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Abstract 
 

This article concerns the stability of a drop on a wall for which the contact angle, w , varies 

from place to place. Such a wall may allow unstable equilibria of the drop, i.e. ones for which 
small perturbations to equilibrium grow, making the equilibrium unrealisable in practice. 
This will be referred to as dynamic instability and is one of the two versions of instability 
considered. The other arises from consideration of potential energy, which is the sum of 
surface (liquid/gas, liquid/solid and solid/gas) components and the gravitational potential 
energy. Equilibria are extrema of the potential energy with respect to variations of drop 
geometry which preserve its volume. An equilibrium is said to be statically stable if it is a 
local minimum of the potential energy for volume-preserving perturbations of the drop. The 
relationship between static and dynamic stability is the main subject of this paper. The liquid 
flow is governed by the incompressible Navier-Stokes equations. To allow for the moving 

contact line, a Navier slip condition with slip length   is used at the wall, as is a prescribed 

contact angle,  ,w w x y  , at the contact line, where x , y  are Cartesian coordinates on the 

wall. The perturbation is assumed small, allowing linearization of the governing equations 
and, in the usual manner of stability analysis, complex modes having the time dependency 

ste  are introduced. This leads to an eigenvalue problem with eigenvalue s , the sign of whose 
real part determines dynamic stability/instability. A quite different eigenvalue problem, 
which describes static stability/instability is also derived. It is shown that, despite this 
difference, the conditions for dynamic and static instability are in fact the same. This 
conclusion is far from evident a priori, but should be good news for interested numerical 
analysts because determination of static stability is much less numerically costly than a 
dynamic stability study, whereas it is the latter which gives a true determination of stability. 

Keywords: Instability, attached drop, inhomogeneous wall, moving contact lines. 

1. Introduction 

Progress in the fabrication of surfaces whose properties vary from point to point (see [1]) has 
led to an interest in the dynamics of liquid drops on such a surface. For instance, among the 
considerable literature on this subject, [2] concerns the slow spreading of a two-dimensional 
drop on a heterogeneous wall using lubrication theory, while [3] treats the three-dimensional 
case. A drop may approach equilibrium at large times, but only if the equilibrium is stable, 
i.e. departures from equilibrium, when small enough, decay with time. Equilibria which are 
unstable are not realised in practice. Thus, when studying equilibria, it is important to decide 
if a given equilibrium is stable or not. 



Prior to considerations of their stability, it should be noted that the equilibria of the 
interfaces between immiscible fluids, such as those considered here, result from extrema of 
potential energy, which is the sum of gravitational and surface contributions (resulting from 
surface tension). Studies of such equilibria, both physical and mathematical, go back a very 
long way (see e.g. [4], especially the beginning of section 2, and [5]). [6] concerns 
computational approaches for heterogeneous surfaces. 

For systems like the drop attached to an inhomogeneous wall considered here, there are 
two notions of stability (see [4], whose main topic is stability and which discusses both 
types). On the one hand, there is dynamic instability, defined earlier, for which the time-
dependent problem predicts growth of the perturbation to equilibrium. On the other hand, 
there is another notion of stability, namely static stability, which arises from considerations of 
the potential energy defined above. The drop is said to be statically stable if the equilibrium 
provides a minimum of potential energy for small volume-preserving perturbations. Static 
stability is the main subject of section 2 of [4], while section 3 of that paper provides a review 
of work on dynamic stability. With the heterogeneous case in mind, [7] considers static 
stability, while the stability of 2D droplets has been studied in [8]. 

We are thus faced with two approaches to stability: dynamic and static. There is no 
obvious a priori relationship between the two. Indeed, there is no notion of potential energy 
in the usual theory of hydrodynamic stability, so dynamic and static stability are not always 
equivalent. An example in which the static and dynamic stability criteria differ is that of the 
Kelvin-Helmholtz instability of a horizontal interface with gravity and surface tension 
between homogeneous, inviscid fluids of different densities (see [9], at the beginning of 
section 3). In that case, the system is always statically stable for light over dense fluid, 
whereas it can be dynamically destabilised by flow. When static and dynamic instability 
criteria disagree, it is the dynamic one which gives a true indication of stability. 

The main objective of this paper is to show that, perhaps surprisingly, the two types of 
stability are in fact equivalent for the problem considered here. From a numerical point of 
view, this is interesting because the determination of static stability/instability involves a two 
dimensional calculation, whereas dynamic stability calculations are intrinsically 3D, hence 
considerably more computer intensive. Furthermore, dynamic stability analysis involves 
additional parameters. In the present model, these are the Ohnesorge number, Oh , which 

measures the importance of viscosity, and the slip length,  , which arises from the contact-
line model described below. Such parameters do not influence static stability/instability and, 
when the static and dynamic approaches to stability can be shown to yield the same results, as 
here, the many numerical dynamic stability calculations involved in an exhaustive parametric 
study are unnecessary. 

The model of drop dynamics uses the incompressible Navier-Stokes equations in the 

liquid and assumes an inviscid gas with constant pressure, ap . The moving contact line is 

problematic because the usual model, i.e. the Navier-Stokes equations with a no-slip 
condition at the wall, implies an unacceptable singularity at the contact line (see e.g. [10, 
11]). There is no agreed definitive model [1, 12], but one which is frequently used allows slip 



at the wall via a Navier condition in which slip is proportional to shear rate, the constant of 
proportionality being referred to as the slip length and denoted   (which is typically much 
smaller than the drop size). Such a model was used by [13] to treat the case of the slow 
spreading of a liquid droplet on a wall using matched asymptotic expansions, while [14] 
extended this approach to more general cases. More recently, models of this type have been 
employed in numerical studies (see e.g. [15, 16, 17, 18]). In this paper, we use a Navier 

condition at the wall and a prescribed contact angle w . Inhomogeneity is expressed by 

variations of  ,w x y  with respect to the Cartesian coordinates x  and y , which specify the 

location on the wall. 

The paper is organised as follows. Section 2 describes the overall mathematical model, its 
linearization for small perturbations and the resulting energy equation. Section 3 is the heart 
of the paper. Section 3.1 derives an eigenvalue problem which provides a precise 
quantification of static stability/instability. Section 3.2 develops the theory of dynamic 
instability. Section 3.3 first shows that the dynamic stability characteristics of the equilibrium 

are independent of the Ohnesorge number, Oh . It then examines the limit Oh 0  and 
concludes that the notions of dynamic and static stability are equivalent for the present 
problem. Finally, section 4 concerns the case of a two-dimensional drop without gravity and 
derives explicit stability conditions for that case. 

2. Modelling 

A liquid drop, attached to an inhomogeneous plane wall, is surrounded by gas which is 

supposed inviscid and of constant pressure, ap . The liquid/gas interfacial surface tension,  , 

is assumed constant, as are the liquid density and dynamic viscosity,   and  . The problem 

is nondimensionalized using L ,  1/ 23 /L  ,  1/ 2
/ L  , / L  as length, time, velocity and 

pressure scales, where L  is the length scale which gives a nondimensional drop volume 
equal to 1. The Navier-Stokes equations in the liquid give 

 2Ohp
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
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u. u u G , (2.1) 

 0 .u , (2.2) 

where  1/ 2
Oh / L   is an Ohnesorge number, which measures the importance of 

viscosity, and G  represents gravity. G  is directed vertically downward and has norm 
2Bo /gL  G  equal to the Bond number, a measure of the significance of gravity. We 

will later consider the limit Oh 0 , in which case we expect viscosity to be negligible over 
most of the drop, outside a thin boundary layer at the wall in which viscous effects are 
significant. 



Using Cartesian coordinates, the spatial position vector is  , ,x y zx , where the wall lies 

at 0z   and the drop in 0z   (see figure 1). Note that there is no requirement that the wall 
be horizontal. The wall boundary conditions are 
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where  , taken constant, is the slip length, while the angle at which the liquid/gas interface 

meets the wall has the prescribed value  0 ,w x y   . The kinematic and stress boundary 

conditions 
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T

ap p      n. u u n , (2.5) 

apply at the liquid/gas interface, which is described by  , 0F t x . Here,   represents the 

interface curvature and n  is a unit normal vector to the interface, directed from the liquid 
towards the gas. Note that, as usual when using the model (2.3), we have in mind that   is 
small, though this is not assumed in what follows. 

 

 

 

 

 

 

Figure 1: Schematic drop geometry, gravitational direction and Cartesian coordinate system. 

