, though they are closely related mathematically, both in their structure and derivation, (2.16) describes the time evolution of total energy in physical space, whereas (3.15) refers to a particular complex mode. Like the right-hand side of (2.16), that of (3.15) has two terms, both of which are real and either negative or zero. The left-hand side of (3.15) corresponds with that of (2.16), the analogy with the kinetic and potential energy terms of (2.17) being obvious. Symmetry of g  implies that s E  is real and

      2 s s r s i E E E        , where r i i       
 . The real and imaginary parts of (3.15) give

  2 2 2 * 2 Oh Oh w y x r s D D S u u s dv E dv dS z z                      u e : e       , (3.17) 
 

2 0 i s D s dv E    u   . (3.18)
Suppose static stability, so both s E  and the kinetic energy term on the left-hand side of (3.17) are positive, while the right-hand side of (3.17) is negative. Thus, 0 r s  , hence all modes are decaying. It follows that static stability implies dynamic stability. This might have been expected because the total energy, E , decays due to dissipation according to (2.16). In the case of a mode and a statically stable drop, both the potential and kinetic contributions to E are increasing functions of the modal amplitude, so that amplitude must also decay. On the other hand, static instability does not exclude the possibility that, as in the statically stable case, the bracketed term on the left-hand side of (3.17) be positive, hence 0 r s  . If this is true of all modes, the drop would be dynamically stable or neutral, despite being statically unstable. The elimination of this possibility is the main motivation for the remaining analysis of this section.

Consider a mode with 0

i s  , thus 2 s D dv E   u   (3.19) according to (3.18), hence 2 2 2 * 2 2 Oh Oh w y x r D D S u u s dv dv dS z z                     u e : e      (3.20)
from (3.17). With the aim of deriving a contradiction, suppose that 0 r s  . The left-hand side of (3.20) is positive or zero, while the right-hand side cannot be positive. Thus, both must be zero, hence 0  e 

. The real and imaginary parts of u  then consist of a rotation and a translation, which is only consistent with (3.10

) if 0  u  . When 0  u  , p  is a constant according to (3.8), 0    from the linearized kinematic condition (3.11) (because 0 s  ) and 0 p   from (3.12).
It is in the nature of an eigenvalue problem that the eigenfunctions should not all be zero, so we have a contradiction. The conclusion is that 0   is an eigenvalue of (2.15), (3.2) and (3.3). The converse also holds, i.e. if 0   is an eigenvalue, there is a corresponding mode with

0 s  , 0  u  , p    and    
. It follows that there is a precise correspondence between zero- eigenfunctions and modes with 0 s  .

Since the eigenvalue problem for  is independent of Oh and  , so are 0 s  modes.

Next, consider a mode with 0 s  . u  cannot be identically zero, otherwise (3.11) gives 0

   , hence (3.12) yields 0 p  
. This makes all eigenfunctions zero, which is not allowed.

Thus, 0  u  is characteristic of 0 s  modes.

The effects of varying Oh

In this section, we vary Oh , but keep everything else, in particular the equilibrium, the same. As Oh varies, the eigenvalues s move around in the complex plane. Let us consider the possibility that the nature of the equilibrium, dynamically stable, unstable or neutral, changes as Oh varies over positive values. Recall that only modes with real 0 s  are significant for instability and that the number of 0 s  modes is independent of Oh . Thus, a change in stability character is only possible if an 0 s  mode approaches 0 s  as Oh Oh c  from either above or below, where Oh 0 c  is the value at which the supposed change in stability character occurs. It is shown in section A.8 that this cannot happen. The essential reason is that the number of 0 s  modes is constant, but the mathematical reasoning is lengthy and technical, hence its relegation to the appendix. The conclusion is that the character of the equilibrium does not depend on Oh , so any value of Oh should give the same result. We henceforth consider the limit Oh 0  .

Viscous versus inviscid modes

As Oh 0  , 0 s  modes are of two types. Some approach an inviscid limit and will be discussed later. On the other hand, there are modes which continue to be significantly affected by viscosity as Oh 0  . The two types are distinguished by the importance, or otherwise, of the viscous term in (3.8), the inviscid modes making this term negligible. As we shall see later, inviscid modes are irrotational, hence the need for essentially viscous modes to express the vorticity of a general flow inside the drop. Consider such a mode. To keep the viscous term in (3.8), s must go to zero as

  Oh s O  .
Smallness of s as Oh 0  reflects the slowness of viscous diffusion of vorticity when Oh is small. Recalling that u  is not identically zero (since 0 s  ), we normalise the mode such that

  1 O  u  , hence   Oh p O  
in order that the pressure-gradient term appear in (3.8) with the others. The left-hand side of

(3.12) is   Oh O
, as is the pressure term. To make , which is not the case because 0 s  . Thus, the right-hand side of (3.17) is negative, while the integral on the left-hand side is positive and dominates the term

  O          of the same order,   Oh O    so     2 Oh s E O     from (3.16). Because   1 O  u  ,   2 1 D dv O   u  (3.22) dominates     2 Oh s E O     at small
  s E    . It follows
that s is real and negative, implying decay of modes for which viscosity remains significant in the limit Oh 0  . Because they move towards 0 s  , we expect such modes to become increasingly dense on the negative, real s -axis as Oh decreases. However, because they decay, they are unimportant from a stability point of view. Thus, we focus on modes which approach an inviscid limit as Oh 0  .

