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Introduction and main result

This work is a natural continuation of [START_REF] Labbas | Generalized reaction-diffusion problems in a conical domain, Part I[END_REF], where we have studied, for k > 0, the following problem

     ∆ 2 u -k∆u = f in S ω,ρ u = ∂u ∂n = 0 on Γ 0 ∪ Γ ω,ρ , (1) 
where, for given ρ > 0 and ω ∈ (0, 2π]:

    
S ω,ρ = {(x, y) = (r cos θ, r sin θ) : 0 < r < ρ and 0 < θ < ω} , Γ 0 = (0, +∞) × {0} Γ ω,ρ = {(r cos ω, r sin ω) : 0 < r < ρ} .

Note that a similar problem set in a cylindrical domain has been already studied by [START_REF] Labbas | Generation of analytic semigroup for some generalized diffusion operators in Lp-spaces[END_REF], but in the present paper, since the domain is conical, the study is completely different.

After using the polar coordinates v(r, θ) = u(r cos θ, r sin θ), the function

φ(t)(θ) := φ(t, θ) = v(ρe -t , θ) ρe -t , t > 0,
and the abstract vector-valued function

V (t) = e νt φ(t) e νt φ (t) , with ν = 3 - 2 p ∈ (1, 3),
the above study led us, to solve the following abstract equation

(L 1 + L 2 ) V + kρ 2 (P 1 + P 2 ) V = F, (2) 
where F ∈ L p (0, +∞; W 2,p 0 (0, ω) × L p (0, ω)), with p ∈ (1, +∞). Operators L 1 , L 2 , P 1 and P 2 , introduced in [START_REF] Labbas | Generalized reaction-diffusion problems in a conical domain, Part I[END_REF], are recalled here for the reader convenience:

   D(L 1 ) = V ∈ W 2,p (0, +∞; X) : V (0) = V (+∞) = 0 [L 1 (V )] (t) = (∂ t -νI) 2 V (t) = V (t) -2νV (t) + ν 2 V (t),
with ν ∈ R fixed, D(L 2 ) = {V ∈ L p (0, +∞; X) : for a.e. t ∈ (0, +∞),

V (t) ∈ D(A)} [L 2 (V )] (t) = -AV (t), with              D(A) = W 4,p (0, ω) ∩ W 2,p 0 (0, ω) × W 2,p 0 (0, ω) ⊂ X A ψ 1 ψ 2 =    ψ 2 - ∂ 2 ∂θ 2 + 1 2 ψ 1 -2 ∂ 2 ∂θ 2 -1 ψ 2    , ψ 1 ψ 2 ∈ D(A), D(P 1 )
= {V ∈ L p (0, +∞; X) : for a.e. t ∈ (0, +∞),

V (t) ∈ D(A 0 )} [P 1 (V )] (t) = -e -2t A 0 V (t), with            D(A 0 ) = W 2,p 0 (0, ω) × L p (0, ω) = X A 0 ψ 1 ψ 2 =    0 ∂ 2 ∂θ 2 + 1 ψ 1 + ψ 2    , ψ 1 ψ 2 ∈ D(A 0 ),
and

   D(P 2 ) = W 1,p (0, +∞; X) [P 2 (V )] (t) = -e -2t (B 2 V ) (t),
with

B 2 = 0 0 -2(∂ t -νI) 0 .
In the present paper, we will focus ourselves on the resolution of equation [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF]. Among others, we need to use the fact that the roots of the following equation (sinh(z) + z) (sinh(z) -z) = 0, in C + := {w ∈ C : Re(w) > 0}, constitute a family of complex numbers (z j ) j 1 such that τ := min j 1

|Im(z j )| > 0 and |z j | -→ +∞.

These roots are computed in [START_REF] Fädle | Die Selbstspannumgs-Eigenwertfunktionen der Quadratischen Scheibe[END_REF] with τ 4.21239. Our main result is the following.

Theorem 1.1. Let F ∈ L p (0, +∞; X) and assume that ων < τ.

(3)

Then, there exists ρ 0 > 0 such that for all ρ ∈ (0, ρ 0 ], the abstract equation

(L 1 + L 2 ) V + kρ 2 (P 1 + P 2 ) V = F,
has a unique classical solution V ∈ L p (0, +∞; X), that is V ∈ W 2,p (0, +∞; X) ∩ L p (0, +∞; D(A)).

In particular, L 1 + L 2 is a closed operator and V ∈ D(L 1 + L 2 ).

This second part is organized as follows. Section 2 is devoted to some recalls. In Section 3, we analyze the spectral properties of operators L 1 and L 2 in view to study the invertibility of the closedness of the sum L 1 + L 2 in Section 4. In Section 5, by considering that operator kρ 2 (P 1 + P 2 ) is a perturbation, we deduce the existence and the uniqueness of a strong solution of equation [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF]. Finally, Section 6 is devoted to the proof of our main result given in Theorem 1.1.

Definitions and prerequisites 2.1 The class of Bounded Imaginary Powers of operators

Definition 2.1. A Banach space X is a UMD space if and only if for all p ∈ (1, +∞), the Hilbert transform is bounded from L p (R, X) into itself (see [START_REF] Bourgain | Some remarks on Banach spaces in which martingale difference sequences are unconditional[END_REF] and [START_REF] Burkholder | A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional[END_REF]). Definition 2.2. Let α ∈ (0, π). Sect(α) denotes the space of closed linear operators T 1 which satisfying

i) σ(T 1 ) ⊂ S α , ii) ∀ α ∈ (α, π), sup λ(λ I -T 1 ) -1 L(X) : λ ∈ C \ S α < +∞,
where

S α := {z ∈ C : z = 0 and | arg(z)| < α} if α ∈ (0, π] (0, +∞) if α = 0, (4) 
see [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], p. [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF]. Such an operator T 1 is called sectorial operator of angle α.