Equilibrium of the drop implies 0u , hence constant p  G.x  according to (2.1). (2.5) 

requires constant  G.x  on the interface, which, together with the condition that the 
nondimensional drop volume equals 1 and the prescribed contact angle at the wall, 
determines possible equilibria. An alternative characterisation of equilibrium arises from 
considerations of energy. The nondimensional surface energy is 

 cos
i w

wS S
dS dS    (2.6) 
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,x y
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to within an additive constant, where iS  and wS  respectively represent the liquid/gas 

interface and the wetted area of the wall. Note that the second term in (2.6), which represents 
the surface energy of the wall, corresponds to the Young-Dupré equation for the contact 
angle. Adding in the gravitational potential energy gives the total potential energy as 

 cos
i w

wS S D
dS dS dv    G.x   , (2.7) 

where D  is the interior of the drop. Equilibria are extrema of (2.7) under variations of drop 
geometry which maintain its volume equal to 1. An equilibrium will be referred to as 
statically stable if (2.7) is a local minimum for volume-preserving perturbations. Note that the 

equilibrium condition is independent of Oh  and  . 

2.1 Linearization 

Here we consider small perturbations to a given equilibrium. Let p  denote the difference 

between the perturbed and equilibrium pressures. Thus, (2.1) gives 

 2Ohp
t

      

u

u. u u , (2.8) 

which, given smallness of the perturbation, is linearized by dropping the convective term to 
obtain 

 2Ohp
t

    

u

u . (2.9) 

(2.2) and (2.3) are already linear. 

 

 

 

 

 

Figure 2: Coordinate system 1q , 2q , d . d  is the distance from the equilibrium interface. 1q  

and 2q  are the coordinates of the point P . 

Let  d x  be the signed distance from the equilibrium liquid/gas interface:   0d x  

represents that interface, while   0d x  inside and   0d x  outside the equilibrium drop. 

Define coordinates 1q  and 2q  on the equilibrium interface. These coordinates are extended 

off that interface by attributing to a point x  the values of q  ( 1, 2  ) of the nearest point, 

Equilibrium interface 

= constant 

x
q

 d x

 P q



P , on the interface (see figure 2). Thus, 1q , 2q  and d  provide a coordinate system for 

points near the equilibrium interface. It can be shown that constant 1q  and 2q  gives a straight 

line which intersects the surfaces of constant d  orthogonally. Thus, 0d q  . , while 

1d   follows from the definition of  d x . The perturbed interface is represented by 

 ,d q t , corresponding to       , ,F t d q t x x x .  ,q t  expresses the 

perturbation in the interfacial position. It may be considered as a function defined on the 

equilibrium interface and extended to other locations by   ,q t  x . Since 0d q  . , 

0d   . . 

The interfacial kinematic condition, (2.4), yields 

 d
t

 
   


u. u.  (2.10) 

on the perturbed interface. The second term on the right-hand side is second order in the 

perturbation and is therefore dropped, while d  n  at leading order, hence the linearized 
kinematic condition 

 
t
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
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Given the smallness of the perturbation, (2.11) is applied on the equilibrium interface, rather 
than the perturbed one. 

The treatment of (2.5) is considerably more technical and the details are relegated to 
section A.1. The analysis relies on the differential geometry of the equilibrium interface and, 

in particular, its metric tensor, g , which gives the distance, ds , between two 

infinitesimally separated points on the interface as 2ds g dq dq 
  (see e.g. [19], section 

29), where, here and henceforth, the summation convention applies to repeated indices. It is 
found that 

      Oh
T

p         n. u u n x , (2.12) 

where   is given by (A.7) and   is the Laplace-Beltrami operator, defined by 
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     
, (2.13) 

which is the natural extension of the 2D Laplace operator to curved surfaces and general 

coordinates (see [19], equation (43.8)). Here, g  is the determinant of the matrix g  and g  

is its inverse. The linearized kinematic and stress conditions, (2.11) and (2.12), apply on the 
equilibrium interface with n  being the equilibrium normal vector. 



It remains to express the condition of prescribed contact angle. Figure 3 shows the 

equilibrium contact line in the q  plane. The equilibrium liquid/gas interface, henceforth 

denoted by iS  in physical space, is represented by i , the contact line by i  and   is the 

vector in the q  plane which is orthogonal to i , directed outwards from i  and normalised 

using 1g
    . The contact-line condition is derived in section A.2 and takes the form 

  g J
q


 

 



x , (2.14) 

where  J x  is given by (A.45). Despite its recondite appearance, the left-hand side of (2.14) 

has a simple interpretation. It is the derivative of   at the contact line, taken in the direction 

tangential to iS ,  normal to the contact line and outwards from iS . 

 

 

 

 

 

 

 

Figure 3: The equilibrium interface, i , and contact line, i , in the q  plane.   is normal 

to i . 

The linearized problem consists of the incompressibility condition and momentum 
equation, (2.2) and (2.9), within the equilibrium drop, (2.3) at the wall, the kinematic and 
stress conditions, (2.11) and (2.12), on the equilibrium interface and (2.14) at the equilibrium 
contact line. In principle, initial conditions are also required. The condition that the perturbed 
and equilibrium drops have the same nondimensional volume (namely 1) is (to first order) 

 0
iS

dS  , (2.15) 

where the integral is taken over the equilibrium interface, iS . This condition constrains the 

initial  , but if it is satisfied initially, integration of (2.2) over the drop, followed by use of 

the divergence theorem, 0zu   at the wall and (2.11) at the interface, shows that it continues 

to be satisfied at subsequent times (an expression of drop volume conservation). 

 

i
2q


i

1q



2.2 Energetics 

Based on the linearized problem, it is shown in section A.4 that 
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where D , wS  are the equilibrium drop volume and wetted wall area,    / 2
T   e u u  is 

the strain-rate tensor, 
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and C  is the equilibrium contact line. (2.16) describes the evolution of the total drop 
mechanical energy, E . Both terms on the right-hand side are negative or zero and express 
dissipation of energy. The first has the familiar form for volumetric viscous dissipation (see 
e.g. [20], equation (3.4.5) for the dimensional version, where the second term in brackets is 
zero because here the flow is incompressible), while the other is due to slip at the wall. 
Turning attention to (2.17), the first term on the right-hand side evidently represents the 
kinetic energy of the drop. The second, given by (2.18), combines surface and gravitational 
potential energies, the gravitational contribution appearing via   (see (A.7)). For the small, 

volume-preserving perturbations considered here (recall that   satisfies (2.15), so the 

perturbation is indeed volume preserving),  sE   is the difference between the perturbed and 

equilibrium values of (2.7), correct to second order in the perturbation. The first-order 
difference is zero because (2.7) is an extremum for volume-preserving perturbations to 

equilibrium, while  sE   is the second-order difference. If sE  is positive for all nonzero   

satisfying (2.15), the equilibrium is statically stable. 

3. Stability 

3.1 Static stability 

With the eventual aim of characterising static stability using eigenvalues, consider the 

problem of finding extrema of  sE   among  q  on iS  for which 

 0
iS

dS  ,        2 1
iS

dS  . (3.1) 

It is shown in section A.5, using the calculus of variations, that 

   0          (3.2) 
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
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on C , where   and   are constants representing Lagrange multipliers for the constraints 

(3.1). The first of equations (3.1), together with (3.2) and (3.3), form an eigenvalue problem 

whose eigenvalue is   and whose unknowns are  q  and the constant  . The second of 

equations (3.1) provides a normalisation condition. Allowing for possible multiplicity, let us 

denote the eigenvalues by n  and the corresponding   and   by n  and n . Note that, 

unlike the dynamic stability eigenvalue problem of the next section, the present one is 

independent of Oh  and  . Also unlike the dynamic problem, the one considered here only 
involves real quantities. 

It is shown in section A.6 that the n  can be chosen orthonormal in the sense that 

 
i

n m nmS
dS   , (3.4) 

where nm  is the Kronecker delta. Since each of the n  satisfies the first of conditions (3.1), 

it is reasonable to assume that the eigenfunctions n  form a complete set for functions on iS  

which satisfy (2.15). In that case, we can write any such function as 

 n n
n

c  . (3.5) 

Section A.6 also shows that 

   21

2s n n
n

E c   , (3.6) 

which describes the second-order variations of the potential energy for small perturbations to 

equilibrium, hence characterising static stability. If all the n  are positive,   0sE    for any 

nonzero   satisfying (2.15). In that case the equilibrium is statically stable. On the other 

hand, if one or more n  are negative it is said to be statically unstable. Finally, when 0   is 

an eigenvalue and all others are positive, the equilibrium will be referred to as statically 

neutral. Note that 0n   arises if there are equilibria infinitesimally close to the given one. 

An example is provided by a drop on a homogeneous wall, for which neighbouring equilibria 
can be obtained by small displacements parallel to the wall. However, when the wall is 

inhomogeneous, as we have in mind here, we expect all n  to be nonzero in general. This 

does not mean that the special case 0   is unimportant, indeed it is required for static 

neutrality. 

