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Abstract

After different variables and functions changes, the generalized dispersal problem, recalled
in (1) below and considered in part I, see [14], leads us to invert a sum of linear operators in
a suitable Banach space, see (2) below.

The essential result of this second part lies in the complete study of this sum using the
two well-known strategies: the one of Da Prato-Grisvard [4] and the one of Dore-Venni [6].
Key Words and Phrases: Sum of linear operators, second and fourth order boundary value
problem, functional calculus, bounded imaginary powers, maximal regularity
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1 Introduction and main result

This work is a natural continuation of [14], where we have studied, for & > 0, the following

problem
A%y — kAu=f in Sw,p

ou (1)
u:%:() on 'gUTy p,
where, for given p > 0 and w € (0, 27
Swp = {(z,y) = (rcosf,rsinf):0<r<pand0<6<w},
'y, = (0,+00) x {0}
Iup, = {(rcosw,rsinw):0<r < p}.

Note that a similar problem set in a cylindrical domain has been already studied by [15], but in
the present paper, since the domain is conical, the study is completely different.
After using the polar coordinates v(r, ) = u(r cos, rsin#), the function

v(pe™",0)

S(00) = o(t.0) = "0

, >0,

and the abstract vector-valued function

V(t) = ( :;Zf,% ) . with v =3 —; € (1,3),

the above study led us, to solve the following abstract equation
(L1 4+ L)V +kp* (P14 P2)V = F, (2)

where F € LP(0, —|—oo;W02’p(O,w) x LP(0,w)), with p € (1,400). Operators L1, L2, P; and Po,
introduced in [14], are recalled here for the reader convenience:

D(Ly) = {VeW?P(0,+00;X) : V(0) = V(+o0) = 0}
L) = (B —vD)? V() =V"(t) — 20V (t) + 2V (2),



with v € R fixed,

{ D(Ls) = {V € LP(0,+00; X) : for a.e. t € (0,+00), V(t) € D(A)}
[L2(V)](8) = —AV(),
with
D(A) = [WH(0,0) N WFP(0,w)] x WGP (0,w) € X
V2
Y1\ 2 Y1
A(%) N —<§;+1> w1—2<§;—1>¢2 ’ <¢2>6D(A)’
{ D(P1) = {V e LP(0,+o0; X) : for a.e. t € (0,+00), V(t) € D(Ap)}
[PLV)(t) = —e AV (t),
with
' D(Ay) — W2P(0,0) x IP(0,w) = X
0
Y1 _ (1
AO( s ) - <§;+1>w1+¢2 ’ ( s ) € Dido),
and
{ D(Py) = W'(0,+00; X)
[P2(V)](t) = —e 2 (B2V) (1),
with

0 0
B2 = ( _9(0, — vI) o)'

In the present paper, we will focus ourselves on the resolution of equation (2). Among others, we
need to use the fact that the roots of the following equation

(sinh(z) + z) (sinh(z) — 2z) = 0,
in C4 := {w € C: Re(w) > 0}, constitute a family of complex numbers (z;);>1 such that
T = m>1{1|1m(zj)| >0 and |z;] — +oo.
1=

These roots are computed in [7] with 7 ~ 4.21239.
Our main result is the following.

Theorem 1.1. Let F € LP(0, +o0; X) and assume that
wr < T. (3)
Then, there exists pg > 0 such that for all p € (0, po, the abstract equation
(L1 4+ L)V +kp* (PL+P2)V = F,
has a unique classical solution V' € LP(0, +00; X), that is
V e WP(0, 400; X) N LP(0, +00; D(A)).
In particular, £ 4+ Lo is a closed operator and V € D(L1 + L3).

This second part is organized as follows. Section 2 is devoted to some recalls. In Section 3,
we analyze the spectral properties of operators £ and Lo in view to study the invertibility
of the closedness of the sum £ + L5 in Section 4. In Section 5, by considering that operator
kp? (Py + P») is a perturbation, we deduce the existence and the uniqueness of a strong solution
of equation (2). Finally, Section 6 is devoted to the proof of our main result given in Theorem 1.1.



2 Definitions and prerequisites

2.1 The class of Bounded Imaginary Powers of operators

Definition 2.1. A Banach space X is a UMD space if and only if for all p € (1, +00), the Hilbert
transform is bounded from LP(R, X) into itself (see [2] and [3]).

Definition 2.2. Let o € (0, 7). Sect(c) denotes the space of closed linear operators 77 which
satisfying

i) o(Ty) C Sa,
ii) Vo e(am), sup{|AA —T1) e s A€C\Su} < +oo,

where
_ {{zE(C:z;éO and |arg(z)| < a} if a€ (0,7 n

(0, 4+00) if a=0,
see [9], p. 19. Such an operator T} is called sectorial operator of angle «.

Remark 2.3. From [11], p. 342, we know that any injective sectorial operator 77 admits imagi-
nary powers T}% for all s € R; but in general, T7* is not bounded.

Definition 2.4. Let 6 € [0, 7). We denote by BIP(X,#), the class of sectorial injective operators
T5 such that

i) D(Ty) = R(Ty) = X,
ii) VseR, Ti¥eL(X),
iii) 3C =1, VseR, ||T5|x) < Cell?,

see [19], p. 430.

2.2 Recall on the sum of linear operators

Let us fix a pair of two closed linear densely defined operators M and My in a general Banach
space £. We note their domains by D(M;) and D(My) respectively. Then we can define their
sum by

Myiw + Mow

w € D(M1) N D(May).

We assume the following hypotheses
(Hp) There exist O, € [0,7), Opq, € [0,7), C > 0 and R > 0 such that

p(M1) D81 r={2€C\{0}:|z] = R and |arg(z)| <7 — O, }
_ C
Vz € XiR, H(M1—ZI) 1H<‘7|,

and
p(Msz) D3yp={ze€C\{0}: ]é\ > R and |arg(z)| <7 — O, }
Vz €& Xar, H(MQ — ZI)_1H < g,

with

Onm, + 0, <.

(Hy) o(My)No(—Mz) = 0.



(H3) The resolvents of M; and My commute, that is
My =A™ (Mo — uI) ™ = (Mo — )™ (My =AD"
for all A € p(M;) and all p € p(Mas).

Remark 2.5. Note that from (Hs), we have p(M;) U p(—M32) = C and in particular M; or
M is boundedly invertible.

Theorem 2.6 ([4], [8]). Assume that (H;), (H2) and (H3) hold. Then, operator M; + My is
closable. Its closure M7 + Mj is boundedly invertible and

—1 _ _
=5 (M — 27 My + 21) " dz; (5)

r

(M)

where T' is a path which separates o (M;) and o (—M3) and joins coe™ to coe® with 6y such
that
Opn, < 0, <7 — Oy

This Theorem is proved in [4] (Theorem 3.7, p. 324), when R = 0 and has been extended
to the case R > 0 in [8] (Theorem 2.1, p. 7). In this last case, the curve I" does not need to be
connected.

Corollary 2.7. Assume (Hp), (H2) and (H3) hold. Let i = 1,2 and & a Banach space with
D(M;) — & — & such that there exist C' > 0, § € (0,1) satisfying

{ lwlle, < € (wlle + lhwlle™ [ Maw]2) ©)

for every w € D(M;),

then D (m) C &;.