Inviscid modes

Given 0 s  , let 1 s   v u  and   2 0 s p p       , where the constant 0 p  is such that 0 D dv    . (3.23) (3.8)-(3.12) give 2       v v , (3.24) 0   .v (3.25) with x x v v z     , y y v v z     , 0 z v  (3.26)
on the wall and

  v.n  , (3.27)       0 T p             n. v v n    (3.28)
on the interface, where 1 Oh s

   and 2 s  
(not to be confused with surface tension). (3.13) and (3.14) apply as before.

In order that the mode approach an inviscid limit, the viscous term in (3.24) .34) and that the matrix

k l kl D dS        . ( 3 
i k l kl k l k l S C E g dS J ds q q                                 (3.35)
is given by 

kl k kl E      . ( 3 
k k k c      . (3.38) Let     2 s D E R dS           , (3.39)
in which the denominator is positive, otherwise  is constant and

0    from (3.32), which
is incompatible with the requirement that  be nonzero. (3.16) and (3.34)-(3.36) imply 

2 2 k D k dS c       , (3.40)   2 * , s kl k l k k k l k E E c c c              , (3.41) hence   2 2 k k k k k c R c         . ( 3 
        2 0 s s r s i E E E           . It follows from (3.39) that   0 R    for any nonzero  satisfying (3.14), hence   max 0 s R     
. Thus, 0

  for all eigenvalues when the equilibrium is statically stable or neutral. The neutral case is distinguished from the stable one by the existence of 0   as an eigenvalue. As we saw above, this is equivalent to 0   .

Thus, static stability gives 0 k   for all k , while static neutrality gives a 0   eigenvalue, all others being negative. On the other hand, if some n  is negative (static instability),

    2 0 s n s n E E      from (3.6). Choosing n     ,   0 R    from (3.39), hence   max 0 s R     
. It follows that there is at least one positive k  . Combining this result with the earlier one that 0

  for all eigenvalues when the equilibrium is statically stable or neutral, we conclude that the existence of a positive k  is equivalent to static instability.

To summarise, the static stability characteristics of the equilibrium can be determined either from the eigenvalues n  , as described in section 3.1, or from the k  . It is the correspondence between static stability/instability and the k  which leads to equivalence of the static and dynamic approaches at small Oh . Static stability occurs when all k  are negative, static instability if one or more of them are positive and neutrality when one or more is zero and the others are negative.

Consequences for stability

Static instability implies a positive eigenvalue  , hence a growing inviscid mode. This mode is the Oh 0  limit of a growing viscous mode, corresponding to dynamic instability at small Oh . On the other hand, supposing dynamic instability, one possibility would be that a growing viscous mode, which, as we saw earlier, has real 0 s  , approaches 0 s  as Oh 0

 . However, it is shown in section A.10 that this cannot occur. Thus, any growing viscous mode must approach a growing inviscid one. Such a mode has 0   , hence static instability. It follows that static and dynamic instability are equivalent at small Oh . The same is therefore true of static and dynamic stability/neutrality. Stability and neutrality are distinguished by the existence of zero n  in the static approach and zero s in the dynamic one. The correspondence between modes with 0 s  and eigenvalues 0 n   leads to the conclusion that, for small Oh , the character, stable/unstable/neutral, of the equilibrium is the same for the static and dynamic approaches. Given that the static character is independent of Oh and it has been shown that the dynamic character is also independent of Oh , this result holds without the requirement of small Oh . It follows that the static and dynamic approaches to stability agree, no matter what parameters are chosen, which is the main conclusion of this paper. Because the static problem is independent of both Oh and  , the same is true of the dynamic stability character of the equilibrium. However, that character does depend on   , w x y  , G and the choice of equilibrium.

Further details of the inviscid limit

In the Oh 0  analysis given above, we have frequently referred to the inviscid limit of viscous modes which admit of such a limit, but without giving details of how the limit is approached. Viscous modes with 0 s  are straightforward because they are also inviscid ones. Here, we consider other (i.e. 0 s  ) inviscid modes and attempt to construct corresponding viscous ones for small Oh in the usual way by adding a boundary layer at the wall. This layer is thin, of thickness   

                    u u u u u      , (3.43) hence 2 2 s p       u u    , (3.44) 
where s has its inviscid value. (3.9) yields

1/ 2 Oh y x z u u u x y                    , (3.45) 
which, with 0

z u   at 0   , implies   1/ 2 Oh z u O  
. Thus, z u  is negligible compared with the other velocity components within the layer. The component of (3.44) normal to the wall gives

  2 1/ 2 2
Oh Oh

z z p u su O                   . (3.46)
The projection of (3.44) parallel to the wall gives

2 2 s p       u u       , (3.47) 
where the subscript  denotes wall-parallel projection. The first two equations of (3.10), which do not appear in the inviscid problem, give

1/ 2 Oh       u u     0   .
(3.48) (3.46) indicates that, as usual, the variations of pressure across the boundary layer are asymptotically negligible. Thus, p    can be taken to be independent of  in (3.47).