 



3.2 Dynamic stability 

The fact that the linearized problem contains no time-dependent coefficients allows complex 
solutions of the form 

   steu u x ,       stp p e  x ,       stq e   . (3.7) 

Such solutions are often referred to as modes in the hydrodynamic stability community. The 
idea here is that the general solution can be expressed as a linear combination of modes, each 
of which can be studied separately. (2.9) and (2.2) imply 

 2Ohs p   u u   , (3.8) 

 0 .u . (3.9) 

(2.3) gives the wall condition 
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(2.11) and (2.12) provide the linearized kinematic and interfacial stress conditions 

 s  u.n  , (3.11) 
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on the equilibrium interface. (2.14) yields 
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at the equilibrium contact line. Finally, (2.15) implies 

 0
iS

dS   . (3.14) 

(3.8)-(3.14) form an eigenvalue problem with eigenvalue r is s is   which determines the 

modes. For each mode, is  is an oscillation frequency, whereas the sign of rs  controls the 

exponential growth/decay of the mode. If 0rs  , the mode is growing, while 0rs   for a 

decaying mode. If one or more eigenvalues can be found for which 0rs  , a general 

perturbation grows, indicating instability of the given equilibrium. On the other hand, if 

0rs   for all modes, the equilibrium is stable. The remaining possibility, referred to as 

neutral stability, is when one or more modes have 0rs  , while the others are decaying. We 

use the terms dynamic stability, instability and neutrality to distinguish them from the 
corresponding static classification introduced earlier. Dynamic instability/stability determines 
whether small perturbations grow or decay, which is the true test of stability. 



The complex eigenfunctions, u , p  and  , determine the spatial structure (amplitude and 

phase) of modes. Note that for modes with real s , the eigenfunctions can be chosen real, in 

which case the entire modal solution is real. On the other hand, if 0is  , the complex 

conjugate of the modal solution is also a solution. Thus, for each complex mode, there is a 
conjugate mode. A physically meaningful perturbation must be real and this requires a 
suitable linear combination of modes and their conjugates. Note that there may be several 
modes associated with a given eigenvalue, i.e. it admits of two or more linearly independent 
choices of eigenfunctions. 

It is shown in section A.7 that 
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where    / 2
T   e u u   , 
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and * denotes complex conjugation. There are clear similarities between equations (3.15) and 
(2.16). Note however that, though they are closely related mathematically, both in their 
structure and derivation, (2.16) describes the time evolution of total energy in physical space, 
whereas (3.15) refers to a particular complex mode. Like the right-hand side of (2.16), that of 
(3.15) has two terms, both of which are real and either negative or zero. The left-hand side of 
(3.15) corresponds with that of (2.16), the analogy with the kinetic and potential energy terms 

of (2.17) being obvious. Symmetry of g  implies that sE  is real and 

    2s s r s iE E E     , where r ii      . The real and imaginary parts of (3.15) give 
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  2
0i sD

s dv E  u  . (3.18) 

Suppose static stability, so both sE  and the kinetic energy term on the left-hand side of 

(3.17) are positive, while the right-hand side of (3.17) is negative. Thus, 0rs  , hence all 

modes are decaying. It follows that static stability implies dynamic stability. This might have 
been expected because the total energy, E , decays due to dissipation according to (2.16). In 
the case of a mode and a statically stable drop, both the potential and kinetic contributions to 
E  are increasing functions of the modal amplitude, so that amplitude must also decay. On the 
other hand, static instability does not exclude the possibility that, as in the statically stable 

case, the bracketed term on the left-hand side of (3.17) be positive, hence 0rs  . If this is true 



of all modes, the drop would be dynamically stable or neutral, despite being statically 
unstable. The elimination of this possibility is the main motivation for the remaining analysis 
of this section. 

Consider a mode with 0is  , thus 
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according to (3.18), hence 
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from (3.17). With the aim of deriving a contradiction, suppose that 0rs  . The left-hand side 

of (3.20) is positive or zero, while the right-hand side cannot be positive. Thus, both must be 

zero, hence 0e . The real and imaginary parts of u  then consist of a rotation and a 

translation, which is only consistent with (3.10) if 0u . When 0u , p  is a constant 

according to (3.8), 0   from the linearized kinematic condition (3.11) (because 0s  ) and 

0p   from (3.12). It is in the nature of an eigenvalue problem that the eigenfunctions should 

not all be zero, so we have a contradiction. The conclusion is that 0is   implies 0rs  . It 

follows that modes are either decaying or have real 0s  . The former being unimportant 
from a stability standpoint, most attention is devoted to the latter. Note that growing modes 
have real 0s  . 

Consider a mode with 0s  . The left-hand side of (3.15) is zero, hence 0e  for the mode 

in question. The reasoning following (3.20) leads to 0u , hence constant 0p p   according 

to (3.8). However, we can no longer conclude from (3.11) that 0   because 0s  . Instead, 

(3.12) gives 

 0 0p       . (3.21) 

Thus, a mode with 0s   has 0u , 0p p   and  , 0p  which satisfy (3.13), (3.14) and 

(3.21). Note that   and 0p  cannot both be zero because that would make all eigenfunctions 

zero, which is not allowed. Given (3.13), (3.14) and (3.21) and taking  ,   equal to either 

the real or imaginary parts of  , 0p , (2.15), (3.2) and (3.3) are satisfied with 0  . Thus, 

0   is an eigenvalue of (2.15), (3.2) and (3.3). The converse also holds, i.e. if 0   is an 

eigenvalue, there is a corresponding mode with 0s  , 0u , p   and   . It follows 

that there is a precise correspondence between zero-  eigenfunctions and modes with 0s  . 

Since the eigenvalue problem for   is independent of Oh  and  , so are 0s   modes. 



Next, consider a mode with 0s  . u  cannot be identically zero, otherwise (3.11) gives 
0  , hence (3.12) yields 0p  . This makes all eigenfunctions zero, which is not allowed. 

Thus, 0u  is characteristic of 0s   modes. 

3.3 The effects of varying Oh  

In this section, we vary Oh , but keep everything else, in particular the equilibrium, the same. 

As Oh  varies, the eigenvalues s  move around in the complex plane. Let us consider the 
possibility that the nature of the equilibrium, dynamically stable, unstable or neutral, changes 

as Oh  varies over positive values. Recall that only modes with real 0s   are significant for 
instability and that the number of 0s   modes is independent of Oh . Thus, a change in 

stability character is only possible if an 0s   mode approaches 0s   as Oh Ohc  from 

either above or below, where Oh 0c   is the value at which the supposed change in stability 

character occurs. It is shown in section A.8 that this cannot happen. The essential reason is 

that the number of 0s   modes is constant, but the mathematical reasoning is lengthy and 
technical, hence its relegation to the appendix. The conclusion is that the character of the 

equilibrium does not depend on Oh , so any value of Oh  should give the same result. We 

henceforth consider the limit Oh 0 . 

3.3.1 Viscous versus inviscid modes 

As Oh 0 , 0s   modes are of two types. Some approach an inviscid limit and will be 
discussed later. On the other hand, there are modes which continue to be significantly 

affected by viscosity as Oh 0 . The two types are distinguished by the importance, or 
otherwise, of the viscous term in (3.8), the inviscid modes making this term negligible. As we 
shall see later, inviscid modes are irrotational, hence the need for essentially viscous modes to 
express the vorticity of a general flow inside the drop. Consider such a mode. To keep the 

viscous term in (3.8), s  must go to zero as  Ohs O . Smallness of s  as Oh 0  reflects 

the slowness of viscous diffusion of vorticity when Oh  is small. Recalling that u  is not 

identically zero (since 0s  ), we normalise the mode such that  1Ou , hence  Ohp O  

in order that the pressure-gradient term appear in (3.8) with the others. The left-hand side of 

(3.12) is  OhO , as is the pressure term. To make  O        of the same order, 

 OhO   so    2OhsE O    from (3.16). Because  1Ou , 

  2
1

D
dv O u  (3.22) 

dominates    2OhsE O    at small Oh . Thus, (3.18) implies 0is  . The right-hand side of 

(3.17) is negative or zero. If it were zero, 0e  and the reasoning following (3.20) leads to 

0u , which is not the case because 0s  . Thus, the right-hand side of (3.17) is negative, 

while the integral on the left-hand side is positive and dominates the term  sE   . It follows 

that s  is real and negative, implying decay of modes for which viscosity remains significant 



in the limit Oh 0 . Because they move towards 0s  , we expect such modes to become 

increasingly dense on the negative, real s -axis as Oh  decreases. However, because they 
decay, they are unimportant from a stability point of view. Thus, we focus on modes which 

approach an inviscid limit as Oh 0 . 

3.3.2 Inviscid modes 

Given 0s  , let 1sv u  and  2
0s p p    , where the constant 0p  is such that 

 0
D

dv  . (3.23) 

(3.8)-(3.12) give 

 2    v v , (3.24) 
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on the wall and 

   v.n , (3.27) 
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on the interface, where 1 Ohs   and 2s   (not to be confused with surface tension). 
(3.13) and (3.14) apply as before. 