Proof. Tt is enough to prove that the integral in (5) converges in &;. For all £ € £, we have

/(M1 —2I) 7N (Mo + 2I) 7 Edz

r

< / |My =207t (M +zI)*1gHgl Iz,
&1 r

then, applying (6), we obtain

|Mi—=D Me+2D) g

1

<C H(M1 — 2N (Mo + 2D)7 gHg
_ _ 1-46 _ _ 5
+C |[(My = 2D) 7 (Mo +2D) 7|, My (Mo = 2D T (Ma 42D s
Now, for all z € I', we have

| My =207 My 4+ 20)™ gH? [ My (M1 =27 (Mo + 21! €HZ

(C1L(61)C2(02))"° 01(91)502(92)5H le = 01(91)02(92)" ||
o e Ty e

from which we deduce the convergence of the integral in (5). The same result holds true replacing

Ml by MQ. D



3 Spectral study of operators

In all the sequel, in view to apply the above results, we will consider the following particular

Banach space
E=1LP(0,400; X),

equipped with its natural norm.

3.1 Study of operator £;

We study the spectral equation
LV — AV =R,

where V € D(L1), R € £ and A € C (which will be precised below), that is
{ V() = 20V'(t) + (V2 = NV (t) = R(t), t>0
V(0) =0, V(+o00)=0.

We set
¥, ={2€ C\R_:Re(v2) > v}

Now, let us precise this set. For all z =z + iy € C\ R_, we have

R
Re(vz) > v < |z+2e(z)>y(:> 22 492 > 2% — 1.

o First case : if x > 1%, we have /22 + y2 + 2 > 2z > 212, then Re(y/2) > v.

e Second case : if x < v?, then 3% + 4%z — 4v* > 0. Thus, we deduce that ¥, is strictly
outside the parabola of equation

v+ lr — =0,

turned towards the negative real axis and passing through the points (¢2,0), (0,2v?) and
(0, —2v2).

~212

Figure 1: This figure represents X,,.

Now, let £, be a small fixed positive number and consider the following set
412
Ypoi=3A€eX,, |arg\)|<m—2,, and N> ——7. (8)

We then obtain the following proposition.



Proposition 3.1. The linear operator £; is closed and densely defined in W?2®(0, +00; X ). More-
over, there exists a constant Mg, > 0 such that for all A € ¥, operator £1 — Al is invertible

with bounded inverse and
Mg,

LeE) SN
Therefore, assumption (H;) in Section 2.2 is verified for £ with
Oc, =2¢r,. 9)

Proof. Let A € ¥,,. From [5], Theorem 2, p. 712, there exists a unique solution V€ W2?(0, +-00; X )
of problem (7), given by

e =207

tv=vA)  too
V() = c / efS(VJ”A)R(s) ds
1 t +o0
W </0 e(t_s)(”_ﬁ)R(s) ds —I—/t 6_(5_”(”\5)}2(3) ds) ,

see formula (15) in [5] where Ly := —vI — /AT and Ly := vI — V/I. Tt follows that ¥, C p(L1).
This proves that £, is closed. The boundary conditions are verified by using Lemma 8, p. 718 in
[5].
Moreover, for all A € X, since Re(ﬁ) > v, from (10), we obtain
400 1/p 400
”VHg < eftp(Re(ﬁ)fu) dt) / efs(quRe(ﬁ))HR(S)HX ds
0

s U

Y s O (e [ Rlle
+ su / =) (r=v2) ds+/ e (=D HVA) ds) :
teRE( 0 ‘ ‘ t ‘ ’ 2v/|A|

hence, noting ¢ the conjugate exponent of p, we have

U , too 1/q
Wie < [———— < / o~ sa(vRe(VR) ds) IRlle
p(Re(vVA) —v) 0 2V

1 — e—t(Re(\/X)—u) 1 ”RHS
+ sup +
teRy Re(VA) —v Re(vV) +v ) 2¢/])]
1 1 [R]le
PUP(Re(V/A) — )77 qUa(Re(v/) + 7)1 2/
L2 IRl
Re(vVA) — v 2y/])]
2 Rl
Re(V) —» VN

Let A = |Ae’28N) € ¥/, then |arg(\)| < m — 2e,,. Thus

Re(VA) —v = /|| cos (arg()\)) — v > 4/|A| cos (7r_€£1> —v

2 2
. VIAL Al
> /|Alsin(eg,) — 2‘ | sin (eg,) > 2’ | sin (ez,) .
4
Therefore, setting My, = m > 0 such that
L1
M
Ve < 7 I1Rle- (11)

A



3.2 Study of operator L,

In this section, in view to determine the spectral properties of Lo, since Lo = —A, we will study
the spectral properties of A.
We focus ourselves, for A < 0, on the following spectral equation

AV — \T = F, (12)

which writes

0 1
2 2 2 P\ U1\ _ (B
() () (2)(2)- )

with F; € WeP(0,w) and Fy € LP(0,w).
We have to find the unique couple (¢1,13) € <W4’p(0,w) N W02’p(0,w)) X WP (0,w), which
satisfies the following system
V2 — Ay = B
4 82 82

0
—%1#1 - QWQM — Y — 2@1#2 + 29 — Mpg = Fy.

Thus, we first have to solve
2

o 0? 0

Y1 € WH(0,w) NWFP(0,w),

that is
{ {0 214 N — (A= 1) = By + 2] + (A - )R
¥1(0) = ¥1(w) = ¥1(0) = 1 (w) = 0.
Set G\ = —Fy — 2(F' — Fy) — AFy, it follows that the previous system writes

{ 4200+ )9 + (A= 121 = Gy 3
¥1(0) = 1 (w) = ¥1(0) = ¢y (w) = 0.
Then, the characteristic equation
X214+ N+ (A1) =0,
admits, for A < 0, the following four distinct solutions
ar=V-A+i, az3=-o (14)
ay =V—-A—1i, 4= —az,

and for A = 0, two double solutions that are 7 and —i.
We have to distinguish the two cases : A =0 and A < 0.
3.2.1 Case A =0 : Invertibility of A

Proposition 3.2. A is invertible with bounded inverse i.e. 0 € p(A) and there exists g9 > 0,
such that B(0,e9) C p(A).




Proof. Here A = 0. We have to solve (12). This is equivalent to solve (13) which writes as

{ O 20 + 41 = Gy 15)

$1(0) = Y1 (w) = ¥1(0) = Y1 (w) =

From [22], Theorem 2.8, statement 2., there exists a unique classical solution of problem (15).
Thus, using the closed graph theorem, there exists C; > 0 such that

197 100) < CillGill ooy < C1 (| Fallioow) + 2 Filws0)) < 2C11IFx,
and from the Poincaré inequality, there exists C,, > 0 such that
”ﬂh”wgm([)w Collbf lr0.w) < 2010, || F| x-
Finally, since 19 = F1, then we have

1920l zr(0w) = 111l 2r0.0) < [1F2llzr(0.0) + 1w 0 (0.0) = 1 F]|x-

Therefore, there exists a unique solution ¥ of AV = F with || V| x < (14 2C1C,)||F|lx, from
which we deduce that there exists ¢g > 0, such that B(0,e0) C p(A). O

3.2.2 Case A <0 : Spectral study of A

In order to prove Proposition 3.9, we first have to state the following technical results.

