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Abstract. The introduction of Deep Neural Networks in high-level ap-
plications is significantly increasing. However, the understanding of such
model decisions by humans is not straightforward and may limit their
use for critical applications. In order to address this issue, recent research
work has introduced explanation methods, typically for classification and
captioning. Nevertheless, for some tasks, explainability methods need
to be developed. This includes image segmentation that is an essential
component for many high-level applications. In this paper, we propose
a general workflow allowing for the adaptation of a state of the art ex-
plainability methods, especially SHAP, to image segmentation tasks. The
approach allows for explanation of single pixels as well image areas. We
show the relevance of the approach on a critical application such as oil
slick pollution detection on the sea surface. We also show the applica-
bility of the method on a more standard multimedia domain semantic
segmentation task. The conducted experiments highlight the relevant
features on which the models derive their local results and help identify
general model behaviours.

Keywords: Model Explainability · Image Segmentation · Shapley Val-
ues · SAR Images

1 Introduction

Artificial intelligence (AI) models are increasingly used for many applications,
as they have demonstrated their potential to solve complex tasks previously
performed by humans. However, their high performance comes at a cost: AI
models are often very complex and their decision processes cannot be clearly
understood by humans, which impacts on their reliability and acceptability. To
? This work was supported by TotalEnergies company and also relied on HPC re-
sources from GENCI–IDRIS (Grant 2021-AD011011418R1).
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date, this major drawback is one of the obstacles in AI subfields such as Deep
Learning. Thus, for tasks where confidence in the results obtained is as important
as the results, the use of AI models is compromised. Then, the eXplainable
Artificial Intelligence (XAI) field has been subject of growing interest and
already gathers a multitude of methods designed to open those black boxes.

This paper focuses on image segmentation tasks for which explainability
methods are for now limited. Image semantic segmentation is widely used as
a preliminary process for various image types and applications, such as radar
images for remote sensing, multimedia images for automatic driving, medical
images for health diagnosis, and so on. This semantic segmentation task is com-
plex and is nowadays addressed by deep neural networks. As a base application
component, associated explanation methods become mandatory. However, few
works have been dedicated to the understanding of such segmentation model
decisions [7]. The main issue is related to the complexity of the explanation
method since one expects any pixel or region-level decision to be explained with
respect to the entire input image and maybe some metadata. In addition, it is
thus required to provide relevant explanation in a timely manner.

To address this challenge, we propose an adaptation of an explainability
method, called SHapley Additive exPlanations (SHAP). This method represents
one of the most widely used post-hoc explainability methods [7] but its adapta-
tion to semantic segmentation is not straightforward. Our approach can consider
any type of image as input. It can identify features that inhibit or excite a model
decision, i.e. negative or positive contributions to the decision. The resulting ex-
planations are consistent with human intuition to the extent that they are built
on Shapley values [13]. We base our approach on an agnostic implementation of
SHAP, called Kernel SHAP [8], which we refer to hereafter as SHAP.

In this paper, two application domains are considered for experiments. We
first focus on offshore oil slick detection illustrated in Fig. 1 for which we ex-
plain the predictions provided by a state-of-the-art semantic segmentation model
proposed in [2]. This represents a typical critical application for environmental
pollution monitoring for which detection results can induce strong and costly ac-
tions. In this context, oil slicks are generally detected from Synthetic Aperture
Radar (SAR) images from which they appear as dark spots on the sea surface
as shown in the left image of Fig. 1. Current detection methods rely on SAR
analysis and is performed by photo-interpreters or automatically by deep neural
network models [2]. In this context, automatic detection must be explained to
decision makers. Our proposal is then to provide comprehensible explanations as
coloured maps highlighting the input image areas that contributed to the model
decision for a selected pixel or region. As illustrated in Fig. 1, the good detection
related to the red region (no oil, left image) is explained on the right image. One
observes that the local area close and within the region of interest contribute
negatively to classification as oil slicks (red colours) while the dark neighbouring
slick areas provide a positive influence (green colours). Then, the sum of these
contributions yields the oil detection probability, here close to zero that explains
classification as a sea area.
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Finally, in order to show the applicability of the method to other domains, a
second experimental case study is proposed. We consider semantic segmentation
in urban scene from RGB images relying on the CityScapes dataset [4] and a
state-of-the-art model, HardNet-MSeg [5]. More specifically, we show the interest
of the method to explain the competition between probable classes in different
situations.