In order that the mode approach an inviscid limit, the viscous term in (3.24) must be 

negligible, hence 0   as Oh 0 . When 0  , (3.24) has the limiting form 

  v , (3.29) 

and (3.25) implies 

 2 0  . (3.30) 

In the viscous problem there are three boundary conditions, given by (3.26), at the wall. 
However, only one is possible in the inviscid limit considered here. Mathematically, this is 
because (3.30) only allows one condition per boundary point. The inviscid condition is the 
usual one of wall impermeability, i.e. 0zv  . Thus, (3.29) gives 

 0
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 (3.31) 



as the wall boundary condition. (3.27), (3.28) and (3.29) yield 

    n.  , (3.32) 

 0 0p          (3.33) 

at the interface. (3.13), (3.14), (3.23) and (3.30)-(3.33) form the inviscid eigenvalue problem, 

which has eigenvalue    and unknowns   x ,  q  and 0p . The corresponding s , u  and 

p  follow from 1/ 2s   , s   u  and 0p p    . Given the choice of sign, the number 

of inviscid modes for a given eigenvalue 0   is twice the multiplicity of  . Note that 
(3.29) shows that inviscid modes are irrotational, as stated earlier. 

The case 0s   was excluded from the above analysis just prior to equation (3.23), 

however it is in fact allowed for by the above inviscid problem. 0s   modes satisfy (3.13), 
(3.14) and (3.21), hence (3.33) holds with 0  , while   is determined by (3.23) and 

(3.30)-(3.32). Thus, if there are modes with 0s  , 0   is an eigenvalue of the inviscid 

problem, whose eigenfunctions,  , 0p , provide the corresponding 0s   modes. We saw 

earlier that 0s   modes correspond with 0   eigenfunctions. Here, we see that this 

correspondence extends to 0   inviscid eigenfunctions. Note that the number of 0s   
modes equals the 0   multiplicity. 

It is shown in section A.9 that the eigenvalues   are real. If 0  , the resulting pair of 

inviscid modes are purely oscillatory, whereas 0   yields one decaying and one growing 

mode. Thus, the existence of an eigenvalue with 0   implies inviscid instability. Since   

is real, the unknowns,  ,   and 0p , can be chosen real and this is supposed in what follows. 

Given real  ,   and 0p , 0p p     yields real p , while s   u  implies that u  is real 

if 0   and purely imaginary when 0  . Note that 0   gives 0u  and 0p p  , as it 

should do since it represents 0s  . 

Denote the eigenvalues (allowing for possible multiplicity and zero  ) by k  and the 

corresponding real  ,   and 0p  by k , k  and 0kp . Section A.9 shows that k , k  and 0kp  

can be chosen such that 

 k l klD
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and that the matrix 
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is given by 

 kl k klE    . (3.36) 



Let   be any nonzero, possibly complex, function on iS  which satisfies (3.14). Define   

as the solution of (3.23) and (3.30)-(3.32). Such a solution exists thanks to (3.14). Assuming 

the k  form a complete set for functions satisfying (3.14), 

 k k
k

c   , (3.37) 

hence, according to (3.23) and (3.30)-(3.32) and their equivalents for k  and k , 
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Let 
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in which the denominator is positive, otherwise   is constant and 0   from (3.32), which 

is incompatible with the requirement that   be nonzero. (3.16) and (3.34)-(3.36) imply 
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hence 
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We suppose that the k  are bounded above, otherwise there would be growing inviscid 

modes with arbitrarily large growth rates. Let s  be the supremum of the set of k . It 

follows from (3.42) that  max sR   , where the maximum is taken over nonzero   which 

satisfy (3.14). Although we suppose an upper bound for k , there is no obvious reason for a 

lower bound. Indeed, we expect an infinity of negative k , extending to     and 

representing oscillatory inviscid modes of higher and higher oscillation frequencies. 

If all the n  are positive or zero (static stability or neutrality), (3.6) indicates that 

  0sE    for any   satisfying (2.15). This is the case for both r  and i  according to 

(3.14), hence       2 0s s r s iE E E        . It follows from (3.39) that   0R    for any 

nonzero   satisfying (3.14), hence  max 0s R   . Thus, 0   for all eigenvalues when 



the equilibrium is statically stable or neutral. The neutral case is distinguished from the stable 
one by the existence of 0   as an eigenvalue. As we saw above, this is equivalent to 0  . 

Thus, static stability gives 0k   for all k , while static neutrality gives a 0   eigenvalue, 

all others being negative. On the other hand, if some n  is negative (static instability), 

   2 0s n s nE E    from (3.6). Choosing n  ,   0R    from (3.39), hence 

 max 0s R   . It follows that there is at least one positive k . Combining this result 

with the earlier one that 0   for all eigenvalues when the equilibrium is statically stable or 

neutral, we conclude that the existence of a positive k  is equivalent to static instability. 

To summarise, the static stability characteristics of the equilibrium can be determined 

either from the eigenvalues n , as described in section 3.1, or from the k . It is the 

correspondence between static stability/instability and the k  which leads to equivalence of 

the static and dynamic approaches at small Oh . Static stability occurs when all k  are 

negative, static instability if one or more of them are positive and neutrality when one or 
more is zero and the others are negative. 

3.3.3 Consequences for stability 

Static instability implies a positive eigenvalue  , hence a growing inviscid mode. This 
mode is the Oh 0  limit of a growing viscous mode, corresponding to dynamic instability 

at small Oh . On the other hand, supposing dynamic instability, one possibility would be that 

a growing viscous mode, which, as we saw earlier, has real 0s  , approaches 0s   as 
Oh 0 . However, it is shown in section A.10 that this cannot occur. Thus, any growing 
viscous mode must approach a growing inviscid one. Such a mode has 0  , hence static 

instability. It follows that static and dynamic instability are equivalent at small Oh . The same 
is therefore true of static and dynamic stability/neutrality. Stability and neutrality are 

distinguished by the existence of zero n  in the static approach and zero s  in the dynamic 

one. The correspondence between modes with 0s   and eigenvalues 0n   leads to the 

conclusion that, for small Oh , the character, stable/unstable/neutral, of the equilibrium is the 
same for the static and dynamic approaches. Given that the static character is independent of 

Oh  and it has been shown that the dynamic character is also independent of Oh , this result 

holds without the requirement of small Oh . It follows that the static and dynamic approaches 
to stability agree, no matter what parameters are chosen, which is the main conclusion of this 

paper. Because the static problem is independent of both Oh  and  , the same is true of the 
dynamic stability character of the equilibrium. However, that character does depend on 

 ,w x y , G  and the choice of equilibrium. 

3.3.4 Further details of the inviscid limit 

In the Oh 0  analysis given above, we have frequently referred to the inviscid limit of 
viscous modes which admit of such a limit, but without giving details of how the limit is 



approached. Viscous modes with 0s   are straightforward because they are also inviscid 

ones. Here, we consider other (i.e. 0s  ) inviscid modes and attempt to construct 

corresponding viscous ones for small Oh  in the usual way by adding a boundary layer at the 

wall. This layer is thin, of thickness  1/ 2OhO , and is described by the rescaled coordinate 

1/ 2/ Ohz  . The viscous term in (3.8) can be approximated as 
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hence 
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where s  has its inviscid value. (3.9) yields 
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which, with 0zu   at 0  , implies  1/ 2Ohzu O . Thus, zu  is negligible compared with 

the other velocity components within the layer. The component of (3.44) normal to the wall 
gives 
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The projection of (3.44) parallel to the wall gives 
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where the subscript   denotes wall-parallel projection. The first two equations of (3.10), 

which do not appear in the inviscid problem, give 
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(3.46) indicates that, as usual, the variations of pressure across the boundary layer are 

asymptotically negligible. Thus, p   can be taken to be independent of   in (3.47). 

Assuming that s  does not lie on the negative real axis, the solution of (3.47) which does 
not grow exponentially with   is 



  1/ 21 1 ss p Ae     u   , (3.49) 

where A  is an unknown constant and 1/ 2s  is a principal value (so the exponential decays, 
rather than grows, as   increases). Matching to the inviscid flow outside the layer, where the 

exponential is negligible, 1 invs p   u   , where invu  is the wall velocity of the given inviscid 

mode. Thus, 

  1/ 2
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Applying (3.48), 
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which, with (3.50), describes the flow inside the boundary layer. 