Lemma 3.3. Let « € C\ {0}, a,b € R with a < band f € Wg’p(a, b). For all = € [a, b], we set

K(z) = / "0 p(s) ds + / =D f(s) ds

Then, we have

b

2 1 /® 1
K —— —(z—s)a gt d / —(s—z)a gl ds.
(@) =~ fla)+ =5 [ @) dst 5 [ (s) ds
Proof. The result is easily obtained by two integrations by parts. ]

Proposition 3.4. For any A < 0 problem (13) has a unique solution given by

P1(0) = e (B + Bo+ B3+ Ba) + e TDN2(B3 4 By — B — B2) + 5(0)
(e = en02) (B Ba) + (7T — e 02) (5 — ), 1
where
s = %U__l % (J(0) — J(w))
B = — U= (7(0) — J(w) .
By = U e (J0) + ()
B = LU (T0) + @),
with
{ U = 1—e 2V 94/ Ne VA -
Up = 1-e 2V pouy/—xe VA,



and S is a particular solution of the equation of problem (13) which is given, for all € [0,w], by

g0 A
S0) = J(0) — e 9> - —— F
O) = oy VO~ W) — 5 A )
(19)
R —waz 7 (6
+2a2(1—e‘2“’a2)( (w) —e ( ))—E (0),
with ;
7(0) = / ~(0-9)a2y(5) ds + / (=024, () s, (20)
0
where
6 e I(0) — e~ ] A Ee
U( ) e 20(1 (1 — 6_2“’0‘1) ( ( ) —€ (w)) a1a2 ( ) o1
e ~wat(0)) — - 1(6), -
and
o A
1) = / e~ (0=s)an (—F2 —2(F - F1)+ = F{’) (s) ds
0 a3
. . (22)
—l—/ e~ (=0 (—Fg —2(F' - F)+ = Fl") (s) ds.
0 aj
Proof. In order to apply results obtained in [12] and [13], we set L = —anl, M = —aol,
r_=a?—a3, a=0and b=w. Then, problem (13) reads as

{ O — (L2 + M2 + L2 My = Gy,
¥1(0) = ¢ (w) = ¥} (0) = ¥ (w) =

From [13], there exists a unique solution whose representation formula is explicitly given in [12]
by (14)-(15)-(16). This representation formula shows that ; writes as in (16), with 81, B2, 53, Ba
given by (17) and

SO = — _QO‘QZ/ —sazy, ds—l—ie_(‘” QO‘QZ/ (w=s)az,, o(s) ds
1 1 w
——/ e~ (0=s)azy, o(s) ds — — 67(879)(121)0(8) ds
20[2 0 20[2 0 (23>
_i —bag 7 —wag /w —(w—s)az
2a2€ Ze ; e vo(s) ds
1 w
——e_(“_g)”Ze_w”/ e *uyg(s) ds, 6 €0,w],
2042 0
where
1 w
vo(f) = —e_GO“W/ e *NGy(s) ds + —e_(“’ 9)0‘1W/ (W=s)a1 3 (s) ds
2001 0
1 w
——e_a‘“We_w‘”/ e_(“’_s)o‘lG,\(s) ds
2o 0 (24)
1 w
- (w0 —wai —saq
20416 We /0 e *MGy(s) ds
1
——1(0), 6
with Z := (1 — 6*2”0‘2)_1, W= (1- 6*2‘”0‘1)_1 and
0 w
L(6) = /0 e~ 0= G, (s) ds + ; e =0ug, (s) ds. (25)

9



Then, since Gy = —Fy — 2(F] — Fy) — A\F1, we have
0
hO) = [T (R = 2(F] ~ F) () ds
+/ (=01 (_p, — o(F! — F))) (s) ds

—A/ ~(0=s)o1 oy ( ds—)\/ s=0e1 By (s) ds.

Then, from Lemma 3.3, since F} € W02 P(0,w), it follows

ne) = /096‘”‘% (—Fy —2(F) = F1)) (s) ds

+ e~ (5= (—F, — 2(F{ — F)) (s) ds

2rw)+ 5 </O SO (s) ds+ [ eI s )ds)
1

A
- -2 / (B 2(F - R+ ) () ds
1

A
2 Ff) (s) ds.

+ /0 e~ (50 (—F2 —2(F' — F) +
1

Hence I, given by (22), satisfies
1(9) 211(9)—|—OTF1(0). (26)
Note that, from (25) and (26), we have
/Ow e "M Gy(s) ds=1;(0) = I(0) and / W=s)o13 (s) ds = I (w) = I(w).

Therefore, from (24), for all § € [0,w], we deduce that

1
vo(0) = — e PMW (1(0) — e ™ I(w))
20é1
1 1
- —(w—0)a _ewoug I
g €I (1) = € (0)) = 5 1(6)
= 1 ety (I(0) — e " [(w)) + A Fy(0)
2011 o3
1 1
- —(w—)aa _ewoag (9.
g €I (1) = e 1(0) = 5= 1(6)
Moreover, setting
A
1)1—1}0—*2F1. (27)
a7
Thus, for all § € [0, w], noting
0 w
J1(6) :/ e~ (0=5)az20(5) d3+/ e~ (57024(s5) ds, (28)
0 0

10



from (27) and Lemma 3.3, since F} € WOZ’p(O,w), we obtain

0 w
Ji(0) = / e~ (0=5)azy (5) ds+/ e~ (57002, (5) ds
0

0
+)\2</e(9 o2 [ (s) ds+/ 59)a2F()d>,

2)\

by 0 w
—(9—8)0&2 F// d / —(8—9)042 F// d
ot </0 : () ds+ [ e 1/(s) ds

_ /9 (0-s)a 2<v1() afa ())ds
22

2
2
+/ e)az< 1(s) + ;‘2 1(s )) ds+a1a2F1(9)-

From (27), for all § € [0,w], we deduce that v given by (21) and J given by (20), satisfy

hence

0 w
T0) = / e~ O=9)0zy, (5 ds + /6 e=(=002y () ds + " F}(0)
0

v(0) = v1(0) + aAa F/'(0),
199
and o)
J(0) = J1(0) — a%azFl(Q). (29)

Note that, from (28) and (29), one has

/w e *yy(s) ds = J1(0) = and / (W=s)azy(s) ds = Jy(w) = J(w).
0

Finally, from (20), (23) and (29), for all 8 € [0,w], we deduce that

SO) = 5o e "2 (0 - W)
+%i2 6_(w—9)o¢2Z (J(w) _ e—wazJ(O)) — E J1 (9)

which leads to (19).

The constants f;, i = 1,2, 3,4, are given by (15) and (16) in [12]. U_, V_ and F’ (a) £ F' ()
in [12] are replaced here by U_, Uy and S’(0) + S'(w). So, in order to compute constants 3;, we
now make explicit U_, Uy and S’(0) + S (w).

U = 1—e @t (42 _a2) " a; + ay)? (e7w2 — g7
- 11— e—QwH_i_im (e—w(\/j—i) . e—w(mﬂ‘))

= 1- eiQM/j‘ + 2ivV =\ 67”\/:\ <6_26>

= 1—e 2V A2y Xem wrsm()

and
Up = 1—ewlotan) 4 (42 a%)_l(al + ag)? (e7w2 — emwon)

— ] e 2wV /*( V=A—1) _e—w(ﬂﬂ'))
= 1—e 2V Ao/ N WV A sin(w).

11



From (19), it follows that

1 —ba —wo )\
S0) = —5e b2 7 (J(0) — e J(w)) — mF{(e)
1 1
2 o (w=0)az _ T wo S /)
t5e Z (J(w)—e J(0)) 20y J'(09)

_ Loty (J(0) — e7¥2J(w)) + % e~ @02 7 (J(w) — 72,1 (0))

2
1 o —(0—s) Y (-0 A
+§ </0 e~ 0=9)%24(5) ds —/9 e~ (57002 (4) ds) - mF{(G),
from which we deduce that
J(0) — J(w) J(0) + J(w)
! / __Ju)=JW) / o _ YT I\
S'(0) 4+ S'(w) = =y and S'(0) — S (w) 1+ cwo)’
This prove that constants 3;, i = 1,2, 3,4, are given by (17). O

Remark 3.5. Since 0 < sin(w) < w, for all w > 0, then we have

U_=1—e2VA_ 9/ NewVA sin(w) > 1— em2VA 9/ Ae_wr
and

Up=1- eV Loy /Tx eV A sin(w) > 1 — e 2V A 9y he

Let z > 0. Setting
flz)=1—e2 —2ze72,

we have
fl(x) =272 =27 4+ 2ze " =2 " (e " +x—1) > 0.