Assuming that s does not lie on the negative real axis, the solution of (3.47) which does not grow exponentially with

 is   1 / 2 1 1 s s p Ae        u     , (3.49) 
where A is an unknown constant and 1/ 2 s is a principal value (so the exponential decays, rather than grows, as  increases). Matching to the inviscid flow outside the layer, where the exponential is negligible,

1 inv s p     u  
  , where inv u   is the wall velocity of the given inviscid mode. Thus,

  1 / 2 1 inv s Ae     u u     . (3.50) Applying (3.48), 1/ 2 1/ 2 1 1 Oh A s      , (3.51) 
which, with (3.50), describes the flow inside the boundary layer.

In the strict mathematical limit Oh 0  , 0 A  according to (3.51), hence the boundary layer disappears and the viscous mode approaches the inviscid one, even close to the wall. However, it is usually the case that  is small and there are then three distinct regions of small Oh . When 2 Oh 1

   , ~1

A  , which yields a classical boundary layer having

0  u  at the wall. If   2 Oh O  
, which would usually be very small, A departs from 1  and the layer is no longer a classical one (there is slip everywhere on the wall, not just near the contact line). Finally, when 2 Oh   , the boundary layer disappears. None of these changes inside the boundary layer affects the flow outside the layer, which approaches the inviscid limit provided only that Oh 1  .

Decaying inviscid modes arise when 0

  and have 1/ 2 s   
. Such negative, real values of s were excluded just prior to (3.49) and their treatment is somewhat more subtle. The solution of (3.47) is

  1/ 2 1/ 2 1 1 cos sin s p B s C s         u     (3.52)
and can be seen to have oscillatory, rather than decaying exponential, dependence on  unless 0 B C   . These oscillations are viscous in origin. (3.48) gives

  1/ 2 1/ 2 Oh 1 s C B    . ( 3 
.53)

In the strict mathematical limit Oh 0  , we can choose 0 B  , hence 0 C  according to (3.53). This eliminates the viscous oscillations with respect to  , so we have the inviscid mode as a possible limit, even close to the wall, as for the other types of mode described above. However, if  and Oh are small and

  2 Oh O   , (3 
.53) does not allow both B and C to be small. Thus, despite Oh being small, the viscous mode is not close to the inviscid one, either near the wall or in the drop interior. It is similar to the modes which retain viscous effects as Oh 0  and which were discussed earlier. In any case, because the mode in question is decaying, it is irrelevant from a stability point of view.

The 2D drop

This section concerns a toy problem: a two-dimensional drop without gravity, for which everything depends only on the coordinates x and z , for instance the contact angle has the form

  w w x   
. The third dimension is suppressed completely and, although this is hardly a realistic representation of a drop, the intention is to illustrate the previous analyses via a full analytical treatment of stability. Note that, because the perturbation, like the equilibrium, is constrained to be 2D, we are not considering the stability of a 2D drop to 3D perturbations.

The previous analysis of the 3D case carries over to 2D with some minor modifications. The length scale used for nondimensionalisation is now such that the drop area is 1. The velocity vector, u , only has x and z components, so the second equation in (2.3) is dropped, while neglect of gravity means that 0  G . Otherwise, the governing equations are (2.1)-(2.5) as before. . Figure 4 shows the equilibrium interface, which has radius r and is centred at C . Polar coordinates, r and  , are defined as indicated. The equilibrium interface is given by r r  ,       , while the perturbed interface lies at

  , r r t     .
Linearization follows the lines of section 2.1. Thus, (2.2) and (2.9) hold inside the equilibrium drop, while the first and third of equations (2.3) apply at the wall. The interfacial conditions are (2.11) and (2.12), with 

       . (4.
3)

The contact-line condition, (2.14), becomes

1 J r             , (4.4) 
where 

  cot 1 sin w J x r         (4.5) 
    2 2 2 2 1 1 2 s E d J J r                                            , (4.7) 
where   are the contact-line values of  .

Static stability is treated as in section 3.1. Extrema of (4.7) are looked for subject to the contraints (4.6) and the 2D equivalent of (3.1). The result is the eigenvalue problem (4.4), (4.6) and

2 2 2 1 0 d r d                . (4.8)
This problem depends on the values of J  . Thus, the eigenvalues, n  , vary as the J  are varied. Let us determine the condition for a zero eigenvalue. 

                       , ( 4 
w w r x B r x B                    , ( 4.12) 
which provides two equations for 1 B and 2 B . There is a nonzero solution if

              sin cos 2 sin cos 0 w w w w x x r x x                        , ( 4.13) 
which is the condition for a zero eigenvalue of (4.4), (4.6) and (4.8). are positive in region A, which is thus the statically stable region. One of the n  is negative in region B and two are negative in region C. Thus, the curve forming the boundary A/B represents static neutrality and the equilibrium is statically unstable in regions B and C. Note that there is always an infinity of positive n  , whereas there are at most two negative ones.