Fig. 1: An input Synthetic Aperture Radar image (left) is processed by a model
for oil slick detection (centre). In order to explain prediction for a given region
(red polygon on the left), the proposed SHAP based method provides a coloured
map showing each image area’s contribution (right).

The article is organized as follows: first, a state of the art in post-hoc meth-
ods for model applicability in machine learning is presented. Then, a general
framework for the adaptation of occlusion based explanation methods to seman-
tic segmentation is presented. We then integrate the kernel SHAP method as
well as RISE [10] as a comparison baseline. Finally, results are presented and
discussed, demonstrating the relevance of our approach and its sensitivity to
hyper-parameter choices.

2 Related Works

2.1 Model Explainability Methods

As shown in recent surveys such as [3], the field of AI explainability includes
methods having different approaches, such as post-hoc methods that aims to
explain complex models, intrinsic methods that aims to create understandable
models, methods used to enhance model fairness, or methods used to test model
sensitivity. Also, most of these methods are applicable to tasks that provide a
prediction that is global with respect to the input data i.e. image classification,
captioning and so on. Explanation on local predictions as for pixel level or region
classification is scarce. This work focuses exclusively on post-hoc interpretation
methods applicable to images. Related methods do not modify or influence the
model process nor apply some specific processing on the optimized model. In this
context, three main categories of post-hoc explanation methods can be identified:



4 P. Dardouillet et al.

Back propagation based methods that are typically suitable for neural
networks models. Several methods based on backpropagation are reported in
the literature, such as Guided Backpropagation [15], LRP [9], or DeepLIFT [14].
These methods aim to produce explanations by back propagating a network out-
put score (e.g. a class probability) through the network to the first layer. In this
way, the input image pixels that contributed the most to the network decision
are highlighted and thus produce a heat map also referred to as saliency maps in
some papers. These methods compute a rather fast and precise explanation (at
the pixel level). However, they have some limitations in terms of flexibility, as
they are mainly used for classification neural networks. Moreover, the obtained
saliency map often results from a tradeoff between human understandability and
fidelity to the network decision process.

Activation based methods combine the feature maps of a considered neural
network layer to produce explanations presented as a coarse heat map. One
of the best-known methods in this category is the popular Grad-CAM [12].
The intuition behind activation-based explainability methods is to combine only
feature maps that have patterns considered important by the network for an
output. Selecting only these feature maps highlights the relevant areas of the
input image with respect to the network. The obtained heat maps are relatively
easy to interpret since they are coarse. However, they are also inaccurate and
not suitable for fine-grained explanations.

Occlusion based methods are the only type of model-agnostic methods and
rely on perturbation approaches. The intuition is that if a sample feature, for
instance an image area, contains relevant information, then occluding such area
will harm the model output. Thus, occlusion based methods, such as LIME [11],
RISE [10] and SHAP [8] compute input feature importance estimates relying on
model response when masking them. For this purpose, occluded versions of the
input image are computed and passed through the model to compute an output
value. This process is longer than any other explanation methods but has the
advantage of creating more global, understandable and relevant results. Further,
it is independent of model type and architecture and is easy to implement.

In this work, we focus on occlusion based methods, as they present more
advantages than other methods. Most importantly, they allow for comparison
between different models while not being dependent on their internal processes.

2.2 Comparison of Occlusion Based Explanation Methods

LIME and SHAP are based on the same algorithm described in [11], create
a linear decision model gx, that aims to approximate the black-box model f for
a given input x. Applied to image analysis problems, such approach relies on
the input image division into super-pixels (image regions), which are further oc-
cluded to examine their impacts φ on the model output. The general formulation
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has been introduced in [8] as:

gx(x
′) = φ0 +

M∑
i=1

φix
′
i (1)

Where x′ corresponds to the mapping of the input x through the function hx,
such that x′ = hx(x). Formally, x′ ∈ {0, 1}M is a vector representing the presence
or absence of input super-pixels and M is the number of super-pixels.