It follows that f(xz) > f(0) = 0. Finally, for all w,v/—A > 0, we deduce that

U_>1—e 2V 9/ xe VA = flwV/=)) > (30)

and

Uy >1—e 2V 25/ xe V"2 = fwyv/=X) > 0. (31)

Lemma 3.6. Let F} € WOZ’p(O,w) and Fy € LP(0,w). Consider gy defined in Proposition 3.2,
then for all A < —&g, J, v and I, given by (20), (21) and (22), satisfy the following estimates

2
L Wlzr0) < 5 (1Bslr0.0 + 2000+ 315 lzn0.)

2
\/jl—l/P
My (

2. 11(0)] + ()] < (12l o(0.0) + 20 F1 200 + 31 FY o) -

w

Mol < = (1F2llzrw) + 21 Fill o) + 31 I e(ow) )

where M; = 2 + 7 72wr

2
4 | e < NaY ]l 2r (0,0)-
2
5. [JO) + [J(W)| € —=7 [IvllLr0w)-

12



Proof.

1. From (14) and (22), we obtain

6
||I||LP(0,w) < Os%p] </ —(6=s)V=2 d5+/ (s=0)V=A dS) I2F) — FQHLP(()M)
€|0,w

0
+ sup </ —(0=5)v=A ds+/ Fds) H(—2) FY
0€(0,w]

1— 679\/77)\ N 1— ef(wfe)\/j/\
VY Ny
(1 _ 679\/5)\ 1— ef(wa)\/j)\

LP(0,w)

N

sup

12l e (0w) + 21 F1 | 2o (0,0

+ F// w
\/_7)\ \/_7)\ ) || 1 HLP(O7 )

+3 sup
0€0,w]

2
5 (IPellzsoy + 21 i ln00) + 31F oo ) -

N

2. Due to (14) and (22), from the Holder inequality, it follows

~Fy(s) - 2(F/(s) — Fa(s)) + Cj%ms)

~Fy(s) — 2(F(s) - F1<s>>+j%F{’<s>

ds

10)] + ()| < /
+/ e~ (wW=9)

([ eratmav ds) (1P2llzr00) + 21 Filr0) + 31 FY lzr0))

ds

N

w 1/q
(e as) " (IBslwoay + 210w + 31F zr0u9)

2(1- e—wqm)l/q

R NayL
2
Nl

N

(Il o0y + 20 o0y + 31 o0
(12l o) + 20 Fil o0 + BIFY N 2o00)) -

3. From (14) and (21), since |ai| = |ag| = V1 — A > v/—A\, we have

1(0)| + | (w N 1/p )\
ollinoy < IO (% v ) 4 22 1 g
2T = (1 - e 2v&) Vo (1=X)

LOL ([ o0 ) |
n e P d0) "+ ——— | riow
2T =X (1= em2v0) \o oy 0w

(I(0)| + |I(w)]) . Tl
VI AV Ppip (1 _ e—2w\/a) W1\ (0.w)
1

+ﬁHF1”HLP(O7w):

<

13



hence

2 (Il o 00) + 21 Filloo.w) + BIFY o 0.0))
T X /P g1/ pl/p (1 _ e—2w\/5)
N 120l e 0.w) + 20 F1 1l Lo 0.0) + 3IFT [ e (0,00)

lvllrow) <

m\/j)\ H HLP 0,w)
M,y 1"
< N e (HFQHLP(O,W) + 2| F1l| oo,y + 311 FY HLp(O,UJ)) :
4. From (14) and (20), we have
0
HJHLP(U,w) < sup (/ e~ 0= V=2 d8+/ V=2 ds) HUHLP(QM)
0€0,w]
1— e—@\/j 1— e—(w—@)\/j H H

< sup + v w

0€[0,w] V=A V=A L2 (0w)

2
< P(0.w)-
\/TA ||UHL (0,w)

5. Due to (14) and (20), from the Holder inequality, we deduce that

O+ 1@ < [P ds+ [T e @V us)] ds
0 0

e SR © msav=x g\
< (([emvas) e (et R as) T ol
2(1— eV Y
=l L
q —
2
\/jlfl/p HUHLP(O,w)'
Lemma 3.7. Let A < 0. Then, we have
w 1/p 4
(/ ‘e_eal_ oo d9> S 1+1/p’
0 vV—=A

and 1
P p 4
W) ey
-

</w ‘e—(w—Q)al o 6—(w—0)a2
0

Proof. For x > 0, we have e~ 5 < 1, so
+oo +00 - - +00 - 2
/ e PPaP dx :/ e~ e 5 2P dx g/ e dr =2,
0 0 0
Then, from (14), we have

/ ‘6 b1 _ 00 d@:/ ‘e 0y ,\(6 01_6&)
0 0

14




hence, setting x = 6/ —A, it follows that

-
/w ‘67&!1 B 670042 D d0 — 9v /w\/ﬁ p— P dx
0 0

VA

()

r  pwV=2X z \P
< e P* ( ) dz
V=X Jo vV=A
op +o0
< — / e PP dx
)\ 0
op+1 92p
S P S Sy
The second estimate is obtained by change of variable, taking w — 6 instead of 6. O

Lemma 3.8. Let F} € WOZ’p(O,w) and Fy € LP(0,w). Consider gy defined in Proposition 3.2,
then for all A < —ey, B1, B2, B3 and By, defined by (17), satisfy

M (| Pall ooy + 211 Fill ooy + 3IFY o0,
w(_)\) /—_AQ—l/p (1 e—2w\/E0 _ QWﬁe wﬁ)( —67""\/%>,

max (|81 + Bal, |Bs + Ba]) <

and
My (1Bl o) + 20 Fillr0) + 31 o 0.0))

2(—)\) ﬁ_)\l 1/p (1 e—2w\/E0 _ 2&)\/»067“’\5)

max (|32, [Ba]) <

where M; = 2+T\ﬁ

Proof. Recall that ;, i = 1,2, 3,4, depends on U~-! and U;l. From (30) and (31), it follows
_ > flwV =) > fwyEg) =1 — e 29VE0 9y, fege “VE > ),

and
flwv— flwy/Eo) =1 — e 2VE0 9y, fege Ve > 0,

Thus, we deduce

1 1
d UT'< .
1 — e 20vE0o — 2w, feg e~ WVEO an U+ 1 — e 20vE0o — 2w, feg e~ WVEO

U-l <

Therefore, from (17) and Lemma 3.6, we have

JO)| + |J(w 1—e 9
Bt ol < [J(0)] +1J ()] o
4 (1 — e~ Ve 2w\/6>oe_‘“\/?0) I —emwaz
. 0l 2r (0,0) emwaz _ pmwai
Sy (1 _ e—2wyE0 _ 2w\/%€—w\/%) 1 — e wa
_ M (IRl 00y + 2Rl o0y + 31FY o) 20V
2(—)) /P (1 _ e—2wyEo _ Qwﬁe_wﬁ> 1 — e—wveo
_ My (1Pl o0y + 21 Fil 2r0.0) + 31 I o0.0))

W=V (1 728 — 20, fEg e V) (1 — eV

15



and similarly

[J(0)] + [ (w)] L 1te ™
e~20VE0 — 20, fEg e wﬁ) 14 e~wa2

|83+ Ba] <
4(1

My <HF2||LP(O W) T 21 F1l e 0wy + 31 EY | o (0.0 )
W(=\) 2 r (1 _ e—2wyE _ 2wﬁ€—wf> (1 _ e—w\/T))

In the same way, we obtain

~

M (| Poll 0.0y + 211 Fll ooy + BIFY o0,
2(_)\>\/_—)\1 1/p (1 _ e—2wyE0 _ 2&)\/%6_‘”\/%)

|Ba| <
and
My (1Pl o(0.) + 21F1l o) + BN FY | oo

1Bl < Ty - )
A=AV (1 - eV — 2w fEg eV )

O

The following proposition will allow us to use the well-defined operator —v/.A which, generates

a uniformly bounded analytic semigroup (e*sﬂ) o
s§2

Proposition 3.9. A is closed and densely defined in X. Moreover, there exists a constant M > 0
such that for all A < 0, operator A — Al is invertible with bounded inverse and
M

< .
LX) T 14|\l
Proof. Tt is clear that D(0,w) x D(0,w) C D(A) C X = WP (0,w) x LP(0,w), where D(0,w) is
the set of C'°°-functions with compact support in (0,w). Since D(0,w) is dense in each spaces
Wy *P(0,w) and Lp (0,w) for their respective norms, then D(A) is dense.