Remark 2.3. From [START_REF] Komatsu | Fractional powers of operators[END_REF], p. 342, we know that any injective sectorial operator T 1 admits imaginary powers T is 1 for all s ∈ R; but in general, T is 1 is not bounded.

Definition 2.4. Let θ ∈ [0, π). We denote by BIP(X, θ), the class of sectorial injective operators

T 2 such that i) D(T 2 ) = R(T 2 ) = X, ii) ∀ s ∈ R, T is 2 ∈ L(X), iii) ∃ C 1, ∀ s ∈ R, ||T is 2 || L(X) Ce |s|θ ,
see [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], p. 430.

Recall on the sum of linear operators

Let us fix a pair of two closed linear densely defined operators M 1 and M 2 in a general Banach space E. We note their domains by D(M 1 ) and D(M 2 ) respectively. Then we can define their sum by

M 1 w + M 2 w w ∈ D(M 1 ) ∩ D(M 2 ).
We assume the following hypotheses

(H 1 ) There exist θ M 1 ∈ [0, π), θ M 2 ∈ [0, π), C > 0 and R > 0 such that    ρ (M 1 ) ⊃ Σ 1,R = {z ∈ C \ {0} : |z| R and |arg(z)| < π -θ M 1 } ∀ z ∈ Σ 1,R , (M 1 -zI) -1 C |z| ,
and

   ρ (M 2 ) ⊃ Σ 2,R = {z ∈ C \ {0} : |z| R and |arg(z)| < π -θ M 2 } ∀ z ∈ Σ 2,R , (M 2 -zI) -1 C |z| , with θ M 1 + θ M 2 < π. (H 2 ) σ(M 1 ) ∩ σ(-M 2 ) = ∅.
(H 3 ) The resolvents of M 1 and M 2 commute, that is

(M 1 -λI) -1 (M 2 -µI) -1 = (M 2 -µI) -1 (M 1 -λI) -1 ,
for all λ ∈ ρ (M 1 ) and all µ ∈ ρ (M 2 ).

Remark 2.5. Note that from (H 2 ), we have ρ (M 1 ) ∪ ρ (-M 2 ) = C and in particular M 1 or M 2 is boundedly invertible.

Theorem 2.6 ([4], [START_REF] Grisvard | Singular behavior of elliptic problems in non Hilbertian Sobolev spaces[END_REF]). Assume that (H 1 ), (H 2 ) and (H 3 ) hold. Then, operator M 1 + M 2 is closable. Its closure M 1 + M 2 is boundedly invertible and

M 1 + M 2 -1 = -1 2iπ Γ (M 1 -zI) -1 (M 2 + zI) -1 dz; ( 5 
)
where Γ is a path which separates σ (M 1 ) and σ (-M 2 ) and joins ∞e -iθ 0 to ∞e iθ 0 with θ 0 such that

θ M 1 < θ 0 < π -θ M 2 .
This Theorem is proved in [START_REF] Da Prato | Somme d'opérateurs linéaires et équations différentielles opérationnelles[END_REF] (Theorem 3.7, p. 324), when R = 0 and has been extended to the case R 0 in [START_REF] Grisvard | Singular behavior of elliptic problems in non Hilbertian Sobolev spaces[END_REF] (Theorem 2.1, p. 7). In this last case, the curve Γ does not need to be connected.

Corollary 2.7. Assume (H 1 ), (H 2 ) and (H 3 ) hold. Let i = 1, 2 and E i a Banach space with D(M i ) → E i → E such that there exist C > 0, δ ∈ (0, 1) satisfying

w E i C w E + w 1-δ E M i w δ E for every w ∈ D(M i ), (6) 
then

D M 1 + M 2 ⊂ E i .
Proof. It is enough to prove that the integral in [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF] converges in E 1 . For all ξ ∈ E, we have

Γ (M 1 -zI) -1 (M 2 + zI) -1 ξdz E 1 Γ (M 1 -zI) -1 (M 2 + zI) -1 ξ E 1 |dz|,
then, applying (6), we obtain

(M 1 -zI) -1 (M 2 + zI) -1 ξ E 1 C (M 1 -zI) -1 (M 2 + zI) -1 ξ E +C (M 1 -zI) -1 (M 2 + zI) -1 ξ 1-δ E M 1 (M 1 -zI) -1 (M 2 + zI) -1 ξ δ E ;
Now, for all z ∈ Γ, we have

(M 1 -zI) -1 (M 2 + zI) -1 ξ 1-δ E M 1 (M 1 -zI) -1 (M 2 + zI) -1 ξ δ E (C 1 (θ 1 )C 2 (θ 2 )) 1-δ |z| 2(1-δ) C 1 (θ 1 ) δ C 2 (θ 2 ) δ |z| δ ξ E = C 1 (θ 1 )C 2 (θ 2 ) |z| 1+(1-δ) ξ E ,
from which we deduce the convergence of the integral in [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF]. The same result holds true replacing M 1 by M 2 .

Spectral study of operators

In all the sequel, in view to apply the above results, we will consider the following particular Banach space E = L p (0, +∞; X), equipped with its natural norm.