Differences between LIME and SHAP reside in the importance value at-
tributed to each super-pixel: while LIME use heuristic coefficients to compute
its contribution values, SHAP relies on Shapley values [13], a game-theory ap-
proach that leads contribution values to be better aligned with human intuition,
and results in more relevant explanations. More into the details, Shapley values
are defined to satisfy three properties, Local Accuracy, Missingness and Consis-
tency. The derived equation detailed in [8] is:

φi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′)− fx(z′ \ i)] (2)

Where |z′| is the number of non-zeros entries in z′, z′ ⊆ x′ represents all z′
vectors where the non-zero entries are a subset of the non-zero entries in x′, and
fx(z

′) the black-box model considering simplified inputs z′ = hx(z).

RISE [10] is another occlusion based explanation method. It does not rely
on a rigid super-pixel structure but applies occlusions relying on random mask
generation. This has the advantage of reducing the potential bias caused by a
rigid organization of image features. However, it also leads to coarser explanation
maps comparable to those produced by Grad-CAM. Given a set of s masks M
and the model output value scalar oi, when the input image is masked with
Mi, the final Heatmap is computed as the normalized sum of the image masks
weighted by the corresponding model output maps.

Heatmap =
1

E[M ].s

∑
i∈s

oi ×Mi (3)

A limitation of RISE is the fact that this method does not provide information
on the type of feature contribution i.e. excitation or inhibition effect on the
prediction.

3 Occlusion methods Adaptation to Semantic
Segmentation

From state of the art, the SHAP method appears the most relevant. However,
its adaptation to image segmentation is not straightforward. We first propose
a general framework for the adaptation of any occlusion based method, from
which we detail some steps, specific to our SHAP adaptation.
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3.1 Proposed Approach

The proposed general workflow is illustrated in Fig. 2. It relies on four steps.

Fig. 2: Workflow of occlusion based explanation methods adapted to image seg-
mentation.

The first step generates masked samples of the original image. Masks are
occluding super-pixels whose shape and number are controlled by dedicated
hyper-parameters. Resulting masked images are processed in the second step
by a black-box image semantic segmentation model (e.g. a deep neural network)
that provides one prediction for each masked image. For the applications pre-
sented in this paper, we always consider probability maps as the model output
but model output logits or binary classification results could also be considered.
The third step consists in the selection of the regions and classes of interest
(RoIs) for which model output explanation must be computed. Lastly, occlusion
based explanation methods are applied on the RoIs making use of the mask con-
figurations and the selected model outputs. Finally, an explanation is generated,
presented as a heat-map pointing areas of the input image that contributed the
most to the model decision.

As illustrated in Fig. 2, the model decision for the red polygonal RoI, is ex-
plained. The red colour range is assigned to areas decreasing the target class
probability value for the given RoI (negative contribution, or inhibition), while
the green colour range is assigned to areas increasing this value (positive con-
tribution, or excitation). Colour saturation is related to the amplitude of the
contribution value.

Any occlusion method can be involved in this framework. RISE, as an ex-
ample, only inputs the area and class of interest selection for its adaptation to
segmentation: the masking step and explanation computation are already de-
fined in the function to follow Eq. 3. As a comparison, SHAP method requires
more information about the image sample mask configurations as described in
the following.

3.2 SHAP Case Study

Implementation
The application of the kernel SHAP method to the framework is described in
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Fig. 3. The adaptation consists in associating the explanation computation with
the mask sample generation steps in order to comply with Eq. 2. SHAP indeed
relies on a set of predefined and static features, here super-pixels. Also, for each
masked image sample, feature state (i.e. masked or unmodified) must be known.

Fig. 3: The Masked samples generation step from Fig. 2 detailed for our SHAP
adaptation. Each super-pixel is delimited following a hexagonal grid. Then,
masked samples are generated via function f, using a masking matrix to oc-
clude a given super-pixel, on a given sample.

The input image is then clustered into a set of uniformly organized and non-
overlapping hexagons, having an identical area. This choice is more detailed in
the next section and facilitates the readability of the result relying on super-
pixels of equal importance and more homogeneous neighbourhood relations. In
our experiments, considering images of size 512×512, the input image is typically
clustered in M = 224 super-pixels of about 1170 pixels.