Without going into the details, the analyses of sections 3.2 and 3.3 carry through much as for the 3D case. As before, the main conclusion is that the static and dynamic stability characteristics of the equilibrium coincide. Thus, the drop is dynamically stable in region A, neutrally stable on A/B and unstable in regions B and C. There is one growing mode in region B, which is joined by a second in region C.

Note that gravity has been neglected here, so any instability is due to surface energy and inhomogeneity. The latter allows the decrease of the former as the departure from equilibrium increases, leading to static instability.

Conclusions

In this paper, we have analysed and compared the static and dynamic stability characteristics of a drop on an inhomogeneous wall. This has been done using a drop model which is rather general because it allows for arbitrary contact-angle distributions,   , w x y  , and also for gravity.

Section 2 describes the model. The liquid flow inside the drop is governed by the incompressible Navier-Stokes equations, whereas the gas outside the drop is supposed inviscid and of constant pressure. The boundary conditions at the liquid/gas interface are the usual ones, namely convection of the interface by the flow and a condition on the interfacial stress involving surface tension, whereas, to allow for the moving contact line, those at the wall are a combination of a Navier slip condition on the wetted area and a prescribed contact angle   , w x y  at the contact line. Equilibrium can be expressed in two ways. The first uses the governing equations and boundary conditions, assuming zero flow velocity. The second is based on the potential energy, (2.7), which is the sum of superficial and gravitational energies and is an extremum for volume-preserving perturbations to equilibrium. When the equilibrium is a local minimum with respect to such perturbations, it is referred to as statically stable.

Assuming a small perturbation to a given equilibrium, the governing equations and boundary conditions are linearized and an energy equation derived. The difference of potential energies between the perturbed drop and the equilibrium one is given by (2.18) as a second-order functional, [START_REF] Afkhami | A mesh-dependent model for applying dynamic contact angles to VOF simulations[END_REF], which is the volume preservation condition for small perturbations. Section 3 is the heart of the paper and is devoted to stability, both static and dynamic, of a given equilibria. Section 3.1 provides a quantification of static stability and instability via an eigenvalue problem, which is independent of the Ohnesorge number, Oh , and the slip length,  , and quite different from that of the dynamic stability theory which is developed later. The eigenvalues,  , are real and determine the nature, statically stable or unstable, of the equilibrium. If 0   for all eigenvalues, it is statically stable, whereas a single 0   means it is statically unstable. The other possibility, that there are one or more zero eigenvalues and that the rest are positive, is referred to as static neutrality.

  s E  , of the interfacial displacement,  . The equilibrium is statically stable if   0 s E   for all nonzero  satisfying (2.
Section 3.2 describes dynamic (to distinguish it from static) stability theory. The equilibrium is said to be dynamically unstable if perturbations grow and stable otherwise. The theory focuses on particular solutions (modes) of the linearized problem which can be complex and have exponential time dependence, st e , where r i s s is   . This leads to an eigenvalue problem with eigenvalue s . Eigenvalues with 0 r s  imply a growing mode. As a result, the general perturbation, which is a sum over modes, is also growing. This is dynamic instability and just one mode with 0 r s  is sufficient. It means that the equilibrium is unrealisable in practice. On the other hand, 0 r s  for all modes implies that perturbations decay, i.e. the equilibrium is dynamically stable. Dynamic neutrality means that there are modes with 0 r s  , while all others decay. Section 3.3 concerns the effects of varying Oh , while keeping everything else, in particular the equilibrium, constant. The first, and perhaps most important, result is that the dynamic character, stable, unstable or neutral, of the equilibrium does not change as Oh 0  varies. Thus, the character of the equilibrium does not depend on Oh and any value of Oh 0  should give the same result. This leads to consideration of the limit Oh 0  .

Modes are of two types as Oh 0  . For some, viscosity remains significant despite the small Ohnesorge number. However, these modes are shown to be decaying and so are unimportant from a stability point of view. On the other hand, others approach an inviscid limit. The limit is described by an inviscid eigenvalue problem with eigenvalue 2 s   , which is shown to be real. 0

  implies a growing inviscid mode which corresponds to the limit of a viscous mode which grows for small Oh . On the other hand 0   results in a pair of oscillatory inviscid modes, which result from the limit of decaying viscous modes as Oh 0  . Finally, inviscid modes with 0   correspond precisely with viscous modes having 0 s  , which are independent of Oh .

Perhaps surprisingly, there is a close relationship between the inviscid eigenvalues  and static stability/instability/neutrality. It is found that the existence of a positive  leads to static instability, whereas the equilibrium is statically stable if all  are negative. Static neutrality arises when one or more  are zero and the remaining ones negative. Combining these results with the connection, described in the previous paragraph, between the Oh 0  limit of viscous modes and the eigenvalues  , it has been shown that the notions of static and dynamic stability/instability/neutrality are equivalent at small Oh . Given that the dynamic character, stable, unstable or neutral, of the equilibrium does not change as Oh 0  varies and that the static character is independent of Oh , this result holds for any value of Oh .