In the strict mathematical limit Oh 0 , 0A   according to (3.51), hence the boundary 
layer disappears and the viscous mode approaches the inviscid one, even close to the wall. 
However, it is usually the case that   is small and there are then three distinct regions of 

small Oh . When 2 Oh 1   , ~ 1A  , which yields a classical boundary layer having 

0u  at the wall. If  2Oh O  , which would usually be very small, A  departs from 1  

and the layer is no longer a classical one (there is slip everywhere on the wall, not just near 

the contact line). Finally, when 2Oh  , the boundary layer disappears.  None of these 
changes inside the boundary layer affects the flow outside the layer, which approaches the 
inviscid limit provided only that Oh 1 . 

Decaying inviscid modes arise when 0   and have 1/ 2s   . Such negative, real values 
of s  were excluded just prior to (3.49) and their treatment is somewhat more subtle. The 
solution of (3.47) is 

  1/ 2 1/ 21 1 cos sins p B s C s     u    (3.52) 

and can be seen to have oscillatory, rather than decaying exponential, dependence on   

unless 0B C  . These oscillations are viscous in origin. (3.48) gives 

  1/ 2 1/ 2Oh 1s C B   . (3.53) 

In the strict mathematical limit Oh 0 , we can choose 0B  , hence 0C   according to 
(3.53). This eliminates the viscous oscillations with respect to  , so we have the inviscid 

mode as a possible limit, even close to the wall, as for the other types of mode described 

above. However, if   and Oh  are small and  2Oh O  , (3.53) does not allow both B  and 

C  to be small. Thus, despite Oh  being small, the viscous mode is not close to the inviscid 



one, either near the wall or in the drop interior. It is similar to the modes which retain viscous 
effects as Oh 0  and which were discussed earlier. In any case, because the mode in 
question is decaying, it is irrelevant from a stability point of view. 

4. The 2D drop 

This section concerns a toy problem: a two-dimensional drop without gravity, for which 
everything depends only on the coordinates x  and z , for instance the contact angle has the 

form  w w x  . The third dimension is suppressed completely and, although this is hardly a 

realistic representation of a drop, the intention is to illustrate the previous analyses via a full 
analytical treatment of stability. Note that, because the perturbation, like the equilibrium, is 
constrained to be 2D, we are not considering the stability of a 2D drop to 3D perturbations. 

The previous analysis of the 3D case carries over to 2D with some minor modifications. The 
length scale used for nondimensionalisation is now such that the drop area is 1. The velocity 
vector, u , only has x  and z  components, so the second equation in (2.3) is dropped, while 
neglect of gravity means that 0G . Otherwise, the governing equations are (2.1)-(2.5) as 
before.  

 

 

 

 

 

 

Figure 4: The 2D equilibrium drop interface and associated polar coordinates. 

Equilibria are extrema of the surface energy, (2.6), under drop-area preserving 

perturbations, where the surface integrals in (2.6) are replaced by line integrals and iS  and 

wS  are now lines in the x - z  plane representing the liquid-gas interface and wetted part of the 

wall. At equilibrium, the interface is a circular arc which meets the wall, 0z  , at x x , 

where 

 
 1/ 2
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sin cos
x x



  
  


 (4.1) 

and 

  w x    (4.2) 

x

z


r

C
r



is the equilibrium contact angle, which has the same value for both contact lines. (4.1) and 

(4.2) provide three equations for the three unknowns x , x  and   which determine 

possible equilibria. The radius of the equilibrium drop is   1/ 2
sin cosr   


  . Figure 4 

shows the equilibrium interface, which has radius r  and is centred at C . Polar coordinates, 

r  and  , are defined as indicated. The equilibrium interface is given by r r ,      , 

while the perturbed interface lies at  ,r r t   . 

Linearization follows the lines of section 2.1. Thus, (2.2) and (2.9) hold inside the 
equilibrium drop, while the first and third of equations (2.3) apply at the wall. The interfacial 

conditions are (2.11) and (2.12), with 2r   and 
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2 2

1

r





 


. (4.3) 

The contact-line condition, (2.14), becomes 

 
1

J
r

 
 


 


              , (4.4) 

where 

  cot 1

sin wJ x
r

 
    (4.5) 

and  w x  is the derivative of  w x . Finally, (2.15) becomes 

 0d



 


 . (4.6) 

Based on the linearized problem, an energy equation corresponding to (2.16) can be derived. 
The volume integrals in (2.16) and (2.17) become surface integrals over the drop interior, 
while the surface integral in (2.16) becomes a line integral. The 2D equivalent of (2.18) is 

    
2

2 2 21 1

2sE d J J
r





    
    

               
 , (4.7) 

where   are the contact-line values of  . 

Static stability is treated as in section 3.1. Extrema of (4.7) are looked for subject to the 
contraints (4.6) and the 2D equivalent of (3.1). The result is the eigenvalue problem (4.4), 
(4.6) and 
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 
. (4.8) 



This problem depends on the values of J  . Thus, the eigenvalues, n , vary as the J   are 

varied. Let us determine the condition for a zero eigenvalue. 

 

Figure 5: Curves of zero   in the  w x  -  w x   plane for a fixed value of  . 

Setting 0   in (4.8), its solution is 

 2
1 2cos sinr B B       . (4.9) 

Applying (4.4), 

 
   

1 2

2
1 2

sin cos

cot cos sin
sin w

B B

r
x r B B

 

    
 

 

      
 


, (4.10) 

where (4.5) has been used. (4.6) gives 

 2
1 sin 0r B     . (4.11) 

Using (4.11) to eliminate  , (4.10) becomes 
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which provides two equations for 1B  and 2B . There is a nonzero solution if 
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which is the condition for a zero eigenvalue of (4.4), (4.6) and (4.8). 
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Figure 5 shows the curves in the  w x  -  w x   plane resulting from (4.13) for a fixed 

value of  . These curves separate three regions, A, B and C. It can be shown that all the n  

are positive in region A, which is thus the statically stable region. One of the n  is negative 

in region B and two are negative in region C. Thus, the curve forming the boundary A/B 
represents static neutrality and the equilibrium is statically unstable in regions B and C. Note 

that there is always an infinity of positive n , whereas there are at most two negative ones. 

Without going into the details, the analyses of sections 3.2 and 3.3 carry through much as 
for the 3D case. As before, the main conclusion is that the static and dynamic stability 
characteristics of the equilibrium coincide. Thus, the drop is dynamically stable in region A, 
neutrally stable on A/B and unstable in regions B and C. There is one growing mode in 
region B, which is joined by a second in region C. 

Note that gravity has been neglected here, so any instability is due to surface energy and 
inhomogeneity. The latter allows the decrease of the former as the departure from equilibrium 
increases, leading to static instability. 

5. Conclusions 

In this paper, we have analysed and compared the static and dynamic stability characteristics 
of a drop on an inhomogeneous wall. This has been done using a drop model which is rather 

general because it allows for arbitrary contact-angle distributions,  ,w x y , and also for 

gravity. 

Section 2 describes the model. The liquid flow inside the drop is governed by the 
incompressible Navier-Stokes equations, whereas the gas outside the drop is supposed 
inviscid and of constant pressure. The boundary conditions at the liquid/gas interface are the 
usual ones, namely convection of the interface by the flow and a condition on the interfacial 
stress involving surface tension, whereas, to allow for the moving contact line, those at the 
wall are a combination of a Navier slip condition on the wetted area and a prescribed contact 

angle  ,w x y  at the contact line. Equilibrium can be expressed in two ways. The first uses 

the governing equations and boundary conditions, assuming zero flow velocity. The second is 
based on the potential energy, (2.7), which is the sum of superficial and gravitational energies 
and is an extremum for volume-preserving perturbations to equilibrium. When the 
equilibrium is a local minimum with respect to such perturbations, it is referred to as 
statically stable. 

Assuming a small perturbation to a given equilibrium, the governing equations and 
boundary conditions are linearized and an energy equation derived. The difference of 
potential energies between the perturbed drop and the equilibrium one is given by (2.18) as a 

second-order functional,  sE  , of the interfacial displacement,  . The equilibrium is 

statically stable if   0sE    for all nonzero   satisfying (2.15), which is the volume 

preservation condition for small perturbations. 



Section 3 is the heart of the paper and is devoted to stability, both static and dynamic, of a 
given equilibria. Section 3.1 provides a quantification of static stability and instability via an 
eigenvalue problem, which is independent of the Ohnesorge number, Oh , and the slip length, 

 , and quite different from that of the dynamic stability theory which is developed later. The 
eigenvalues,  , are real and determine the nature, statically stable or unstable, of the 

equilibrium. If 0   for all eigenvalues, it is statically stable, whereas a single 0   means 

it is statically unstable. The other possibility, that there are one or more zero eigenvalues and 
that the rest are positive, is referred to as static neutrality. 