Let F} € Wo P(0,w) and F» € LP(0,w). From Proposition 3.2, 0 € p(A). From Proposition 3.4,
for all A < 0, there exist a unique couple

(1, 92) € (WHP(0,w) N WGP (0,w) ) x WGP (0,w)

a7

which satisfies

{ o = A1+ Iy (32)

o 2+ A = G,
where Gy = —Fy—2(F{'— F;)—\Fy. Recall that ¥ = (A—\I) "1 F reads as (32), then R_ C p(A),
thus A is closed.
Moreover, 11 is given by (16)-(17)-(19) and 1) is given by
Pa(0) = Xe PB4 Ba+ B3+ Ba) + A @02 (85 + By — By — o)
A (700 — e7002) (B, + Ba) + A (e” @0 — gm(@hla2) (g, — ) (33)
+AS(0) + F1(0),
where (3;, i = 1,2,3,4 are given by (17)-(18). From (19), AS(6) + F1(6) is given by
_ A —BOan _—wa2
)\5(9) + F1 (0) - 20&2 (1 _ 6—2wa2) € (J(O) e J(w))
A
2009 (1 — 6_2wa2)
2

A A
AT o Fi (o) —
a%a% 1(9) + 1(9) 209 J(Q),

em =002 (J(w) - e2J(0)) (34)
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with J(€) given by (20). Our aim is to prove that, for all A < 0, there exists M > 0, such that

M
A= XI)"LF < —||F||x,
(A=A Fllegy < 1y Il
where
Fy
1FIx = | 5 )| = 1Bz + P2l (35)
X

To this end, we consider that A € (—oo, —&p), where ¢ is defined in Proposition 3.2. We first
study . From (19), for a.e. 6 € [0,w], we have

—BOas
" _ e 7 _ —waz _ A "
S0) = gy (0 — W) = 5 (0)
—(w—0)a2 1
a26 _ wa2 _ "
2 (1 _ €_2wa2) (J(CU) € '](O)) 20[2J (9)7
and from (20), we obtain J”(0) = a3J(0) — 2azv(), hence
—0Oas
" _ o xe 7 _ pwa2 _ A "
S0) = Gy (0~ () = 5 0)
2 () — o (0) = 2 7(0) +0(0)
2 (1 — ¢ 2wan) \W\) T E 2 v

Then, since a1 = v/=A + 4 and ag = V=X — 4, we have |[e”“%| = |e™@92| = ¢~@V~A < 1 with
—A > €, thus

VI=X(JO)+]T@)) [ [% o= e
2(1—6—%\/67)) (/0 eV d9>

VI=A (IO T@D ([ -ty )"
i 2(1— e 2v=) </0 o e)ﬂw)

. Vv1—A\
+(1 N2 17 | 2o (0,0) + 2 (1| 2o (0,0) F 0] L2 (0,00

15" | Lrow) <

S (1-c2evm)  1-A LI (0w)

V1I=2X
+—— e + vl 0w),

From Lemma 3.6, we have
2v/1 — A
\/TAI—I/ZH—I/P (1 . e—2w\/g>0

v1—=\ 1
+ﬁ vl e 0.w) + 1Vl r0w) + 1= IFY | e (0,0)

15[ Lr0w) < ] [0l e (0.0)

2M,
-2 (1 - 6*2“/5»0)

2M, 1
+— (Il Loow) + 20 Fill ooy + I FY o)) + T T ler 0.0

N

(Il o0y + 20l o0y + 31 o0

17



Finally, we obtain
My
15"l Lr(00) < Y (HF2HLP(0,W) + 2[|F1| e o,w) + 3HF1”HLP(O,w)) ,

where M2 = 1—62_7]‘2{“1}\/% + 2M1 + 1.

Now, we consider 9] — S” which reads as

1(0) —5"(0) = 0028y + By + By + Ba) + a3 e T (By 4+ By — By — Ba)
+a3 (6_'%‘1 — 7092 (B + )
+a3 (6_(“’_9)0‘1 e~ 9)a2) (Ba — B2),

where §;, i = 1,2,3,4 are given by (17) and (18). Then, we have
" 1" © o 0v/—X p
0 = 8"lus0ay < (1= A8 + el + [+ ul) [V o)

w 1/

(L= N)(B1+ Bl + 185 + Bal) ( /0 o—pl—0) V= d@) ’
1/
d9> !

1/p
P d9> .

1= N)(Bal + [8al) ([ [emtor = e

(1= N) (1] 4180 ([ o0 — et

Since —\ = gg > 0, we have

mA g Ly !
—A )\ 60

and thus, from Lemma 3.7 and Lemma 3.8, we obtain

201 =) (181 + Ba| +1B5 + Bal) 8L = A)(IBa] + 1Bal)
ﬂl/p \/_7)\14-1/10

M <HF2HLP(O,w) + 2[[ Pl e (0,0) + SHFlllHLP(O,w))
_)\ )

[ =S| Lrow)y <

N

4M1(1+%)(1+%)
where M3 = (1 2V 20 /a5 e Vo0 ) (1—e =ve0)
From (36), it follows that

197 lrow) < 197 = S"llLr0w) + 1" 1Lr(0.w)

Ms + My
< 22 (1Bl mow + 21 F o + 31 0w
< WHFHX

From the Poincaré inequality, there exists C, > 0 such that

3Cw(M2 + Mg)
-

112200y < CollnlLr(ow) < 1Elx-

18
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Now, we focus ourselves on ||¢2|| (0. As previously, by (33), using Lemma 3.7 and Lemma 3.8,
we obtain

w 1/p
alliow < MO8+ 8ol + 180+ 8ul) ([ e as)
w 1/p
(181 + Ba| + 185 + Bal) </O Ve d9>
1/p
g de)

1/p
P de)

+IAI( B2 + 1Bal) (/0“’ et — (oo

—H)“(’/Bﬂ + |B2]) (/0 ‘e*(wfe)al _ e~ (w0
+ HAS + Fl”Lp(OM)

My + M3
—A
+ H)\S + F]-”LP(O,LU) .