Study of operator L 1

We study the spectral equation

L 1 V -λV = R,
where V ∈ D(L 1 ), R ∈ E and λ ∈ C (which will be precised below), that is

V (t) -2νV (t) + (ν 2 -λ)V (t) = R(t), t > 0 V (0) = 0, V (+∞) = 0. ( 7 
)
We set

Σ ν = {z ∈ C \ R -: Re( √ z) > ν}.
Now, let us precise this set. For all

z = x + iy ∈ C \ R -, we have Re( √ z) > ν ⇐⇒ |z| + Re(z) 2 > ν ⇐⇒ x 2 + y 2 > 2ν 2 -x. • First case : if x > ν 2 , we have x 2 + y 2 + x 2x > 2ν 2 , then Re( √ z) > ν.
• Second case : if x ν 2 , then y 2 + 4ν 2 x -4ν 4 > 0. Thus, we deduce that Σ ν is strictly outside the parabola of equation y 2 + 4ν 2 x -4ν 4 = 0, turned towards the negative real axis and passing through the points (ν 2 , 0), (0, 2ν 2 ) and (0, -2ν 2 ).

x y 0 ν 2 2ν 2 -2ν 2 Σ ν Figure 1: This figure represents Σ ν .
Now, let ε L 1 be a small fixed positive number and consider the following set

Σ L 1 := λ ∈ Σ ν , | arg(λ)| π -2ε L 1 and |λ| 4ν 2 sin 2 (ε L 1 ) . ( 8 
)
We then obtain the following proposition.

Proposition 3.1. The linear operator L 1 is closed and densely defined in W 2,p (0, +∞; X). Moreover, there exists a constant M L 1 > 0 such that for all λ ∈ Σ L 1 , operator L 1 -λI is invertible with bounded inverse and

(L 1 -λI) -1 L(E) M L 1 |λ| .
Therefore, assumption (H 1 ) in Section 2.2 is verified for L 1 with

θ L 1 = 2ε L 1 . ( 9 
)
Proof. Let λ ∈ Σ ν . From [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF], Theorem 2, p. 712, there exists a unique solution V ∈ W 2,p (0, +∞; X) of problem [START_REF] Fädle | Die Selbstspannumgs-Eigenwertfunktionen der Quadratischen Scheibe[END_REF], given by

V (t) = e t(ν- √ λ) 2 √ λ +∞ 0 e -s(ν+ √ λ) R(s) ds - 1 2 √ λ t 0 e (t-s)(ν- √ λ) R(s) ds + +∞ t e -(s-t)(ν+ √ λ) R(s) ds , ( 10 
)
see formula [START_REF] Labbas | Generation of analytic semigroup for some generalized diffusion operators in Lp-spaces[END_REF] in [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF] where

L 1 := -νI - √ λI and L 2 := νI - √ λI. It follows that Σ ν ⊂ ρ(L 1
). This proves that L 1 is closed. The boundary conditions are verified by using Lemma 8, p. 718 in [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF].

Moreover, for all λ ∈ Σ ν , since Re( √ λ) > ν, from (10), we obtain

V E 1 2 |λ| +∞ 0 e -tp(Re( √ λ)-ν) dt 1/p +∞ 0 e -s(ν+Re( √ λ)) R(s) X ds + sup t∈R + t 0 e (t-s)(ν- √ λ) ds + +∞ t e -(s-t)(ν+ √ λ) ds R E 2 |λ| ,
hence, noting q the conjugate exponent of p, we have

V E 1 p(Re( √ λ) -ν) 1/p +∞ 0 e -sq(ν+Re( √ λ)) ds 1/q R E 2 |λ| + sup t∈R + 1 -e -t(Re( √ λ)-ν) Re( √ λ) -ν + 1 Re( √ λ) + ν R E 2 |λ| 1 p 1/p (Re( √ λ) -ν) 1/p 1 q 1/q (Re( √ λ) + ν) 1/q R E 2 |λ| + 2 Re( √ λ) -ν R E 2 |λ| 2 Re( √ λ) -ν R E |λ| . Let λ = |λ|e i arg(λ) ∈ Σ L 1 , then | arg(λ)| π -2ε L 1 . Thus Re( √ λ) -ν |λ| cos arg(λ) 2 -ν |λ| cos π 2 -ε L 1 -ν |λ| sin (ε L 1 ) - |λ| 2 sin (ε L 1 ) |λ| 2 sin (ε L 1 ) .
Therefore, setting

M L 1 = 4 sin (ε L 1 )
> 0 such that

V E M L 1 |λ| R E . ( 11 
)

Study of operator L 2

In this section, in view to determine the spectral properties of L 2 , since L 2 = -A, we will study the spectral properties of A.

We focus ourselves, for λ 0, on the following spectral equation

AΨ -λΨ = F, ( 12 
)
which writes

   0 1 - ∂ 2 ∂θ 2 + 1 2 -2 ∂ 2 ∂θ 2 -1    ψ 1 ψ 2 -λ ψ 1 ψ 2 = F 1 F 2 ,
with F 1 ∈ W 2,p 0 (0, ω) and F 2 ∈ L p (0, ω). We have to find the unique couple (ψ 1 , ψ 2 ) ∈ W 4,p (0, ω) ∩ W 2,p 0 (0, ω) × W 2,p 0 (0, ω), which satisfies the following system

   ψ 2 -λψ 1 = F 1 - ∂ 4 ∂θ 4 ψ 1 -2 ∂ 2 ∂θ 2 ψ 1 -ψ 1 -2 ∂ 2 ∂θ 2 ψ 2 + 2ψ 2 -λψ 2 = F 2 .
Thus, we first have to solve