Thus, despite their quite different definitions and eigenvalue problems, dynamic and static stability, instability and neutrality are found to be equivalent for the present problem. This conclusion is far from evident a priori, but, as noted earlier, should be of interest to numerical analysts because determination of static stability is considerably less numerically costly than a dynamic stability study, whereas it is the latter which provides a true determination of stability. It would be interesting to know if the conclusions arrived at here remain valid for other models of the moving contact line.

Finally, the way in which viscous modes approach inviscid ones via boundary layers as 0  was addressed towards the end of section 3.3 and the case of a 2D drop was the subject of section 4. Although the 2D case is hardly realistic, it provides an illustration of the 3D methodology for which full analytical results concerning stability are derived.

Among the open questions related to the present work are the following. Do the conclusions arrived at here, that the static and dynamic stability characteristics of equilibria coincide, hold for other contact-line models? Secondly, to make the present results useful, a numerical method for obtaining statically stable equilibria which does not rely on solution of the full 3D dynamical problem is needed. Such a method might involve finding local minima of the potential energy, (2.7), subject to fixed drop volume. One possibility is the "basinhopping" algorithm (see e.g. [START_REF] Kusumaatmaja | Surveying the free energy landscapes of continuum models: Application to soft matter systems[END_REF]).

F d         (A.4)
correct to first order when evaluated at the interface.

For the equilibrium, we set 0 

  in (A.
    2 d      n. G . (A.7)
On the other hand, applying (2.5) and (A.4) to the perturbed interface

        2 2 2 2 Oh T a d d e a d d d p p d p p p d                              n. u u n n . (A.8) Using (A.6),       2 Oh T p           n. u u n . (A.9) Figure A.1:
The region  and its boundary  in the q  plane.

It remains to express the term 2   in terms of   q   . To this end, let  be a region in the q  plane representing part of the equilibrium interface and V the volume in physical space for which q    and 0 d    , where  is an infinitesimal constant (see figures A.1 and A.2). The divergence theorem gives

2 V V dv dS n          . (A.10)
The normal vectors of the parts of V  with constant d are directed parallel to d  . Since

0 d     . , / 0 n     . Thus, these parts of V  do not contribute to (A.10). The remainder of V  gives S ds      N.  (A.11)
for the right-hand side of (A.10), where S  is the curve on the equilibrium interface corresponding to the boundary  in the q  plane, ds is elementary arc length along S  and N is the unit vector, tangential to the equilibrium interface and orthogonal to S  , which is directed outwards from S (see figure A.2). Thus, (A.10) implies 2 S S dS ds

        N.  , (A.12)   1 q 2 q  
where S corresponds to  . From here until the end of this section, we restrict attention to the equilibrium interface. A point on the interface has position vector  

q  x , whose derivatives, 1 / q   x and 2 / q   x
, are tangential to the interface and yield the metric tensor via

g q q         x x . . (A.13)
The components of this tensor form a symmetric, positive-definite matrix. Since N is tangential and

1 / q   x , 2 / q   x
span the space of such vectors,

q       x N . (A.14) It is convenient to define g       , hence g      
, where g  is the inverse of the matrix g  . Thus, [START_REF] Hocking | The spreading of a drop by capillary action[END_REF]), (A.15) and the definition of g  imply

g q        x N . (A.15) 1  N.N , (A.
1 g       . (A.16) An infinitesimal displacement dq  in the q  plane produces the displacement / d dq q      x x on i S , hence dq d q dq q q            x x. . . (A.17)
Since (A.17) holds for any choice of dq  ,

V 0 d  d   N N S  S  S q q          x . , (A.18)
where    is the Kronecker delta. Writing

q q          (A.19)
and using (A.15) and (A.18),

g q           N. . (A.20)
Let dq  represent an infinitesimal displacement along the curve  , in the sense, anticlockwise, indicated by the arrow in figure A.1. The corresponding displacement,

/ d dq q      x x
, along S  is perpendicular to N , hence, using (A.13), (A.15) and the

definition of g  , 0 dq     . (A.21)
This result shows that   provides a normal vector to  in the q  plane, as indicated in 

        x N , (A.23) hence 1 1 1 1 d b b g q q b b g g b b b b                                 x x x.N . . (A.24)
Because b  is directed outwards from  , dx takes us from S  to a location on i S just outside S . By definition, N is a normal vector directed outwards from S . Thus, 

0 d  x.N , hence, since 0 b b    , (A.24) gives 0   . Given that b  is directed outwards from  , 1 b       is
              N.   . (A.27) Using Green's theorem, 1 2 S ds g g dq dq q q                      N.  . (A.28)
Consider a rectangular area element, 1 2 dq dq , in the q  plane. This corresponds to a small parallelogram on S with sides , which is the relation between elementary areas in physical space and the q  plane. Using this result and (A.28), (A.12) yields

2 1 2 0 g g g dq dq q q                           . (A.29)
Finally, letting  shrink down to approach a point, 2      , hence (A.9) gives (2.12).