N

(12l 209 + 20 F1 2000 + 3IFY 1o 0.0))

Moreover, from (34) and Lemma 3.6, we deduce

=A(J0)] + [J(w)]) Y IV 1/p
N (1 2 6_2%/%) (/0 0V =X dﬁ)

=A([J(0)] + |J(w)]) we—p(w— W= 1/p
2T A (1 - e 2va0) </0 e Cw)

H)‘S + FIHLP(QM) <

2 Y
1— S| |IF Y
+ 2ol 111 e 0w) + VT 1] e (0,0)
A (T(0)] + 7)) z2
< 1 - Fillprow y
\/jl—f—l/p (1 _ 672"')\/%) + (1 _ )\)2 || 1”LT"(07 )+ ||,UHLF(07 )
—2 lollzrt0m) + e | Fi o0y + 1]
o (= vy e + g il Il
2 1 1
s (1_e—2w Nl 1) Iollzrow) + ()\2 + _A> 1 2o 0.y

2 =41
< (1_6%@ + 1) lollzo(o.w) + ==~ I Fill e (0.0)-

Then, from Lemma 3.6, we obtain

My

IAS + Fill ooy <€ = (IB2llzoo) + 21 F o0 + 31 Y l2r0))
where My = (1_(#@4‘1)]\414‘%4‘1.

Thus, it follows that

My + M3 + My
2l zr0w) < Y (HFQHLP(O,w) + 2[|F1[| r(0,0) +3HF1”HLP(0,W))
3 (Ms + M3 + My) 17|
XX Y X-
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Finally, from (37), we have

M

1|
Al

I(A =MD Fllx = [l llyr o) + 1¥2llr@w) <

where M = 3 ((C,, + 1)(Ma + M3) + My), which gives the result since 0 € p(A) from Proposi-
tion 3.2. 0

Since —A is the realization of Lo, we deduce the following corollary.

Corollary 3.10. There exist £, € (0,7) small enough and M, > 0 such that

VzeXr, :=DB(0,e)U{z e C\{0}:]|arg(z)| <er,},

we have
M,

£x) 14|z

[
Therefore, assumption (H;) in Section 2.2 is verified for £ with
Op, =T —€r,. (38)

Remark 3.11. A is anti-compact; since o(—L2) = 0(.A) then o(—Ls2) is uniquely composed by
isolated eigenvalues ()‘j)j>1 such that |\j| — 400, see [10], Theorem 6.29, p. 187. More precisely,

the calculus of the resolvent operator (A — AI )71 requires that, for all A € C\ Ry, U_ and Uy
defined by (18) do not vanish. Since U_U; = 0 is equivalent to

(sinh(wﬁ) - wﬁ) (sinh(wm) + wﬁ) =0,

then, using (z;);>1 defined in Section 1, we deduce that
2
. Zj
Vji>1, )\j:_ﬁ € C\R;.
Now, we prove that operator A has Bounded Imaginary Powers, see Definition 2.4.

Proposition 3.12. A € BIP (X, 0,4), for any 6.4 € (0,7).

Proof. This proof follow the same steps than those in the proofs of Proposition 3.1 in [16] or
Proposition 4.1 in [17]. From Proposition 3.9, we deduce that A is a sectorial operator and from
Proposition 3.2, we have 0 € p(.A). Moreover, since X = Wg’p(O, w) x LP(0,w) is a reflexive space,
from [9], Proposition 2.1.1, h), statement 4) of Definition 2.4 holds with 75 = A.

For all A > 0, we have
(] (A B
(5)=(0)-(5)

Wy = F1 — My
O 21— N — (A +1)21 = Gy, (39)
¥1(0) = 1 (w) = ¢ (0) = P} (w) = 0,

which writes

where
G)=—F —2(F — F) + \F.

From Proposition 3.4, the explicit expression of the solution to problem (39) is

() 1 P
<w2>:(A+M> (g)

20



Let ¢ > 0 and r € R. We have

[(A+I)s+z’r ( R )] 0) = Fi,’, O+

. )
where I'. , = I'(1 — e +ir)['(e —ir), see for instance [23], (6), p. 100.
Now, we only focus on the first component )1 since calculations are similar for 1». Moreover,
from [21], we only have to study the convolution term, which is the most singular term. In our
case, this term is given by

o0

I
Fy

ATEET [(A +I1+A)7? (

1 w w
I _ —|6—s|a2/ —|s—t|a
5O = /0 ¢ K Ghir(t) dtds
1 w w
= / e 10=sloz / eIt (L By —o(F) — Fy) + (A4 1)F)) (t) dtds.
daras Jo 0

Note that, in order to simplify calculations, we have used the convolutions terms given in (23)
and (24). Moreover, since F;(0) = Fy'(0) = F»(0) = Fi(w) = F}'(w) = Fa(w) = 0, we wet

— _ _ 1" . - )
Golz) = Fy(xz) —2F](x) + 2F1(z), ifz €[0,w] with F(z) = Fi(z), ifz€l0,w]
0, else, 0, else,
and
E,(x) = e lle,
It follows that
1 +oo )
I, (0) = AT I5(0) dA
Fe,r 0

1 +oo )\f€+ir

(Bas % (Bay * (Go+ (A +1)F1) ) ) (6) d

Fe,r 0 daq o

1 +oo )\—€+iT

F(F (Bay % (Bay % (Go+ A+ DF)) ) (9)) (0) X

IerJo dagan
_ 1 +o00 )\—a—i—ir __ .
= 7! (F / Torar T (Bax) (OF (o)) (OF (Go+ A+ DF) (€) dA) Q)
_ . 1 +o00 )\—a—i—ir _
- F (F | G (Ba) (OF (Bay) (6) A F (Go) (5)) Q
1 1 +oo )\—€+ir()\ + 1) ~
+F (F | i S (Ba) (9F (Eay) (6) A F (F) (f)) (0).
We recall that 90,
F(Ea) (&) = o2 & An2e’
and here a1 = VA +1+17 and as = v/ A+ 1 —i. Hence
)\7€+ir _ /\75+ir 4@10&2
daq g F (Baz) (©)F (Ear) (€)= dorag (02 + 4m2€2) (a3 + 4m2€2)
)\ferir
T alad + 4n%E%(a? + ad) + 167t
)\ferir
T N2 A1+ 272E)A + A(L + Amieh)
)\—a+ir
TSN ESWL
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where

AL = 2 4 47 + 4n2E% = dx? (5— (1+i)> <§_ (12;1))

Ay = 2 — 4A7€ + 4m2€2 = 472 <5+( o= ) <§+ (127:'))'

Thus, since we have

1 1 1 1
— — + 7
A+A)A+ X)) AL — Ao < A+ A )\+)\2)

it follows that

)\—e—I—ir 1 )\—5+ir )\—a+ir
4a1a2‘F(E052) (é.)f(EOq)(g)_Q _)\+)\1 +)\+)\2 .

Then, setting

0'1:)\7 and 02:)\7,

1 2
we obtain
A L B (OF (E X L AT o AT
L T ED OF E)©ar = (- [ i [
A1—€+i7’ “+o00 0_1—€+iT d
- 8¢ Jo o1 +1 o1
—&+IT 400 —EHIT
)\2 72 dO’Q.
8rE  Jo o9 +1
Moreover, for all z € C\ N7, where N~ is the set of negative integer, we have
A 4
| F do=rera-2) (40)
thus, it follows that
“+o0o 0.—8+i1”
/0 - do=Tle—inl(1—e+ir) =T.,, (41)
hence
1 [hee ymetr 1 : :
Ea Ea — —et+r _ y —etar T ,
fo ) dmay” Be) OF (Ba) (© dh = e (77 = AT T
_ 1 —e+ir —e+ir
= 5 (A== A=)
In the same way, we have
)\75+ir()\ + 1) 1 ()\ 4 1))\75“’7" ()\ + 1))\7€+ir
——~F(E, F (Eqs = —

1 )\lfSJriT‘ )\175+ir
= 8ne <_ VRS )\—1-)\2)
1 )\—E—i—i?‘ )\—E—l—ir
+% <_>\+>\1 * A+A2> '
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Then, setting

o1 = — and 09 = —

A1 Aoy’
we obtain

T - /OMWMJT(EM)(OJ’(EM)(E) 0\

40[1@2

1 +oo )\75+ir +oo \— etiar
= ——— dA
stéJo A+ N\ )\1 87T§ / A+ A2
1 +oo )\1 e+4ir +oo )\1 e+4ir
- dA
8mé Jo A4 87T§ / A+ A
Afs+ir 400 O_;s+ir don 4 A55+ir 400 o, —e+ir iy
= — o
8¢ Jo o1+ 1 ! 8t&  Jo o9+ 1
)\1—€+i7‘ 400 l—etir /\1 —e+ir 400 L l—etir
18 91 doi + 72 dos.
w€ 0 o1 +1 8mé 0 o9+ 1

Moreover, from (40) and (41), we deduce that

—e+ir _ y—e+4ir —e+ir _ y—etir
O A I.,+ Ay A (e —ir— 1)I(1 - (e —ir — 1))
8mwé k 8mé

_ A2—E+ir _ )\1—5—1—1'7"
2mE

) (Tep +T(e —ir — DI(1 — (e — ir — 1)) .