     - ∂ 4 ∂θ 4 ψ 1 -2 ∂ 2 ∂θ 2 ψ 1 -ψ 1 -2 ∂ 2 ∂θ 2 (λψ 1 + F 1 ) + (2 -λ)(λψ 1 + F 1 ) = F 2 ψ 1 ∈ W 4,p (0, ω) ∩ W 2,p 0 (0, ω), that is    -ψ (4) 1 -2(1 + λ)ψ 1 -(λ -1) 2 ψ 1 = F 2 + 2F 1 + (λ -2)F 1 ψ 1 (0) = ψ 1 (ω) = ψ 1 (0) = ψ 1 (ω) = 0. Set G λ = -F 2 -2(F 1 -F 1 )
-λF 1 , it follows that the previous system writes

   ψ (4) 1 + 2(λ + 1)ψ 1 + (λ -1) 2 ψ 1 = G λ ψ 1 (0) = ψ 1 (ω) = ψ 1 (0) = ψ 1 (ω) = 0. (13)
Then, the characteristic equation

χ 4 + 2 (1 + λ) χ 2 + (λ -1) 2 = 0,
admits, for λ < 0, the following four distinct solutions

   α 1 = √ -λ + i, α 3 = -α 1 α 2 = √ -λ -i, α 4 = -α 2 , ( 14 
)
and for λ = 0, two double solutions that are i and -i.

We have to distinguish the two cases : λ = 0 and λ < 0.

Case

λ = 0 : Invertibility of A Proposition 3.2.
A is invertible with bounded inverse i.e. 0 ∈ ρ(A) and there exists ε 0 > 0, such that B(0, ε 0 ) ⊂ ρ(A).

Proof. Here λ = 0. We have to solve [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF]. This is equivalent to solve (13) which writes as

   ψ (4) 1 + 2ψ 1 + ψ 1 = G 0 ψ 1 (0) = ψ 1 (ω) = ψ 1 (0) = ψ 1 (ω) = 0. (15) 
From [START_REF] Thorel | Operational approach for biharmonic equations in L p -spaces[END_REF], Theorem 2.8, statement 2., there exists a unique classical solution of problem [START_REF] Labbas | Generation of analytic semigroup for some generalized diffusion operators in Lp-spaces[END_REF]. Thus, using the closed graph theorem, there exists C 1 > 0 such that

ψ 1 L p (0,ω) C 1 G 1 L p (0,ω) C 1 F 2 L p (0,ω) + 2 F 1 W 2,p (0,ω) 2C 1 F X ,
and from the Poincaré inequality, there exists C ω > 0 such that

ψ 1 W 2,p 0 (0,ω) C ω ψ 1 L p (0,ω) 2C 1 C ω F X .
Finally, since ψ 2 = F 1 , then we have

ψ 2 L p (0,ω) = F 1 L p (0,ω) F 2 L p (0,ω) + F 1 W 2,p (0,ω) = F X .
Therefore, there exists a unique solution Ψ of AΨ = F with Ψ X (1 + 2C 1 C ω ) F X , from which we deduce that there exists ε 0 > 0, such that B(0, ε 0 ) ⊂ ρ(A).

Case λ < 0 : Spectral study of A

In order to prove Proposition 3.9, we first have to state the following technical results.

Lemma 3.3. Let α ∈ C \ {0}, a, b ∈ R with a < b and f ∈ W 2,p 0 (a, b). For all x ∈ [a, b], we set K(x) = x a e -(x-s)α f (s) ds + b x e -(s-x)α f (s) ds.
Then, we have

K(x) = 2 α f (x) + 1 α 2 x a e -(x-s)α f (s) ds + 1 α 2 b x e -(s-x)α f (s) ds.
Proof. The result is easily obtained by two integrations by parts.

Proposition 3.4. For any λ < 0 problem (13) has a unique solution given by

ψ 1 (θ) := e -θα 2 (β 1 + β 2 + β 3 + β 4 ) + e -(ω-θ)α 2 (β 3 + β 4 -β 1 -β 2 ) + S(θ) + e -θα 1 -e -θα 2 (β 2 + β 4 ) + e -(ω-θ)α 1 -e -(ω-θ)α 2 (β 4 -β 2 ), (16) 
where

                           β 1 = 1 4i U -1 - 1 -e -ωα 1 1 -e -ωα 2 (J(0) -J(ω)) β 2 = - 1 4i U -1 -(J(0) -J(ω)) β 3 = - 1 4i U -1 + 1 + e -ωα 1 1 + e -ωα 2 (J(0) + J(ω)) β 4 = 1 4i U -1 + (J(0) + J(ω)) , (17) 
with

   U -:= 1 -e -2ω √ -λ -2ω √ -λ e -ω √ -λ U + := 1 -e -2ω √ -λ + 2ω √ -λ e -ω √ -λ , ( 18 
)
and S is a particular solution of the equation of problem [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF] which is given, for all θ ∈ [0, ω], by

S(θ) := e -θα 2 2α 2 (1 -e -2ωα 2 ) J(0) -e -ωα 2 J(ω) - λ α 2 1 α 2 2 F 1 (θ) + e -(ω-θ)α 2 2α 2 (1 -e -2ωα 2 ) J(ω) -e -ωα 2 J(0) - 1 2α 2 J(θ), (19) 
with

J(θ) := θ 0 e -(θ-s)α 2 v(s) ds + ω θ e -(s-θ)α 2 v(s) ds, ( 20 
)
where

v(θ) := e -θα 1 2α 1 (1 -e -2ωα 1 ) I(0) -e -ωα 1 I(ω) + λ α 2 1 α 2 2 F 1 (θ) + e -(ω-θ)α 1 2α 1 (1 -e -2ωα 1 ) I(ω) -e -ωα 1 I(0) - 1 2α 1 I(θ), (21) 
and