A.2 Derivation of (2.14)

The condition that the liquid/gas interface meets the wall at angle   

    , , 0 cos , w d 
x dx y dy z x dx y dy z z 

             . (A.34)
                           . (A.
                                      . (A.
                                                              (A.
                                     . N , (A.38) where 1/ 2 2 2 , d d d d x y x y                                     N = (A.39)
is a unit vector, normal to the equilibrium contact line and tangential to the wall, which is directed outwards from the wetted region (see figure A.3). Thus, 

w   . N is the normal derivative of   , w x y  at the contact line. Since 1 d   , 2 2 2 1 d d d x y z                            , (A.
                                , (A.41) 1/ 2 2 1 w w w d dx dy x y z                              . N . (A.42)
Using (A.32) and (A.35), , of  , taken tangential to i S , normal to the contact line and outwards from i S .

A.3 A frequently used identity

The following identity will often be used in subsequent sections:

2 1 2 1 2 1 i i S C S f f f f f dS f g ds g dS q q q                     , (A.46)
where 1 f and 2 f are any functions defined on the equilibrium liquid/gas interface i S and C is the equilibrium contact line. This identity can be derived as follows. Using 1 2 dS gdq dq  and (2.13),

1 2 2 1 2 1 i i S f f f dS f g g dq dq q q                   , (A.47)
where i  represents the entire equilibrium interface in the q  plane. Writing

2 2 1 2 1 1 f f f f f g g f g g g g q q q q q q                                    , (A.48)
the first term can be treated using the two-dimensional divergence theorem in the q  plane:

1 2 2 2 1 1 i i q f f f g g dq dq f g g ds q q q                              , (A.49)
where q ds is elementary arc length on 



) that / q gds ds      , where ds is elementary arc length on C . Thus, 

2 2 1 1 i q C f f f g g ds f g ds q q                       . (A.50) Again using 1 2 dS gdq dq  , 1 2 1 2 1 i i S f f f f g g dq dq g dS q q q q                   . (A.
                                                  u.σ
                               . (A.58) Using (2.14), 2 1 2 C C C g ds J ds t q t d J ds dt                        . (A.59) Symmetry of g  implies 2 1 2 i i S S d g dS g dS q t q dt q q                       . (A.
    2 2 1 2 2 i S C Q g dS J ds q q                                    . (A.63) Symmetry of g  implies     i S C Q g dS J ds q q                               (A.64)
for the variation of   Q  due to the infinitesimal variation,  , of  . Using (A.46),

    i S C Q dS g J ds q                                  . (A.65)
The condition for an extremum is 0 Q   for any  . Thus, we obtain (3.2) and (3.3). The constraints (3.1) also need to be imposed. Of these, the first contributes to the eigenvalue problem, whereas the second provides a normalisation condition.  and m  . In the case of a degenerate eigenvalue, the associated eigenfunctions can be orthogonalised, so (3.4) holds for all n m  . It also applies when n m  , thanks to the normalisation resulting from the second equation of (3.1). 

  0 n n n n           (A.67) on i S and n n g J q          (A.
,     0 i m n n n S dS           . (A.69) Using (A.46),   0 i n m n n m n m S C g dS J ds q q                             . ( A 
Using (3.5) in (2.18),   1 2 s nm n m n m E E c c    , (A.72) where i n m nm n m n m S C E g dS J ds q q                          . ( A 
                                       u.σ .n u.e .n               (A.
    v , (A.84) 0 n   .v , (A.85) nx nx v v z     , ny ny v v z     , 0 nz v  0 z  (A.86) and n n   v .n , (A.87)     0 T n n     n. v v .t ( 
     v v , (A.90) 0   .v (A.91) with x x v v z     , y y v v z     , 0 z v  (A.92)
on the wall, The normal and tangential components of (A.94) give The contribution of w S to the surface integral can be evaluated using Suppose the given 0 s  mode approaches 0 s  as Oh Oh c  and is normalised using  , but it is decaying and hence unimportant from a stability point of view. Here, we consider modes of the other type, i.e. those which approach an inviscid limit.

  v.n  , (A.93)       0 Oh T s p s            n. v v n    , (A.94) on the equilibrium interface, g J q            , ( A 
    0 Oh T s p s            n. v v .n    (A.97) and     0 T     n. v v .
2 Oh     σ I e ,     ˆ/ 2 T     e v v and 0 z nz v v   . Thus, ˆOh w w y x n nx ny S S v v dS v v dS z z                v .σ
The analysis given here has many similarities with that of section A. 
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 1 Figure 1: Schematic drop geometry, gravitational direction and Cartesian coordinate system.