For all z € C\ Z, we have

T(z—DI(1—(z—1)) = Sin(w(;r 5 = —Sm?m) = —I(2)I(1 - 2),

Setting z = ¢ — ir, with € € (0, 1), it follows that
Fe—ir—1DI'1—(e—ir—1)=-T'(e—ir)l'(1 —e+ir) = -T,,
hence T = 0. Finally, we obtain that
L (60) = F~* (me(&)F (Go) (€)) (0),
where , 4
Ag&«HT o )\IEJFZT
8m&

me(§) =

Setting ' ‘
A\
m(é.) = hm mt’:‘(&) = 2 1 )

e—0 871'5

due to the Lebesgue’s dominated convergence Theorem, it follows that
T _ 1 an
Io,(6) = lim L., (6) = F " (m(&)F (Go) (9)) ().
Moreover, for all z1,z2 € R, we have

1] 1x2

el —e < |z — 22,
then, for all £ € R\ {0}, we deduce that
ir _ yir irln(X2) _ pirln(ir)
im(&§)] = A=A T e T el in(Ae) — In(u)|
Srrlel 8rl¢| Srle]
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Thus

s N )\z2r _ )\zlr
Sup im(&)| = lim Im(&)| = lim Sre |
and
lim PUDY — i 2t 1+ ir (—2m€ + 272€2) + 2ir(ir — 1)72E% + 0(£2)
£-0 8w £—=0 8m&
iy o (LI (27E+ 212€2) + 2ir(ir — 1)m2% + o(&?)
£—0 8mé
— 44 2
_ i o dirmé + o(£7)
£—0 8mé
= 2l
Then ]
.
sup |m(§)] = 9

£eR

Since we have

2me? (irdy ~ (—4m + 872) — irAY 7 (4 + 87%¢) ) — 2mE (A — AT)

/ _
_ ﬁ ir—1, _ yir—1 - /\ZZT — )‘?LT
- = (AT =1(=1+ 27€) = X/ ~1(1 + 27¢)) e
we obtain in the same way that
sup [ m/(€)] = lim [£m'(§)| = [lim Em/ ()],
¢eR £—0 £—0
with A A
. ey T ir—1, il A AT
Jim £m'(€) = o5 lim (A1 (=14 278) = X7 H(1 + 2m6) ) P
where

o yir—1 _ peeir—1 N[ 2,2 e 1\2¢2 21\ _ gir—1
%1_1()1%)\2 —%1_%2 <1+(zr 1)( 27T§+27r§>+4zr(zr 1)715—1—0(5))—2 ,

and

Jiny Air=1 = Jiny 21 (14 (ir — 1) (26 + 27%€%) + dar(ir — 1)m%€? + 0(€7)) = 27,
— —

Thus, we obtain

1 ir , , , , A — 2o
: / I O ir—1 ir—1 ir—1 _ yir—1 _ 2 1
%E}%fm &) = 4%1_% 3 ( (>\2 + A1 ) + 2m¢ <>\2 Al )) 8¢
L[ 2"ir
— — | _ 2@7"—1
1 ( 3 + zr)
= 3x 27 5

Then
|.

; 3
S !/ — 3 % 227‘—5' _
ggﬂ@fm(f)l | ir| il
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Therefore, we deduce that

rl 3 19
sup |m(&)| +sup [Em/ (&) = = + —=|r| = —=]r|,
sup m(€)| +sup e (6)] = 1 + 5l = g

From the Mihlin Theorem, see [18], for all v > 0, there exists C,, > 0, such that, for all r € R,
we have

7r]
< C’vae :

1orOlleiy = [F7 (m©FGo)©) ()

L(X)

We can treat the others terms using [21] and obtain similar results. Finally, for all v > 0, there
exists a constant C, > 0 such that for all r € R, we obtain

7|
< C’va e :

a7

Therefore, taking 64 = v > 0, we obtain that A+ I € BIP (X,04). Finally, using Theorem 2.3,
p. 69 in [1], we deduce that A=A+ 1 —1 € BIP (X,04). O

4 Study of the sum £ + £L»

4.1 Invertibility of the closure of the sum

In this section, we will apply the results described in Section 2.2. We take £1 = My and Ly = M.

Theorem 4.1. Assume that (3) holds. Then £; + Lo is closable and its closure £; 4+ Lo is
invertible.

Proof. Assumption (H;) is satisfied from Proposition 3.1 and Corollary 3.10, with
Om, +0pm, =€, +T™—¢r,,

where it suffices to take ez, > €., in order to obtain O, + Opq, < 7.
For assumption (Hs), due to Proposition 3.2, it follows that 0 ¢ o(£1) N o(—L2). Moreover,
from Proposition 3.1, we have

o(L1) ={reC:|arg(\)| <7 and Re(VA) <v},

and from Remark 3.11, it follows that

22
o(—L3) = {\ € C\ R, :sinh(wv—N\) = twvV/—\} = {—WJQ €C\R, :j¢ N\{O}}.

22 1
Re ( _wjg) =~ Tm(z;)],

the condition o(£1) No(—Ly) = 0 is fulfilled if (3) holds.

The commutativity assumption (Hjs) is clearly verified since the actions of operators £; and
Lo are independent.

Now, applying Theorem 2.6, we obtain the result. O

Then, since

Remark 4.2. We can conjecture that, for the critical case v = 7, the sum L + L is not closable.
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4.2 Convexity inequalities

In view to apply Corollary 2.7, we are going to verify inequality (6) in two situations.

Proposition 4.3. Let
E1 = WP(0, +00; X) C £ =LP(0, 400; X),

and

& = LP (0, +00; [WHP(0,w) N WP (0,w)| x LP(0,w)) C €.