I(θ) = θ 0 e -(θ-s)α 1 -F 2 -2(F 1 -F 1 ) + λ α 2 1 F 1 (s) ds + ω θ e -(s-θ)α 1 -F 2 -2(F 1 -F 1 ) + λ α 2 1 F 1 (s) ds. ( 22 
)
Proof. In order to apply results obtained in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] and [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], we set

L -= -α 1 I, M = -α 2 I, r -= α 2 1 -α 2 2 , a = 0 and b = ω. Then, problem (13) 
reads as

   ψ (4) 1 -(L 2 -+ M 2 )ψ 1 + L 2 -M 2 ψ 1 = G λ ψ 1 (0) = ψ 1 (ω) = ψ 1 (0) = ψ 1 (ω) = 0.
From [START_REF] Labbas | On the regularity of a generalized diffusion problem arising in population dynamics set in a cylindrical domain[END_REF], there exists a unique solution whose representation formula is explicitly given in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] by ( 14)-( 15)-( 16). This representation formula shows that ψ 1 writes as in [START_REF] Labbas | On the resolution of the heat equation with discontinuous coefficients[END_REF], with β 1 , β 2 , β 3 , β 4 given by [START_REF] Labbas | Smoothness of the solution of a fourth order parabolic equation in a polygonal domain[END_REF] and

S(θ) = 1 2α 2 e -θα 2 Z ω 0 e -sα 2 v 0 (s) ds + 1 2α 2 e -(ω-θ)α 2 Z ω 0 e -(ω-s)α 2 v 0 (s) ds - 1 2α 2 θ 0 e -(θ-s)α 2 v 0 (s) ds - 1 2α 2 ω θ e -(s-θ)α 2 v 0 (s) ds - 1 2α 2 e -θα 2 Ze -ωα 2 ω 0 e -(ω-s)α 2 v 0 (s) ds - 1 2α 2 e -(ω-θ)α 2 Ze -ωα 2 ω 0 e -sα 2 v 0 (s) ds, θ ∈ [0, ω], (23) 
where

v 0 (θ) := 1 2α 1 e -θα 1 W ω 0 e -sα 1 G λ (s) ds + 1 2α 1 e -(ω-θ)α 1 W ω 0 e -(ω-s)α 1 G λ (s) ds - 1 2α 1 e -θα 1 W e -ωα 1 ω 0 e -(ω-s)α 1 G λ (s) ds - 1 2α 1 e -(ω-θ)α 1 W e -ωα 1 ω 0 e -sα 1 G λ (s) ds - 1 2α 1 I 1 (θ), θ ∈ [0, ω], (24) 
with Z := 1 -e -2ωα 2 -1 , W := 1 -e -2ωα 1 -1 and

I 1 (θ) = θ 0 e -(θ-s)α 1 G λ (s) ds + ω θ e -(s-θ)α 1 G λ (s) ds. (25) Then, since G λ = -F 2 -2(F 1 -F 1 ) -λF 1 , we have I 1 (θ) = θ 0 e -(θ-s)α 1 -F 2 -2(F 1 -F 1 ) (s) ds + ω θ e -(s-θ)α 1 -F 2 -2(F 1 -F 1 ) (s) ds -λ θ 0 e -(θ-s)α 1 F 1 (s) ds -λ ω θ e -(s-θ)α 1 F 1 (s) ds.
Then, from Lemma 3.3, since F 1 ∈ W 2,p 0 (0, ω), it follows

I 1 (θ) = θ 0 e -(θ-s)α 1 -F 2 -2(F 1 -F 1 ) (s) ds + ω θ e -(s-θ)α 1 -F 2 -2(F 1 -F 1 ) (s) ds - 2λ α 1 F 1 (θ) + λ α 2 1 θ 0 e -(θ-s)α 1 F 1 (s) ds + ω θ e -(s-θ)α 1 F 1 (s) ds = - 2λ α 1 F 1 (θ) + θ 0 e -(θ-s)α 1 -F 2 -2(F 1 -F 1 ) + λ α 2 1 F 1 (s) ds + ω θ e -(s-θ)α 1 -F 2 -2(F 1 -F 1 ) + λ α 2 1 F 1 (s) ds.
Hence I, given by ( 22), satisfies

I(θ) = I 1 (θ) + 2λ α 1 F 1 (θ). ( 26 
)
Note that, from (25) and (26), we have

ω 0 e -sα 1 G λ (s) ds = I 1 (0) = I(0) and ω 0 e -(ω-s)α 1 G λ (s) ds = I 1 (ω) = I(ω).
Therefore, from (24), for all θ ∈ [0, ω], we deduce that

v 0 (θ) = 1 2α 1 e -θα 1 W I(0) -e -ωα 1 I(ω) + 1 2α 1 e -(ω-θ)α 1 W I(ω) -e -ωα 1 I(0) - 1 2α 1 I 1 (θ) = 1 2α 1 e -θα 1 W I(0) -e -ωα 1 I(ω) + λ α 2 1 F 1 (θ) + 1 2α 1 e -(ω-θ)α 1 W I(ω) -e -ωα 1 I(0) - 1 2α 1 I(θ).
Moreover, setting

v 1 = v 0 - λ α 2 1 F 1 . ( 27 
)
Thus, for all θ ∈ [0, ω], noting

J 1 (θ) = θ 0 e -(θ-s)α 2 v 0 (s) ds + ω θ e -(s-θ)α 2 v 0 (s) ds, (28) 
from ( 27) and Lemma 3.3, since F 1 ∈ W2,p 0 (0, ω), we obtain