Section 3.2 describes dynamic (to distinguish it from static) stability theory. The 
equilibrium is said to be dynamically unstable if perturbations grow and stable otherwise. The 
theory focuses on particular solutions (modes) of the linearized problem which can be 

complex and have exponential time dependence, ste , where r is s is  . This leads to an 

eigenvalue problem with eigenvalue s . Eigenvalues with 0rs   imply a growing mode. As a 

result, the general perturbation, which is a sum over modes, is also growing. This is dynamic 

instability and just one mode with 0rs   is sufficient. It means that the equilibrium is 

unrealisable in practice. On the other hand, 0rs   for all modes implies that perturbations 

decay, i.e. the equilibrium is dynamically stable. Dynamic neutrality means that there are 
modes with 0rs  , while all others decay. 

Section 3.3 concerns the effects of varying Oh , while keeping everything else, in 
particular the equilibrium, constant. The first, and perhaps most important, result is that the 

dynamic character, stable, unstable or neutral, of the equilibrium does not change as Oh 0  

varies. Thus, the character of the equilibrium does not depend on Oh  and any value of 
Oh 0  should give the same result. This leads to consideration of the limit Oh 0 . 

Modes are of two types as Oh 0 . For some, viscosity remains significant despite the 
small Ohnesorge number. However, these modes are shown to be decaying and so are 
unimportant from a stability point of view. On the other hand, others approach an inviscid 

limit. The limit is described by an inviscid eigenvalue problem with eigenvalue 2s  , 

which is shown to be real. 0   implies a growing inviscid mode which corresponds to the 

limit of a viscous mode which grows for small Oh . On the other hand 0   results in a pair 
of oscillatory inviscid modes, which result from the limit of decaying viscous modes as 
Oh 0 . Finally, inviscid modes with 0   correspond precisely with viscous modes 

having 0s  , which are independent of Oh . 

Perhaps surprisingly, there is a close relationship between the inviscid eigenvalues   and 
static stability/instability/neutrality. It is found that the existence of a positive   leads to 
static instability, whereas the equilibrium is statically stable if all   are negative. Static 
neutrality arises when one or more   are zero and the remaining ones negative. Combining 

these results with the connection, described in the previous paragraph, between the Oh 0  
limit of viscous modes and the eigenvalues  , it has been shown that the notions of static 



and dynamic stability/instability/neutrality are equivalent at small Oh . Given that the 

dynamic character, stable, unstable or neutral, of the equilibrium does not change as Oh 0  

varies and that the static character is independent of Oh , this result holds for any value of 
Oh . 

Thus, despite their quite different definitions and eigenvalue problems, dynamic and static 
stability, instability and neutrality are found to be equivalent for the present problem. This 
conclusion is far from evident a priori, but, as noted earlier, should be of interest to 
numerical analysts because determination of static stability is considerably less numerically 
costly than a dynamic stability study, whereas it is the latter which provides a true 
determination of stability. It would be interesting to know if the conclusions arrived at here 
remain valid for other models of the moving contact line. 

Finally, the way in which viscous modes approach inviscid ones via boundary layers as 
Oh 0  was addressed towards the end of section 3.3 and the case of a 2D drop was the 
subject of section 4. Although the 2D case is hardly realistic, it provides an illustration of the 
3D methodology for which full analytical results concerning stability are derived. 

Among the open questions related to the present work are the following. Do the 
conclusions arrived at here, that the static and dynamic stability characteristics of equilibria 
coincide, hold for other contact-line models? Secondly, to make the present results useful, a 
numerical method for obtaining statically stable equilibria which does not rely on solution of 
the full 3D dynamical problem is needed. Such a method might involve finding local minima 
of the potential energy, (2.7), subject to fixed drop volume. One possibility is the “basin-
hopping” algorithm (see e.g. [21]). 
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Appendix A: Mathematical details 

A.1 Derivation of (2.12) 

The normal unit vector, n , is originally only defined on the perturbed interface, d  , but 

can be extended using 

 
F

F





n . (A.1) 

The interface curvature follows from 

  .n  (A.2) 

evaluated at the interface. Since F d   , 1d  and 0d   . , 
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1F     . (A.3) 

The second term on the right-hand side being of second order, it is neglected, hence Fn  
according to (A.1). Thus, (A.2) gives 
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 (A.4) 

correct to first order when evaluated at the interface. 

For the equilibrium, we set 0   in (A.4) and 0u  in (2.5) to derive 
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0 0e ad d
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for the equilibrium pressure, ep , at the equilibrium interface, 0d  . Making the small 

displacement n  to arrive at the perturbed interface and given that ep G.x  is constant, 
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correct to first order, where 

   2d   n. G . (A.7) 

On the other hand, applying (2.5) and (A.4) to the perturbed interface 
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Using (A.6), 

     2Oh
T
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Figure A.1: The region   and its boundary   in the q  plane. 

It remains to express the term 2  in terms of  q . To this end, let   be a region in 

the q  plane representing part of the equilibrium interface and V  the volume in physical 

space for which q   and 0 d   , where   is an infinitesimal constant (see figures A.1 

and A.2). The divergence theorem gives 

 2

V V
dv dS

n





 

  . (A.10) 

The normal vectors of the parts of V  with constant d  are directed parallel to d . Since 

0d   . , / 0n   . Thus, these parts of V  do not contribute to (A.10). The remainder 

of V  gives 
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for the right-hand side of (A.10), where S  is the curve on the equilibrium interface 

corresponding to the boundary   in the q  plane, ds  is elementary arc length along S  

and N  is the unit vector, tangential to the equilibrium interface and orthogonal to S , which 

is directed outwards from S  (see figure A.2). Thus, (A.10) implies 

 2

S S
dS ds 


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where S  corresponds to  . 

 

 

 

 

 

Figure A.2: The volume V , surface S , boundary, S , of S , and unit vector N . The latter is 

tangential to the equilibrium interface, orthogonal to S  and directed outwards from S . 

From here until the end of this section, we restrict attention to the equilibrium interface.  A 

point on the interface has position vector  qx , whose derivatives, 1/ q x  and 2/ q x , are 

tangential to the interface and yield the metric tensor via 

 g
q q  
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x x
. . (A.13) 

The components of this tensor form a symmetric, positive-definite matrix. Since N  is 

tangential and 1/ q x , 2/ q x  span the space of such vectors, 
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It is convenient to define g 
   , hence g 

  , where g  is the inverse of the 

matrix g . Thus, 
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1N.N , (A.13), (A.15) and the definition of g  imply 

 1g
    . (A.16) 

An infinitesimal displacement dq  in the q  plane produces the displacement 

/d dq q   x x  on iS , hence 
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Since (A.17) holds for any choice of dq , 
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where 
  is the Kronecker delta. Writing 

 q
q




 
  


 (A.19) 

and using (A.15) and (A.18), 
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q


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  
 


N. . (A.20) 

Let dq  represent an infinitesimal displacement along the curve  , in the sense, 

anticlockwise, indicated by the arrow in figure A.1. The corresponding displacement, 

/d dq q   x x , along S  is perpendicular to N , hence, using (A.13), (A.15) and the 

definition of g , 

 0dq
  . (A.21) 

This result shows that   provides a normal vector to   in the q  plane, as indicated in 

figure A.1, and implies 

 1
2dq   ,    2

1dq  , (A.22) 

where 0   is infinitesimal. Thus, the vector b   has components 2
1b dq  and  

1
2b dq  . Given that the displacement along   is anticlockwise, b , which is normal to 

 , is directed outwards from  . Next, consider the infinitesimal displacement b  in the q  

plane. This produces /d b q
  x x  in physical space. (A.15) and b   give 

 1b g
q


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
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x
N , (A.23) 

 hence 
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Because b is directed outwards from  , dx  takes us from S  to a location on iS  just 

outside S . By definition, N  is a normal vector directed outwards from S . Thus, 0d x.N , 



hence, since 0b b   , (A.24) gives 0  . Given that b  is directed outwards from  , 
1b     is an outwardly directed normal vector to  , as indicated in figure A.1. 

The components of g  are 

 11 1
22g g g ,  22 1

11g g g ,  12 21 1
12g g g g   , (A.25) 

where g  is the determinant of the matrix g , which is positive because g  is positive 

definite. (A.16), (A.22), (A.25) and 0   imply 
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Since  1/ 2
ds g dq dq 

 , (A.20), (A.22) and (A.26) give 

   1 2 2 1
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Using Green’s theorem, 
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Consider a rectangular area element, 1 2dq dq , in the q  plane. This corresponds to a small 

parallelogram on S  with sides 1
1dqa  and 2

2dqa , where / q
   a x . The area of this 

parallelogram is   1/ 22 2 21 2 1 2
1 2 1 2 1 2dS dq dq dq dq   a a a a a .a  according to the 

Lagrange identity. Employing (A.13),  2 2 2 2
1 2 1 2 11 22 12g g g g   a a a .a , hence 

1 2dS gdq dq , which is the relation between elementary areas in physical space and the q  

plane. Using this result and (A.28), (A.12) yields 

 2 1 2 0g g g dq dq
q q
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 




   
       

 . (A.29) 

Finally, letting   shrink down to approach a point, 2    , hence (A.9) gives (2.12). 