On the Relevance of Super-Pixel Shapes
The most critical parameter for the SHAP method applied to image analysis

models is the delimitation of the input super-pixels. Several experiments were
conducted as presented in Fig. 4. We first considered a method based on a con-
figurable k-means-based clustering algorithm, SLIC [1]. Tests were performed
applying SLIC on the input data with different parameters as illustrated in Fig.
4.A and 4.B. Clustering has also been applied from ground truth images for
more homogeneous clustering while making use of class boundaries as shown
in Fig. 4.C. From preliminary results and visual analysis, we conclude that all
those automatic clustering based methods cannot provide consistent and stable
clustering and could not provide homogeneous super-pixel delimitation of dark
patches and sea areas. In addition, SHAP values also depend on super-pixels
surface, meaning that more homogeneity in super-pixel shapes would facilitate
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human interpretation. We thus suggest clustering pixels regions, not relying on
the image content but rather making use of regular grids that yield super-pixels
homogeneous in shape and size. More specifically, we propose to rely on a hexag-
onal grid (Fig. 4.D), which present more regular connectivity patterns that could
help create more natural explanations.

Fig. 4: Tested super-pixels for SHAP method, delimited in green. One compares
automatic clustering approaches (A-C) and a predefined hexagonal grid (D).

3.3 Explaining Predictions on Images Regions

From a practical point of view, user consider RoIs as image regions while limiting
to a single pixel is a scarce case study. As an example, on the oil slick detection
problem, photo-interpreters for now manually delimit large regions surround-
ing the slicks they detect. Conversely, when it comes to assessing automatic
detection, such experts, expect models to follow similar behaviours. Finally, ex-
planations that would assist experts in their assessment should also be compliant
with such behaviours and thus provide a regular approach for all case studies.

The explanation of regions can be performed in a variety of ways and we focus
on an approach that makes sense with respect to the application context while
not increasing the computational cost compared to a single pixel explanation.
When explaining a pixel classification, SHAP estimates the sensitivity of its tar-
get class prediction probability with respect to the super-pixel coalition changes.
Similarly, when willing to explain the prediction on a group of connected pixels,
i.e. a region, we propose to estimate the sensitivity of the average target class
predicted probability over that region. The semantics remain the same but for
a wider region of interest. From an implementation point of view, it consists
in a limited change at the third step of the workflow depicted in Fig. 2, ’Area
and class of interest selection’: the SHAP implementation remains the same but
receives either a single pixel of interest probability or the average probability of
the pixels within the region of interest.

4 Experiments

The proposed method has been evaluated on real application case studies. The
first one relates to oil slick detection at the sea surface. It involves the application
of a semantic segmentation model applied to SAR images used on operations.
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This is a critical environmental and safety case study where oil detection can
generate very strong and costly responses. Thus model predictions explanations
make real sense. The second case study relates to semantic segmentation of
multiple object categories in urban scenes on the standard Cityscapes dataset
[4], relying on RGB images. In this section, we push emphasis on the first case
study and show the applicability of the same method on the more classical second
case study. We then first detail the experimental setup for oil slick detection with
the data and the models considered. Second, we present and discuss the results
obtained from different perspectives.

4.1 Oil Slicks Detection Experimental Setup

We build on the model and data collections presented in [2] that are dedicated
to offshore oil slick semantic segmentation at the sea surface from SAR data.
The model involved is based on the FC-Densenet architecture [6] and is trained
in a supervised manner on a large collection of images extracted from real mon-
itoring scenarios and annotated by photo-interpreters. SAR Imagery allows for
day-and-night detection of oil slicks that appear as patches darker than their
neighbourhood thanks to radar response on their surface.

In this paper, no more details on the model and related optimization are
provided in order to keep the focus on the explanation methods. Paper [2] pro-
vides more details on the model that we consider here as black box. The aim is
indeed to bring transparency to such models from an application point of view.
Then, one considers the predictions of this preliminary trained model on new
images not involved in the training process as for real monitoring scenarios. In
this specific case study, the background colour applied to masked pixels cannot
be black: It would induce a bias in explanations, as masked super-pixels would
be detected as an oil slick. Then, background value is set to the input image
average grey level.

4.2 Oil Slicks Detection Explanation Results and Discussions

First, we compare our adapted SHAP and RISE approaches for the explanation
of semantic segmentation results of the same model on the same samples. Next,
focusing on the SHAP approach, we study the impact of the super-pixel size
on the explanation relevance. We finally show the consistency of the pixel and
region-level explanations.