J 1 (θ) = θ 0 e -(θ-s)α 2 v 1 (s) ds + ω θ e -(s-θ)α 2 v 1 (s) ds + λ α 2 1 θ 0 e -(θ-s)α 2 F 1 (s) ds + ω θ e -(s-θ)α 2 F 1 (s) ds , hence J 1 (θ) = θ 0 e -(θ-s)α 2 v 1 (s) ds + ω θ e -(s-θ)α 2 v 1 (s) ds + 2λ α 2 1 α 2 F 1 (θ) + λ α 2 1 α 2 2 θ 0 e -(θ-s)α 2 F 1 (s) ds + ω θ e -(s-θ)α 2 F 1 (s) ds = θ 0 e -(θ-s)α 2 v 1 (s) + λ α 2 1 α 2 2 F 1 (s) ds + ω θ e -(s-θ)α 2 v 1 (s) + λ α 2 1 α 2 2 F 1 (s) ds + 2λ α 2 1 α 2 F 1 (θ).
From ( 27), for all θ ∈ [0, ω], we deduce that v given by ( 21) and J given by ( 20), satisfy

v(θ) = v 1 (θ) + λ α 2 1 α 2 2 F 1 (θ),
and

J(θ) = J 1 (θ) - 2λ α 2 1 α 2 F 1 (θ). (29) 
Note that, from ( 28) and ( 29), one has ω 0 e -sα 2 v 0 (s) ds = J 1 (0) = J(0) and

ω 0 e -(ω-s)α 2 v 0 (s) ds = J 1 (ω) = J(ω).
Finally, from (20), ( 23) and ( 29), for all θ ∈ [0, ω], we deduce that

S(θ) = 1 2α 2 e -θα 2 Z J(0) -e -ωα 2 J(ω) + 1 2α 2 e -(ω-θ)α 2 Z J(ω) -e -ωα 2 J(0) - 1 2α 2 J 1 (θ),
which leads to [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF]. The constants β i , i = 1, 2, 3, 4, are given by ( 15) and ( 16) in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF]. U -, V -and F -(a) ± F -(γ) in [START_REF] Labbas | Generalized linear models for population dynamics in two juxtaposed habitats[END_REF] are replaced here by U -, U + and S (0) ± S (ω). So, in order to compute constants β i , we now make explicit U -, U + and S (0) ± S (ω).

U -= 1 -e -ω(α 1 +α 2 ) -(α 2 1 -α 2 2 ) -1 (α 1 + α 2 ) 2 e -ωα 2 -e -ωα 1 = 1 -e -2ω √ -λ + i √ -λ e -ω( √ -λ-i) -e -ω( √ -λ+i) = 1 -e -2ω √ -λ + 2i √ -λ e -ω √ -λ e ωi -e -ωi 2 = 1 -e -2ω √ -λ -2 √ -λ e -ω √ -λ sin(ω),
and

U + = 1 -e -ω(α 1 +α 2 ) + (α 2 1 -α 2
From ( 19), it follows that

S (θ) = - 1 2 e -θα 2 Z J(0) -e -ωα 2 J(ω) - λ α 2 1 α 2 2 F 1 (θ) + 1 2 e -(ω-θ)α 2 Z J(ω) -e -ωα 2 J(0) - 1 2α 2 J (θ) = - 1 2 e -θα 2 Z J(0) -e -ωα 2 J(ω) + 1 2 e -(ω-θ)α 2 Z J(ω) -e -ωα 2 J(0) + 1 2 θ 0 e -(θ-s)α 2 v(s) ds - ω θ e -(s-θ)α 2 v(s) ds - λ α 2 1 α 2 2 F 1 (θ),
from which we deduce that

S (0) + S (ω) = - J(0) -J(ω) (1 -e -ωα 2 ) and S (0) -S (ω) = - J(0) + J(ω) (1 + e -ωα 2
) .

This prove that constants β i , i = 1, 2, 3, 4, are given by ( 17).

Remark 3.5. Since 0 < sin(ω) < ω, for all ω > 0, then we have

U -= 1 -e -2ω √ -λ -2 √ -λ e -ω √ -λ sin(ω) 1 -e -2ω √ -λ -2ω √ -λ e -ω √ -λ ,
and

U + = 1 -e -2ω √ -λ + 2 √ -λ e -ω √ -λ sin(ω) 1 -e -2ω √ -λ -2ω √ -λ e -ω √ -λ . Let x > 0. Setting f (x) = 1 -e -2x -2xe -x , we have f (x) = 2e -2x -2e -x + 2xe -x = 2e -x e -x + x -1 > 0.
It follows that f (x) > f (0) = 0. Finally, for all ω, √ -λ > 0, we deduce that

U -1 -e -2ω √ -λ -2ω √ -λe -ω √ -λ = f (ω √ -λ) > 0, (30) 
and

U + 1 -e -2ω √ -λ -2ω √ -λe -ω √ -λ = f (ω √ -λ) > 0. ( 31 
)
Lemma 3.6. Let F 1 ∈ W 2,p 0 (0, ω) and F 2 ∈ L p (0, ω). Consider ε 0 defined in Proposition 3.2, then for all λ -ε 0 , J, v and I, given by ( 20), ( 21) and ( 22), satisfy the following estimates

1. I L p (0,ω) 2 √ -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) . 2. |I(0)| + |I(ω)| 2 √ -λ 1-1/p F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) . 3. v L p (0,ω) M 1 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) ,
where

M 1 = 2 + 2 1-e -2ω √ ε 0 . 4. J L p (0,ω) 2 √ -λ v L p (0,ω) . 5. |J(0)| + |J(ω)| 2 √ -λ 1-1/p v L p (0,ω) .
Proof.