A.2 Derivation of (2.14) 

The condition that the liquid/gas interface meets the wall at angle  ,w x y is 

 cosz wn   (A.30) 



at the contact line, where zn  is the z -component of n . As we saw earlier, d   n  

correct to first order in the perturbation. Thus, 

 z

d
n

z z

 
 
 

. (A.31) 

Let  ,x y  be a point on the equilibrium contact line and  ,w x y   the associated 

contact angle (see figure A.3). Setting 0   in (A.31), (A.30) gives 

  , , 0 cos
d

x y z
z


 


. (A.32) 

Since  , , 0 0d x y z   , the point  ,x dx y dy   lies on the perturbed contact line, 

 , , 0d x y z   , provided 

 
d d
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. (A.33) 

Applying (A.30) and (A.31) at  ,x dx y dy  , 

    , , 0 cos ,w

d
x dx y dy z x dx y dy

z z

  
      

 
. (A.34) 

 

 

 

 

 

 

Figure A.3: The equilibrium interface close to its contact line, which intersects the plane of 
the figure at right angles. N  and N  are unit vectors normal to the contact line and directed 

outwards from the drop. The former is tangential to iS , the latter to the wall. 

Subtracting (A.32) and recalling that  ,w x y  , 
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Taking the displacement  ,dx dy  perpendicular to the equilibrium contact line, it lies in the 

direction of the vector ,
d d

x y

  
   

 and (A.33) implies 
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With this displacement, 
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 (A.37) 

and 
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where 
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is a unit vector, normal to the equilibrium contact line and tangential to the wall, which is 

directed outwards from the wetted region (see figure A.3). Thus, w.N  is the normal 

derivative of  ,w x y  at the contact line. Since 1d  , 
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hence (A.37) and (A.38) give 
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Using (A.32) and (A.35), 
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Let N  be the unit vector shown in figure A.3, which is tangential to the equilibrium 

interface and normal to the contact line. Keeping  ,x y  constant, /d dz z     is the 

change in   for the increment dz . 0d   .  implies that the component of   normal to 

the interface is zero. Thus, only the component of displacement, sindz  N ,  parallel to the 

interface produces a change in  , hence sind dz    N. . It follows that 

/ sinz      N.  so (A.43) gives 

 J  N.  (A.44) 

as the contact-line condition, where 
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Taking the surface S , used in section A.1 and shown in figure A.2, to be the entire 

equilibrium interface, S  is the contact line and N  is the vector defined above. Using (A.20), 
(A.44) yields (2.14). Note that, as stated following (2.14), its left-hand side is the derivative, 

N. , of  , taken tangential to iS , normal to the contact line and outwards from iS . 

A.3 A frequently used identity 

The following identity will often be used in subsequent sections: 
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f f f
f f dS f g ds g dS

q q q
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where 1f  and 2f  are any functions defined on the equilibrium liquid/gas interface iS  and C

is the equilibrium contact line. This identity can be derived as follows. Using 1 2dS gdq dq  

and (2.13), 
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where i  represents the entire equilibrium interface in the q  plane. Writing 
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the first term can be treated using the two-dimensional divergence theorem in the q  plane: 
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where qds  is elementary arc length on i . Transforming to physical space, i  becomes the 

equilibrium contact line, C , and it can be shown (using (A.22), (A.26) and 

 1/ 2
ds g dq dq 

 ) that /qgds ds    , where ds  is elementary arc length on C . 

Thus, 
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Again using 1 2dS gdq dq , 
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(A.47)-(A.51) give (A.46). 

An application of (A.46) is the following. Let   be a function, possibly complex, on iS  

such that (3.13) holds on C . It follows from (3.16) and (A.46) that 
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where * denotes complex conjugation. 

A.4 Derivation of the energy equation, (2.16) 

Writing 2 Ohp  σ I e , where I  is the identity tensor and    / 2
T   e u u  the strain-

rate tensor, σ  is the perturbation of the stress tensor. (2.2) and (2.9) give 
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.σ , (A.53) 

while (2.12) implies 

     σ.n n  (A.54) 

on the interface. Employing (2.2) and the definitions of σ  and e , the identity 

       u. .σ . u.σ σ : u  yields     2Oh  u. .σ . u.σ e : e . Using this result, scalar 

multiplying (A.53) by u  and integrating over the drop, D , the divergence theorem leads to 
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(2.3) and the definitions of σ  and e  give 
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as the wall contribution to the surface integral in (A.55). Note that wS  is the equilibrium 

wetted area of the wall. 

The interfacial contribution to (A.55) follows from (2.11) and (A.54) as 
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Applying (A.46), 
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Using (2.14), 
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Symmetry of g  implies 
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Finally, 
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(A.57)-(A.61) give 
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as the interfacial contribution to (A.55), where sE  is given by (2.18). Combining (A.55), 

(A.56) and (A.62) yields (2.16).  

A.5 Derivation of (3.2) and (3.3) 

Using Lagrange multipliers for the constraints (3.1), we look for extrema of 
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Symmetry of g  implies 
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for the variation of  Q   due to the infinitesimal variation,  , of  . Using (A.46), 
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The condition for an extremum is 0Q   for any  . Thus, we obtain (3.2) and (3.3). The 

constraints (3.1) also need to be imposed. Of these, the first contributes to the eigenvalue 
problem, whereas the second provides a normalisation condition. 

A.6 Derivation of (3.4) and (3.6) 

The first of equations (3.1), together with (3.2) and (3.3), give 

 0
i

nS
dS  , (A.66) 
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on iS  and 
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on C . Multiplying (A.67) by m , integrating over iS  and using (A.66) with n  replaced by 

m , 
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Using (A.46), 
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Permuting n  and m  and subtracting, symmetry of g  yields 
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n m n mS
dS     . (A.71) 

If n m  , (A.71) gives orthogonality of n  and m . In the case of a degenerate eigenvalue, 

the associated eigenfunctions can be orthogonalised, so (3.4) holds for all n m . It also 
applies when n m , thanks to the normalisation resulting from the second equation of (3.1). 

Using (3.5) in (2.18), 
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where 
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Employing (3.4) and (A.70), 
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hence (A.72) gives (3.6). 

A.7 Derivation of (3.15) 

Let 2 Ohp  σ I e  , where    / 2
T   e u u   . (3.8) and (3.9) imply 

 s  u .σ  , (A.75) 

while (3.12) gives 

     σ.n n    (A.76) 

on the interface. Taking the complex conjugate of (A.75), scalar multiplying by u  and 

integrating over the drop D ,    * * *2Oh  u. .σ . u.σ e :e      and the divergence theorem 

lead to 
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(3.10) and the definitions of σ  and e  give 
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 (A.78) 

as the wall contribution to the surface integral in (A.77). 

Using (3.11), (A.52) and (A.76), 
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dS sE   u.σ .n     (A.79) 

for the interfacial contribution to (A.77). (3.15) follows from (A.77)-(A.79). 

A.8  Nonexistence of 0s   modes such that 0s   as Oh Oh 0c   

In order to derive a contradiction, suppose an 0s   mode which approaches 0s   as 

Oh Oh 0c  . The limit would be an 0s   mode. Unless 0   is an eigenvalue there are 

no such modes and we already have a contradiction. The case in which 0   is an 

eigenvalue is more complicated and is treated below. 

Let n  be one of the 0   eigenfunctions introduced in section 3.1. Thus, n , which is 

real and corresponds to an 0s   mode, satisfies 
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dS  , (A.80) 

 0n n n       (A.81) 

with constant n , and 
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 (A.82) 

on the contact line. Define  nv x  and  n x  via 

 0nD
dv  , (A.83) 

 2Ohc n n v , (A.84) 

 0n .v , (A.85) 
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and 

 n nv .n , (A.87) 

    0
T

n n   n. v v .t  (A.88) 

on iS , where t  is any tangent vector to iS . Taking two independent choices for t , (A.88) 

gives two boundary conditions. (A.83)-(A.88) can be interpreted as follows. (A.84) and 

(A.85) mean that  nv x  and  n x  are the velocity and pressure of a steady, incompressible 

Stokes flow within D . This flow is subject to the Navier conditions (A.86) on the wall and 

(A.87), (A.88) on iS . (A.87) specifies the normal component of velocity as n , while (A.88) 

means that the tangential components of the surface force are zero. (A.80) is required for a 
solution. This follows from integration of (A.85) over D , use of the divergence theorem, 

0nzv   on the wall and (A.87) on iS . (A.83) makes the solution for  n x , which would 

otherwise be only determined up to an additive constant, unique. 