SHAP vs. RISE
RISE adaptation to semantic segmentation is made following the workflow

presented in Fig. 2. Default RISE hyper-parameters are kept, such that 1
E[M ] = 2,

typical masks (occlusion cells) are of size 64 × 64, i.e. 4096 pixels at most, and
the number of samples remains S = 2000.

Considering the same model and the same output selection, a comparison of
the explanations provided by the SHAP and RISE based methods is presented
in Fig. 5.
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Fig. 5: For 2 image examples (top, bottom), explanation maps on the model
decision for some pixels of interest (red enumerated circles) with either RISE
(top-right images) or SHAP (bottom-right) adapted methods.

First, one can observe that high RISE explanation values tend to correspond
to the super-pixels with a positive contribution obtained with SHAP. Surpris-
ingly, RISE additionally reports diffuse areas with low contribution values that
can be very distant from the RoIs. However, negatively contributing features re-
ported by SHAP are not highlighted by RISE. Also, relevant regions reported by
RISE have more spatial extent and are poorly contrasted such that this reduces
the explanation precision. This can be explained by internal mask subsampling
process, and by RISE occlusion masks, four times bigger than the ones used with
SHAP.

As a first conclusion, while RISE and SHAP report highly positive contri-
butions to the decision in a consistent way, SHAP provides more detailed and
more relevant explanations both in terms of resolution and contribution type.

Super-Pixel Size Impact on Explanation
Focusing on the SHAP based method, we examine the impact of the super-pixel
size on the explanation relevance. Fig. 6 shows explanation maps on the same
model prediction but with different super-pixel sizes.
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Fig. 6: Two examples (top, bottom) of adapted SHAP explanation of model
predictions on the red circled pixel considering large, medium and small super-
pixels.

One observes that large super-pixels may cover patterns of different target
categories and thus yields a loss of information regarding the contribution type
(excitation or inhibition). On the other hand, too small super-pixels may also
cause a loss of information, when they provide a partial view of large objects
in the visual scene. The relevance of the explanation then actually depends on
the image content and the super-pixel spatial distribution but rigid super-pixel
grids already provide a good compromise.

From Pixel Level to Region Explanation
As described in section 3.1, the proposed approach allows for the explanation

of single pixels and regions in a unified way. Considering the same model and
the same test image shown in Fig.5, explanations of predicted regions are shown
in Fig. 7 and Fig. 1. The considered regions actually surround a single pixel
explained previously and one can observe the consistency of the explanations:
in the case of the sea area, the region affecting the model decision is large, and
considers slick regions as either inhibition or excitation; in the case of an oil slick
area, the contributing regions are mostly restricted to the neighbouring oil slick
super-pixels that positively contribute to oil classification; in the case of an in
between area, the model combines both behaviours.

Fig. 7: Explanation provided for two regions: oil (left) and oil and sea mixture
(right). Fig. 1 shows a clean sea area in the same experimental conditions.
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Conclusions on Model Behaviours
Using SHAP explanations presented in this section, one can understand the

model behaviour when confronted to different cases :
For RoIs classified as sea, close sea super-pixels have inhibitory effects to

classify as oil while neighbouring super-pixels containing oil have an excitatory
effect. Overall, these effects are extremely low and balance each other, making
the final classification as sea.

For RoIs classified as slick, both model decisions are based on a limited
number of super-pixels containing oil, close to the explained RoIs. They almost
always have an excitatory effect, with high intensity.

For ROIs in between slick and sea, models tend to consider contextual in-
formation over the whole image, and specifically contrasted patterns. However,
if no salient features are present in the image, the model relies on a very local
area.

4.3 Urban Scene Segmentation Results and Discussions

One considers an implementation of the state-of-the-art HardNet-Mseg model
[5] trained to perform semantic segmentation of the 34 visual concepts of the
Cityscapes dataset [4] (people, cars, road signs and so on) from RGB images.
Fig. 8 shows a typical visual scene from the validation set with associated ground
truth and a model prediction. Compared to the previous case study, this multi-
class segmentation problem must consider more numerous and diverse overlap-
ping class instances. Then, relying on the same configuration (image size of
512x512 pixels, same hexagonal grid), we show the applicability of the method
for a very different context.