1. From ( 14) and ( 22), we obtain

I L p (0,ω) sup θ∈[0,ω] θ 0 e -(θ-s) √ -λ ds + ω θ e -(s-θ) √ -λ ds 2F 1 -F 2 L p (0,ω) + sup θ∈[0,ω] θ 0 e -(θ-s) √ -λ ds + ω θ e -(s-θ) √ -λ ds λ α 2 1 -2 F 1 L p (0,ω) sup θ∈[0,ω] 1 -e -θ √ -λ √ -λ + 1 -e -(ω-θ) √ -λ √ -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 sup θ∈[0,ω] 1 -e -θ √ -λ √ -λ + 1 -e -(ω-θ) √ -λ √ -λ F 1 L p (0,ω) 2 √ -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) .
2. Due to ( 14) and ( 22), from the Hölder inequality, it follows

|I(0)| + |I(ω)| ω 0 e -s √ -λ -F 2 (s) -2(F 1 (s) -F 1 (s)) + λ α 2 1 F 1 (s) ds + ω 0 e -(ω-s) √ -λ -F 2 (s) -2(F 1 (s) -F 1 (s)) + λ α 2 1 F 1 (s) ds ω 0 e -q(ω-s) √ -λ ds 1/q F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) + ω 0 e -sq √ -λ ds 1/q F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2 1 -e -ωq √ -λ 1/q q 1/q √ -λ 1/q F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2 √ -λ 1-1/p F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) .
3. From ( 14) and ( 21), since

|α 1 | = |α 2 | = √ 1 -λ > √ -λ, we have v L p (0,ω) |I(0)| + |I(ω)| 2 √ 1 -λ 1 -e -2ω √ ε 0 ω 0 e -pθ √ -λ dθ 1/p + -λ (1 -λ) 2 F 1 L p (0,ω) + |I(0)| + |I(ω)| 2 √ 1 -λ 1 -e -2ω √ ε 0 ω 0 e -p(ω-θ) √ -λ dθ 1/p + 1 2 √ 1 -λ I L p (0,ω) (|I(0)| + |I(ω)|) √ 1 -λ √ -λ 1/p p 1/p 1 -e -2ω √ ε 0 + 1 2 √ 1 -λ I L p (0,ω) + 1 1 -λ F 1 L p (0,ω) , hence v L p (0,ω) 2 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) √ 1 -λ √ -λ 1/p+1/q q 1/q p 1/p 1 -e -2ω √ ε 0 + F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) √ 1 -λ √ -λ + 1 1 -λ F 1 L p (0,ω) M 1 √ 1 -λ √ -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) .
4. From ( 14) and ( 20), we have

J L p (0,ω) sup θ∈[0,ω] θ 0 e -(θ-s) √ -λ ds + ω θ e -(s-θ) √ -λ ds v L p (0,ω) sup θ∈[0,ω] 1 -e -θ √ -λ √ -λ + 1 -e -(ω-θ) √ -λ √ -λ v L p (0,ω) 2 √ -λ v L p (0,ω) .
5. Due to ( 14) and ( 20), from the Hölder inequality, we deduce that

|J(0)| + |J(ω)| ω 0 e -s √ -λ |v(s)| ds + ω 0 e -(ω-s) √ -λ |v(s)| ds ω 0 e -sq √ -λ ds 1/q + ω 0 e -(ω-s)q √ -λ ds 1/q v L p (0,ω) 2 1 -e -ωq √ -λ 1/q q 1/q √ -λ 1/q v L p (0,ω) 2 √ -λ 1-1/p v L p (0,ω) .
Lemma 3.7. Let λ < 0. Then, we have

ω 0 e -θα 1 -e -θα 2 p dθ 1/p 4 √ -λ 1+1/p ,
and

ω 0 e -(ω-θ)α 1 -e -(ω-θ)α 2 p dθ 1/p 4 √ -λ 1+1/p .
Proof. For x 0, we have e -px 2 x p < 1, so

+∞ 0 e -px x p dx = +∞ 0 e -px 2 e -px 2 x p dx +∞ 0 e -px 2 dx = 2 p .
Then, from ( 14), we have

ω 0 e -θα 1 -e -θα 2 p dθ = ω 0 e -θ √ -λ e -θi -e θi p dθ = 2 p ω 0 e -pθ √ -λ | sin(θ)| p dθ, hence, setting x = θ √ -λ, it follows that ω 0 e -θα 1 -e -θα 2 p dθ = 2 p ω √ -λ 0 e -px sin x √ -λ p dx √ -λ 2 p √ -λ ω √ -λ 0 e -px x √ -λ p dx 2 p √ -λ p+1 +∞ 0 e -px x p dx 2 p+1 p √ -λ p+1 2 2p √ -λ p+1 .
The second estimate is obtained by change of variable, taking ω -θ instead of θ.

Lemma 3.8. Let F 1 ∈ W 2,p 0 (0, ω) and F 2 ∈ L p (0, ω). Consider ε 0 defined in Proposition 3.2, then for all λ -ε 0 , β 1 , β 2 , β 3 and β 4 , defined by ( 17), satisfy

max (|β 1 + β 2 |, |β 3 + β 4 |) M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) ω(-λ) √ -λ 2-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 1 -e -ω √ ε 0 , and max (|β 2 |, |β 4 |) M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2(-λ) √ -λ 1-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 ,
where

M 1 = 2 + 2 1-e -2ω √ ε 0 .
Proof. Recall that β i , i = 1, 2, 3, 4, depends on U -1 -and U -1 + . From (30) and (31), it follows

U -f (ω √ -λ) f (ω √ ε 0 ) = 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 > 0,
and

U + f (ω √ -λ) f (ω √ ε 0 ) = 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 > 0.
Thus, we deduce