Consider a mode with 0s   and let 1sv u ,  1
0s p p    , where the constant 0p  is 

such that 
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dv  . (A.89) 

Equations (3.8)-(3.14) give 

 2Ohs    v v , (A.90) 

 0 .v  (A.91) 

with 

 x
x

v
v

z
  


,    y
y

v
v

z






,      0zv   (A.92) 

on the wall, 

   v.n , (A.93) 
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s p s         n. v v n    , (A.94) 

on the equilibrium interface, 
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q
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


  , (A.95) 

at the equilibrium contact line and 

 0
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dS   . (A.96) 

The normal and tangential components of (A.94) give 

    0Oh
T

s p s         n. v v .n     (A.97) 

and 

    0
T   n. v v .t , (A.98) 

where t  is any tangent vector to iS . 

Using (A.91), (A.90) can be rewritten as 

 ˆs  v .σ , (A.99) 

where ˆˆ 2 Oh  σ I e  and   ˆ / 2
T   e v v . (A.94) gives 

  0ˆs p    σ.n n     (A.100) 

on iS . Scalar multiplying (A.99) by nv  and integrating over D , 
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Using     ˆ ˆˆ ˆ 2Ohn n n  v . .σ . v .σ e :e , where   ˆ / 2
T

n n n   e v v , and the divergence 

theorem, 
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The contribution of wS  to the surface integral can be evaluated using ˆˆ 2 Oh  σ I e , 

  ˆ / 2
T   e v v  and 0z nzv v  . Thus, 
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(A.80), (A.87) and (A.100) imply 
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Using (A.46), (A.82), (A.95) and symmetry of g ,  
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hence 
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n n nS S
dS s dS     v .σ.n  , (A.106) 

which is zero according to (A.81) and (A.96). Thus, (A.102) and (A.103) give 
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for any n N , where N  denotes the set of n  for which 0n  . 

 Suppose the given 0s   mode approaches 0s   as Oh Ohc  and is normalised using 
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In the limit Oh Ohc , 0s  , c   , cv v , c   and 0 0cp p  , where, according 

to (A.95)-(A.97), c  and 0cp  satisfy the 0s   problem, (3.13), (3.14) and (3.21). (A.89)-

(A.93) and (A.98) give 

 0cD
dv  , (A.109) 

 2Ohc c c v , (A.110) 

 0c .v , (A.111) 
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and 

 c cv .n  , (A.113) 
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c c   n. v v .t  (A.114) 

on iS . Given c , (A.109)-(A.114) determine cv  and c . Using (A.86), (A.107) has the 

limiting form 
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for n N , where   ˆ / 2
T

c c c   e v v . 

Since c  and 0cp  satisfy the 0s   problem, (3.13), (3.14) and (3.21), c  can be expressed 

as a linear combination of the 0   eigenfunctions of (3.1), (3.2) and (3.3) , i.e. 
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where the coefficients nc  may be complex and, using (3.4) and (A.108), 
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Comparing (A.83)-(A.88) with (A.109)-(A.114), we see that 
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Using the first of equations (A.118) in (A.115), 
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where 
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is a real, square, symmetric matrix defined for ,n m N . Let nc  be real and n n
n N

c
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v v , 

then 
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where    / 2
T   e v v . (A.121) is obviously positive or zero. If it were zero, then 0e , 

hence v  is a combination of a translation and a rotation. On the other hand, (A.86) implies 
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thus 0v , hence 0nc  . We conclude that nmA  is positive definite. It follows from (A.119) 

that 0nc  , which is incompatible with (A.117). This contradiction means 0s   modes 

cannot approach 0s   as Oh Oh 0c  . 

A.9 Some properties of inviscid modes 

Given (3.30),   2* 2 * 0          . . Integrating over D , the divergence theorem, 

(3.31) and (3.32) give 
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On the other hand, (3.14) and (3.33) implies 
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Using (3.13) and (A.46), 
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(A.123)-(A.125) yield 
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The integral on the left-hand side cannot be zero, otherwise   is constant and 0   from 

(3.32). (3.23) implies 0  , hence 0 0p   from (3.33). Thus, all unknowns would be zero, 

which is not allowed for an eigenvalue problem. Symmetry of g  makes the right-hand side 

of (A.126) real. We conclude that   is real. For each eigenvalue k , k , k  and 0kp  are 

chosen real from here on. Because the integral on the left-hand side of (A.126) is positive, the 

k  can be normalised such that (3.34) holds when k l . 

(3.30) implies   2 0k l k l k l           . . . Integrating over D , the divergence 

theorem, (3.31) and (3.32) give 
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while (3.14) and (3.33) imply 
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Using (3.13), (A.46) and symmetry of g , 
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(A.127)-(A.129) yield 
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Thus, 

 k k l klD
dS E      .  , (A.131) 

where the matrix klE  is given by (3.35) and is symmetric. Using symmetry of klE , 

permutation of k , l  and subtraction gives 

   0k l k lD
dS       . . (A.132) 

When k l  , (A.132) implies 

 0k lD
dS    . . (A.133) 

If k l   is a degenerate eigenvalue, its eigenfunctions can be orthogonalised such that 

(A.133) applies for k l . Thus, (A.133) holds for all k l . Given the normalisation referred 
to above, we obtain (3.34). (3.36) follows from (3.34) and (A.131). 

A.10 Nonexistence of 0s   modes such that 0s   as Oh 0  

Modes which continue to be affected by viscosity as Oh 0  are discussed in the main text. 

A mode of this type has  Ohs O  and hence approaches 0s   as Oh 0 , but it is 

decaying and hence unimportant from a stability point of view. Here, we consider modes of 
the other type, i.e. those which approach an inviscid limit. 

The analysis given here has many similarities with that of section A.8. One significant 

difference is that nv  and  n  are replaced by k k v  and k , where k , k  are 0   

eigenfunctions of the inviscid problem (3.13), (3.14), (3.23) and (3.30)-(3.33). As in section 

A.8, given an 0s   mode, let 1sv u  and  1
0s p p    , where the constant 0p  is 

determined by (A.89). (A.90)-(A.107), with nv ,  n  and ˆne  replaced by k k v , k  and 

  ˆ / 2
T

k k k   e v v , follow as before. 

Letting 1s  , (A.89)-(A.96) give 
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on the wall, 

   v.n , (A.138) 
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on the equilibrium interface, 
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at the equilibrium contact line and 
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(A.107), with nv , ˆ ne  replaced by kv , ˆ ke , gives 
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w

yx
k k kx kyD D S

vv
dv s dv s v v dS

z z
   

      
  v .v e : e , (A.142) 

where   ˆ / 2
T   e v v . Recalling that k k v , where k  is a 0   inviscid 

eigenfunction, (A.142) applies for all k  for which 0k  . We denote the set of those k  by 

K . 

Suppose an 0s   mode approaches an inviscid limit with 0s   as Oh 0 . In order that 

the viscous term in (A.135) be negligible in the limit, 1 Oh 0s  . Normalising the mode 

using (A.108), c   , cv v , 0 0cp p   and c  . (A.134) implies 

 0cD
dv  . (A.143) 

(A.135) and 1 Oh 0s   give 

 c c v . (A.144) 

Thus, 



 2 0c   (A.145) 

according to (A.136). As discussed following equation (3.30), the inviscid problem only 
allows one wall boundary condition, rather than the three expressed by (A.137) for the 
viscous problem. The first two equations of (A.137) drop out in the inviscid limit, leaving 

0zv  , hence 

 0c

z





 (A.146) 

on the wall. (A.138)-(A.141) yield 

 c
cn

 
 


 , (A.147) 

 0 0c c cp       , (A.148) 

on the equilibrium interface, 

 c
cg J

q


 

 



  , (A.149) 

at the equilibrium contact line and 

 0
i

cS
dS   . (A.150) 

(A.148)-(A.150) show that c  and 0cp  satisfy the 0s   problem, (3.13), (3.14) and (3.21), 

while (A.143) and (A.145)-(A.147) correspond to (3.23) and (3.30)-(3.32) and determine c  

given c . Since 1 Oh 0s  , (A.142) implies 

 0k cD
dv  v .v  (A.151) 

for all k K . 

That c  and 0cp  satisfy the 0s   problem, (3.13), (3.14) and (3.21), indicates that c  is a 

0   eigenfunction, hence 

 c k k
k K

c 


  . (A.152) 

(A.143), (A.145)-(A.147) and the corresponding equations for k  and k  imply 

 c k k
k K

c 


   (A.153) 

so 



 c k k
k K

c 


  v   (A.154) 

according to (A.144). Scalar multiplying by l , where l K , integrating over D  and 

using (3.34), l l v  and (A.151), 

 0l c l c lD D
c dv dv      v . v .v . (A.155) 

This result means that 0c  , which is incompatible with the normalisation (A.108). Thus, 

we have a contradiction and conclude that 0s   modes which approach an inviscid limit with 

0s   as Oh 0  do not exist. 

 
 
 
 