Fig. 8: Urban scene semantic segmentation example: input (left), coloured ground
truth (centre), predicted segmentation (right), model does not predict on crop
boundaries, 3 circled pixels in the predicted area are subject to explanation.

SHAP super-pixel size is kept medium for these experiments, and the back-
ground masking value is set to zero (black) as usually done for such multimedia
data. Three pixels of interest are considered for explanation, one on a car that
is well predicted, one on a person also predicted well. The last one is more am-
biguous. It is annotated as sidewalks but lies at the frontier between sidewalk,
concrete, ground and vegetation and is predicted as static (a class regrouping
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indistinguishable objects that correspond to none of the other classes). For each
pixel, two explanation maps are provided, for two different classes of interest.

Fig. 9: SHAP explanation for the pixel circled in red in the input image. Middle
image corresponds to the class ’person’, and right image to the class ’dynamic’.

Fig. 9 first presents explanation maps for the selected pixel classified as ’per-
son’ (probability=94%). It shows a significant positive contribution focused on
the front and upper part of the body, which is an expected phenomenon. How-
ever, the hexagon containing the explained pixel has a negative contribution. It
covers a homogeneous white area around the person shoulder with some contours
on its left boundaries. This is explained by the second explanation map, related
to the ’dynamic’ class that gathers movable objects. This class has a similar
spatial distribution than the ’person’ class, but with opposed signs. From these
two explanations, we can conclude that the shoulder super-pixel alone help the
model detect the pixel as a dynamic object, but neighbouring contextual infor-
mation (head, arm and low chest) contribute more significantly to classification
as a person.

Fig. 10: SHAP explanation for the pixel circled in red in the input image. Middle
image corresponds to the class ’car’, and right image to the class ’sidewalk’.

Fig. 10 shows explanation on the pixel detected as a car (probability=69%).
The first explanation map, representing the car class, shows that the vehicle win-
dowed part increases the car class probability, while the car bodywork decreases
it. However, in this region, ’sidewalk’s explanation map class report opposite
values. This shows that the car bodywork, without a larger view of the vehicle,
can be interpreted as a sidewalk by the model, which may appear natural in
light of its homogeneous dark colour.
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Fig. 11: SHAP explanation for the pixel circled in red in the input image. Middle
image corresponds to the class ’static’, and right image to the class ’dynamic’.

Fig. 11 focuses on a misclassified pixel as ’static’ (probability=34%), at the
frontier on the sidewalk and vegetation with visible concrete and ground. This
is a typical area subject to difficult annotation. One can observe the explanation
of the two dominant classes for this pixel, ’static’ and ’dynamic’. Static class is
excited by the pixel surroundings, while the dynamic class seems to be inhib-
ited by the road below the pixel. On the other side, the explanation maps for
sidewalks and vegetation do not report significant values. Then, the two most
probable classes are finally relevant for such complex region and highlight the
difficulty of the annotation.
These results show the relevance of the approach on a second very different case
study but relying on the same explanation method hyper-parameters. Further
refined analysis could be proposed to provide more details on the local patterns
impact on the decision by adjusting super-pixel size and the number of samples
on explanation maps. However, this depends on the expected explanation level.
Typically, smaller super-pixels may lead to more intuitive explanations, as it
would better fit to various small objects and features of input images. More-
over, increasing the number of masked samples along the explanation process
has proven to reduce noise in the explanation maps particularly present in Fig.
10.

5 Conclusion

This work presents a general workflow that allows for the adaptation of SHAP
and RISE explainability methods to the semantic segmentation task. SHAP
based method provides more relevant explanations and allows for refined un-
derstanding of model behaviours. Experiments were conducted to assess the pa-
rameters choice of the presented method and detail its advantages and pitfalls.
The developed method was tested on deep neural networks trained for remote
sensing oil slick segmentation, as well as urban scene segmentation on the pub-
lic Cityscapes dataset. Explanations permitted to identify general model rules
for specific input data configurations. Future works will focus on the extrac-
tion of relevance metrics by involving human domain experts, as well as model
behaviour comparison using SHAP explanation. Finally, SHAP super-pixel de-
limitation strategies need to be studied more deeply for different applications,
as it may lead to better explanations.
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