Figure 3 :

 3 Figure 3: The equilibrium interface, i  , and contact line,

  are either decaying or have real 0 s  . The former being unimportant from a stability standpoint, most attention is devoted to the latter. Note that growing modes have real 0 s  . Consider a mode with 0 s  . The left-hand side of (3.15) is zero, hence 0  e  for the mode in question. The reasoning following (3.20) leads to 0 to (3.8). However, we can no longer conclude from (3.11) that 0  , 0 p  which satisfy (3.13), (3.14) and (3.21). Note that  and 0 p  cannot both be zero because that would make all eigenfunctions zero, which is not allowed. Given (3.13), (3.14) and (3.21) and taking  ,  equal to either the real or imaginary parts of  , 0 p  , (2.15), (3.2) and (3.3) are satisfied with 0   . Thus, 0

Figure 4 :

 4 Figure 4: The 2D equilibrium drop interface and associated polar coordinates. Equilibria are extrema of the surface energy, (2.6), under drop-area preserving perturbations, where the surface integrals in (2.6) are replaced by line integrals and i S  and

Figure 5 :

 5 Figure 5: Curves of zero  in the   w x   

  Figure 5 shows the curves in the

  pressure, e p , at the equilibrium interface, 0 d  . Making the small displacement n to arrive at the perturbed interface and given that e p  G.x is constant,

Figure A. 2 :

 2 Figure A.2: The volume V , surface S , boundary, S  , of S , and unit vector N . The latter is tangential to the equilibrium interface, orthogonal to S  and directed outwards from S .

  figure A.1, and implies 1 2 dq

,

  line, where z n is the z -component of n . As we saw earlier,

Figure A. 3 :

 3 Figure A.3: The equilibrium interface close to its contact line, which intersects the plane of the figure at right angles. N and N are unit vectors normal to the contact line and directed outwards from the drop. The former is tangential to i S , the latter to the wall.

,

  dx dy perpendicular to the equilibrium contact line, it lies in the direction of the vector ,

  N be the unit vector shown in figure A.3, which is tangential to the equilibrium interface and normal to the contact line. Keeping   , component of   normal to the interface is zero. Thus, only the component of displacement, S , used in section A.1 and shown in figure A.2, to be the entire equilibrium interface, S is the contact line and N is the vector defined above. Using (A.20), (A.44) yields(2.14). Note that, as stated following (2.14), its left-hand side is the derivative,

i

   . Transforming to physical space, i  becomes the equilibrium contact line, C , and it can be shown (using (A.22), (A.26) and

A. 6

 6 Derivation of (3.4) and(3.6) The first of equations (3.1), together with (3.2) and(3.3

  .70)Permuting n and m and subtracting, symmetry of g  yields A.71) gives orthogonality of n

 be one of the 0   eigenfunctions introduced in section 3

 03 78) as the wall contribution to the surface integral in (A.77). Using (3.11), (A.52) and (A.76), for the interfacial contribution to (A.77). (3.15) follows from (A.77)-(A.79). A.8 Nonexistence of 0 s  modes such that 0 s  as Oh Oh 0 c  In order to derive a contradiction, suppose an 0 s  mode which approaches 0 s  as Oh Oh 0 c   . The limit would be an 0 s  mode. Unless 0   is an eigenvalue there are no such modes and we already have a contradiction. The case in which 0   is an eigenvalue is more complicated and is treated below.Let n

p

  .95)-(A.97), c  and 0c p  satisfy the 0 s  problem, (3.13), (3.14) and (3.21). (A.89)-(A.93) and (A.98) give 0 c  , (A.109)-(A.114) determine c v and c  . Using (A.86), (A.107) has the  satisfy the 0 s  problem, (3.13), (3.14) and (3.21), c  can be expressed as a linear combination of the 0   eigenfunctions of (3.1), (3.2) and (3.3) , i.e. .83)-(A.88) with (A.109)-(A.114), we see that .121) is obviously positive or zero. If it were zero, then 0  e , hence v is a combination of a translation and a rotation. On the other hand, (A.86) implies We conclude that nm A is positive definite. It follows from (A.119) that 0 n c  , which is incompatible with (A.117). This contradiction means 0 the left-hand side cannot be zero, otherwise  is constant and 0 33). Thus, all unknowns would be zero, which is not allowed for an eigenvalue problem. Symmetry of g  makes the right-hand side of (A.126) real. We conclude that  is real. For each eigenvalue k  , k  , k  and 0k p  are chosen real from here on. Because the integral on the left-hand side of (A.126) is positive, the k  can be normalised such that (3.34) holds when k l 128) Using (3.13), (A.46) and symmetry of g  , kl E  is given by (3.35) and is symmetric. Using symmetry of kl E  , permutation of k , l and subtraction gives eigenvalue, its eigenfunctions can be orthogonalised such that (A.133) applies for k l  . Thus, (A.133) holds for all k l  . Given the normalisation referred to above, we obtain (3.34). (3.36) follows from (3.34) and (A.131). A.10 Nonexistence of 0 s  modes such that 0 s  as Oh 0 Modes which continue to be affected by viscosity as Oh 0  are discussed in the main text.A mode of this type has

  is real, the unknowns,  ,  and 0 p  , can be chosen real and this is supposed in what follows.