Then, we have
D ([,1 + £2> Cc &1 Né&s. (42)

Proof. Let V € D(L1). We must prove that there exists ¢ € (0,1) such that
Ve, <ClIVIE+IVIE 1£(IE] -
For all V- € W?P(0, +-00; X ), from [10], inequality (1.15), p. 192, we have the convexity inequality
IV7lle < 2v20V I V11,
Thus, we deduce
IVlie, = Ve +1Vlle < VIl + 22 VI V71,

Since £ is not invertible, we are going to estimate ||V"| ¢ by [|£1(V) — AoV ||e, where Ao € p(L1).
We have
V" =2V + (12 = X)V = L1(V) — AV-

Then, there exists a constant C' > 0 such that
V7 le + IV le + IV]le < ClILLV) = AoV e,

hence
V' lle < CNLL(V) = MV e < CIILL(V) e + [Xo|ClV e

Thus, we deduce

N

1/2 1/2
Ve = IVIe+IV'lle < IIVIe+2v2IVIZIV"I1Y

< IVIe+2v2C VI 1LV e + PolIV i)'
< Vlle +2v20 VI (1L DI + o2V 1Y)
< (1+2v20 of2) [V e +2v2C [V 1L (V)12

Therefore, inequality (6) is satisfied for § = 1/2 and My = £;. Using Corollary 2.7, we obtain
D(Li+ L) Cé.
Now, we must show that, for all V'€ D(L3), we have
IVlle < C [IVIle + VI L2717 -
To this end, it suffices to do it for A. Set

Gr = [W3(0,w) N WGP (0,w)] x LP(0,w) C X.
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We must prove that

(0 Y
f(%) e [(2)],

Here, we have
(1
v ),

Set ¢ = ¢f. Then, for all n > 0, from [10], inequality (1.12), p. 192, taking n = n+ 1 and
b — a = w, we obtain

o \ |
v )|

(03}
||<¢2>X+

[1llwsrow) + 1920 o0,

A(%)

1/2
X].

1

= M¥1lloow) + 191l Lo 0wy T 197 Lo 0.0y + 191 I o0y + 1920l o0 ) -
(Ow)

/ Wy oy 2 2
10" | r(0.0) < EHSD Il zr(0w) + Sl p el £p (0,0)-
It is not difficult to see that the second member is minimal when

1/2
V2 (19”100 + 49l zo0.))

1/2
2 el Zrto)

Therefore, we deduce that

1/2
N el 0w 4 VEleloulelzrow

1/2 1/2
(197l zo0w) + lelzeow) < (19" 1r0w) + 4llelrow))

€'l zr0w) <

I 1/2
V2 (19"l o 0w) + el oow)) 1€Moo

w 1/2 + ZH()O”LP(O,(JJ)
el Zr(o.)
V2 1/2 6
< L2 (10" Izr0) + WMelzr0m) NeNH 0y + 2 lelzro)
1/2
V2 el b

+ é” /!
Slellrow) +wlle™llizeow) 73
(1”22 0. + 4l ¢ll o0 )

1/2

1/2
< Co (Iellrow) + el oo 1150 -

Then, we have
1/2 1/2
HWHHLP(Ow < (Hw zr(0w) + [ HL/P 0,w) H¢1 HL/P 0,w ) '
Hence

)

< Ml peow) + 191 e 0wy + 1971 p(0,0)

g1
1/2 4),1/2
Coo (107 N 2(00) + 187 1 g0y 194 1 0.y ) + 195211 20,0

1/2 1/2
< WU+ Co) [tlhyzogoy + Collrlly g 11 1oy + 12 2ago)
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Now, in virtue of the invertibility of A, see Proposition 3.2, we have proved that there exists a
constant C/, depending only on w such that
4 1
08" 10y < CL || .
b )|
Moreover, it follows

(&9 (o)l el (ol ()

Therefore, inequality (6) is satisfied for § = 1/2 and Mgy = L. Using Corollary 2.7, we obtain

1/2 1/2

< (1+G) + CuCy,

X

1 X X

D(LiTL2) C &,

which gives the expected result. O

5 Back to the abstract problem

Now, we are in position to solve the following equation
(T L)V + ko* (PL+Po)V = F. (43)

Theorem 5.1. Let F € LP(0, +00; X ) and assume that (3) holds. Then, there exists pg > 0 such
that for all p € (0, po], equation (43) has a unique strong solution V' € LP(0, 4+o00; X ), that is

3 (Vi)nso € D(L1) N D(Ly) :

V., — Vin LP(0,+00; X) and (44)

n—s+00
(L1 4 L2) Vi + kp? (P14 P2) Vi ST T i L0, 4005 X)),
satisfying
V € WHP(0,400; X) N L7 (0, +o00; [WH2(0,w) N WGP (0,w)] x LP(0,w)). (45)
Proof. Due to Theorem 4.1, if (3) holds, then £; + L5 is invertible. Thus, it follows that
[I +kp? (Py + Ps) (M)l} (Ci+L)v="rF

From (42), we deduce that V € D(Ly + L2) C & N &y, that is (45) which involves that
(P1+P2) (L1 + [,2)_1 € L(X).

Then, there exists pg > 0 small enough such that, for all p € (0, po|, we have

V=@ ) [rereeer) (GEE) ] F (46)

which means that V' is the unique strong solution of (43). O
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6 Proof of Theorem 1.1

From Theorem 5.1, there exists pg > 0 such that for all p € (0, po], equation (43) has a unique
strong solution V' € LP(0,4o00; X) satisfying (45). Then, due to (44), there exists (V},)nen €
D(Ly + L) such that V,, " V and

n—-+0o

lim (L1 + L2) Vi, + kp? (P1+ P2) Vi, = F.

n—-+o0o

Since (Vi)nen € D(L1 + L2), then the previous equality writes

lim (V) (t) — AV, (t) — Fa(t)) =0

n——+o0
(47)
lim V,(0)=0, lim V,(4+o00) =0,
n—+o00 n—+00

where

Fa(t) = kp?e 2 AgVi (t) + kp®e ' [(BaV3)] (£) + 20V (t) — V2V (8) + F(2).
Since V, = V and V satisfies (45), we deduce that

lim V,(0)=V(0)=0 with lim V,(4+00)=V(+o0) =0,

n—-+4o0o n—-+o0o

and
lim F,(t) = Foolt) € LP(0, +o0; X),

n—-+oo
where

Foo(t) = kp?e 2 AV (t) + kp2e 2 [(BaV)] (t) + 20V (t) — V2V (t) + F(t).
Thus, problem (47) writes

{ Jim (VY(8) = AVa()) = Fool1)
V(0) =0, V(4+00)=0,

Moreover, from Proposition 3.12, A € BIP (X,04), with 64 € (0,7) and due to [9], Proposition
3.2.1, e), p. 71, it follows that v A € BIP (X,60,4/2) with 64/2 € (0,7/2). Therefore, due to [5],
Theorem 2, p. 712, with L; = Ly = —/A, there exists a unique classical solution to the following
problem

V'(t) — AV(t) = Fol(t)
{ V(0) =0, V(+o00)=0,

that is
V€ W2P(0,4+00; X) N LP(0, +00; D(A)).

Thus, it follows that
lim (V,)/(t) — AV, (t)) =V"(t) — AV,

n——+o0o
hence
Jlim (V1) = V(0)" = A(Va(t) = V(1) ] = 0.
Now, set

{ D(82) = {peW?P(0,400; X) : (0) = p(+00) = 0}
dap = ¢, € D)

Then, we can write

0= Tim [(Va(t) = V(£)" = A(Va(t) = V(1))] = Tim — (=8> +A) (Va(t) = V(t).  (48)

n—-+oo n—-+o0o

29



From [20], Theorem C, p. 166-167, it follows that —ds € BIP (X, 0s,), for every 65, € (0,7) and
due to Proposition 3.12, A € BIP (X, 64), for all 0 4 € (0,7). Thus, since —d3 and A are resolvent
commuting with 6s, + 04 < 7, from [19], Theorem 5, p. 443, we obtain that

—d02 + A € BIP (X,0), 6= max(0s,,04).

Moreover, due to Proposition 3.2, we have 0 € p(A), then we deduce from [19], remark at the
end of p. 445, that 0 € p(d2 + A). Therefore, due to (48), we obtain that

lim Vi,(t) — V(t) =0,

n—-+00

hence, since V,, —+> V', by uniqueness of the limit, we deduce that
n—-+0o0

V=Y eW?P(0,+00; X) N LP(0, +00; D(A)).

This prove that £1 + L2 is closed and that V € D(Ly + L2).
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