	as the wall boundary condition. (3.27), (3.28) and (3.29) yield
		     n.  ,						(3.32)
		0     p     			0	(3.33)
	at the interface. (3.13), (3.14), (3.23) and (3.30)-(3.33) form the inviscid eigenvalue problem,
	which has eigenvalue  and unknowns    x ,   q  	and 0 p  . The corresponding s , u  and
	p  follow from	s	  	1/ 2	,	u 	s    	and	0 p p     	. Given the choice of sign, the number
	of inviscid modes for a given eigenvalue	0   is twice the multiplicity of  . Note that
	(3.29) shows that inviscid modes are irrotational, as stated earlier.
		The case	0 s  was excluded from the above analysis just prior to equation (3.23),
	however it is in fact allowed for by the above inviscid problem.	0 s  modes satisfy (3.13),
	(3.14) and (3.21), hence (3.33) holds with	0   , while  is determined by (3.23) and
	(3.30)-(3.32). Thus, if there are modes with	0 s  ,	0   is an eigenvalue of the inviscid
	problem, whose eigenfunctions,  , 0 p  , provide the corresponding	0 s  modes. We saw
	earlier that	0 s  modes correspond with	0   eigenfunctions. Here, we see that this
	correspondence extends to		0   inviscid eigenfunctions. Note that the number of	s 	0
	modes equals the	0   multiplicity.
	Given real  ,  and 0 p  ,	0 p p     	yields real p  , while	u 	s    	implies that u  is real
	if	0   and purely imaginary when	0   . Note that	0   gives	u 		0	and	0 p p    , as it
	should do since it represents		0 s  .	must be
	negligible, hence Denote the eigenvalues (allowing for possible multiplicity and zero  ) by k 0   as Oh 0  . When 0   , (3.24) has the limiting form  and the
	   corresponding real  ,  and 0 v , p  by k  , k  and 0k p  . Section A.9 shows that k (3.29)  , k  and 0k p 
	can be chosen such that				
	and (3.25) implies					
		2    . 0						(3.30)
	In the viscous problem there are three boundary conditions, given by (3.26), at the wall.
	However, only one is possible in the inviscid limit considered here. Mathematically, this is
	because (3.30) only allows one condition per boundary point. The inviscid condition is the
	usual one of wall impermeability, i.e.	0 v  . Thus, (3.29) gives z
		z    	0							(3.31)

It is shown in section A.9 that the eigenvalues  are real. If 0   , the resulting pair of inviscid modes are purely oscillatory, whereas 0   yields one decaying and one growing mode. Thus, the existence of an eigenvalue with 0   implies inviscid instability. Since 

  .36) Let  be any nonzero, possibly complex, function on i S which satisfies(3.14). Define  as the solution of (3.23) and (3.30)-(3.32). Such a solution exists thanks to(3.14). Assuming the k  form a complete set for functions satisfying (3.14),

	 	 	k k c    ,	(3.37)
		k		
	hence, according to (3.23) and (3.30)-(3.32) and their equivalents for k  and k  ,

  an outwardly directed normal vector to  , as indicated in figure A.1.

	The components of g  are			
		g	11		1 g g 	22	, 22 g		1 g g 11 	, 12 g		g	21	 	1 g g 12 	,	(A.25)
	where g is the determinant of the matrix g  , which is positive because g  is positive
	definite. (A.16), (A.22), (A.25) and	0   imply
			    	g dq dq g  		1/ 2    	.				(A.26)
	Since	 ds g dq dq   		 1/ 2	, (A.20), (A.22) and (A.26) give
			S		ds							g	q		1 g dq g dq 2 2 1	

  Using (A.46), (A.82), (A.95) and symmetry of g  ,

	S 		î dS s  v .σ.n n		1	i S 	    n    		dS	.	(A.104)
	i S 	n    	dS		C  		J	n   	ds		S 	i	g		n q q         	dS		i S 	   	n	dS	,	(A.105)
	hence																					
	S 	î dS s  v .σ.n n		1	i S 	    n   	n		dS	,	(A.106)
	which is zero according to (A.81) and (A.96). Thus, (A.102) and (A.103) give
	s	D 	n v .v dv	 							D 	ˆ2Oh n e : e	dv		Oh	S 	w	  	nx v	x z v  		ny v	y z v  	  	dS	(A.107)
	for any n N  , where N denotes the set of n for which	0
				.n																		.	(A.103)
	(A.80), (A.87) and (A.100) imply						

n   .

n n n

Acknowledgement

This work was carried out with support from the French ANR research agency, project number ANR-15-CE08-0031, also known as ICEWET.

Appendix A: Mathematical details A.1 Derivation of (2.12)

The normal unit vector, n , is originally only defined on the perturbed interface, d   , but can be extended using

The interface curvature follows from

3)

The second term on the right-hand side being of second order, it is neglected, hence

on the wall,

on the equilibrium interface,

at the equilibrium contact line and

where

, where k  is a 0   inviscid eigenfunction, (A.142) applies for all k for which 0 k   . We denote the set of those k by K .

Suppose an 0 s  mode approaches an inviscid limit with 0 s  as Oh 0  . In order that the viscous term in (A.135) be negligible in the limit, 1 Oh 0 s   . Normalising the mode using (A.108), we have a contradiction and conclude that 0 s  modes which approach an inviscid limit with 0 s  as 0  do not exist.