U -1 - 1 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 and U -1 + 1 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 .
Therefore, from (17) and Lemma 3.6, we have

|β 1 + β 2 | |J(0)| + |J(ω)| 4 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 1 -e -ωα 1 1 -e -ωα 2 -1 v L p (0,ω) 2 √ -λ 1-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 e -ωα 2 -e -ωα 1 1 -e -ωα 2 M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2(-λ) √ -λ 1-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 2e -ω √ -λ 1 -e -ω √ ε 0 M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) ω(-λ) √ -λ 2-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 1 -e -ω √ ε 0
and similarly

|β 3 + β 4 | |J(0)| + |J(ω)| 4 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 1 - 1 + e -ωα 1 1 + e -ωα 2 M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) ω(-λ) √ -λ 2-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 1 -e -ω √ ε 0 .
In the same way, we obtain

|β 2 | M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2(-λ) √ -λ 1-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 ,
and

|β 4 | M 1 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 2(-λ) √ -λ 1-1/p 1 -e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 .
The following proposition will allow us to use the well-defined operator -√ A which, generates a uniformly bounded analytic semigroup e -s √ A s 0

. Proposition 3.9. A is closed and densely defined in X. Moreover, there exists a constant M > 0 such that for all λ 0, operator A -λI is invertible with bounded inverse and

(A -λI) -1 L(X) M 1 + |λ| . Proof. It is clear that D(0, ω) × D(0, ω) ⊂ D(A) ⊂ X = W 2,p 0 (0, ω) × L p (0, ω)
, where D(0, ω) is the set of C ∞ -functions with compact support in (0, ω). Since D(0, ω) is dense in each spaces W 2,p 0 (0, ω) and L p (0, ω) for their respective norms, then D(A) is dense.

Let F 1 ∈ W 2,p 0 (0, ω) and F 2 ∈ L p (0, ω). From Proposition 3.2, 0 ∈ ρ(A). From Proposition 3.4, for all λ < 0, there exist a unique couple

(ψ 1 , ψ 2 ) ∈ W 4,p (0, ω) ∩ W 2,p 0 (0, ω) × W 2,p 0 (0, ω) which satisfies ψ 2 = λψ 1 + F 1 ψ (4) 1 + 2λψ 1 + λ 2 ψ 1 = G λ , (32) 
where

G λ = -F 2 -2(F 1 -F 1 )-λF 1 . Recall that Ψ = (A-λI) -1 F reads as (32), then R -⊂ ρ(A), thus A is closed.
Moreover, ψ 1 is given by ( 16)-( 17)-( 19) and ψ 2 is given by

ψ 2 (θ) := λe -θα 2 (β 1 + β 2 + β 3 + β 4 ) + λe -(ω-θ)α 2 (β 3 + β 4 -β 1 -β 2 ) +λ e -θα 1 -e -θα 2 (β 2 + β 4 ) + λ e -(ω-θ)α 1 -e -(ω-θ)α 2 (β 4 -β 2 ) +λS(θ) + F 1 (θ), (33) 
where β i , i = 1, 2, 3, 4 are given by ( 17)- [START_REF] Mihlin | On the multipliers of Fourier integrals[END_REF]. From [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], λS(θ) + F 1 (θ) is given by

λS(θ) + F 1 (θ) = λ 2α 2 (1 -e -2ωα 2 )
e -θα 2 J(0) -e -ωα 2 J(ω)

+ λ 2α 2 (1 -e -2ωα 2 ) e -(ω-θ)α 2 J(ω) -e -ωα 2 J(0) - λ 2 α 2 1 α 2 2 F 1 (θ) + F 1 (θ) - λ 2α 2 J(θ), (34) 
with J(θ) given by [START_REF] Prüss | Imaginary powers of elliptic second order differential operators in L p -spaces[END_REF]. Our aim is to prove that, for all λ 0, there exists M > 0, such that

(A -λI) -1 F L(X) M 1 + |λ| F X ,
where

F X = F 1 F 2 X = F 1 W 2,p 0 (0,ω) + F 2 L p (0,ω) . ( 35 
)
To this end, we consider that λ ∈ (-∞, -ε 0 ), where ε 0 is defined in Proposition 3.2. We first study ψ 1 . From ( 19), for a.e. θ ∈ [0, ω], we have

S (θ) = α 2 e -θα 2 2 (1 -e -2ωα 2 ) J(0) -e -ωα 2 J(ω) - λ α 2 1 α 2 2 F 1 (θ) + α 2 e -(ω-θ)α 2 2 (1 -e -2ωα 2 ) J(ω) -e -ωα 2 J(0) - 1 2α 2 J (θ),
and from [START_REF] Prüss | Imaginary powers of elliptic second order differential operators in L p -spaces[END_REF], we obtain

J (θ) = α 2 2 J(θ) -2α 2 v(θ), hence S (θ) = α 2 e -θα 2 2 (1 -e -2ωα 2 ) J(0) -e -ωα 2 J(ω) - λ α 2 1 α 2 2 F 1 (θ) + α 2 e -(ω-θ)α 2 2 (1 -e -2ωα 2 ) J(ω) -e -ωα 2 J(0) - α 2 2 J(θ) + v(θ), Then, since α 1 = √ -λ + i and α 2 = √ -λ -i, we have |e -ωα 1 | = |e -ωα 2 | = e -ω √ -λ 1 with -λ ε 0 , thus S L p (0,ω) √ 1 -λ (|J(0)| + |J(ω)|) 2 1 -e -2ω √ ε 0 ω 0 e -pθ √ -λ dθ 1/p + √ 1 -λ (|J(0)| + |J(ω)|) 2 1 -e -2ω √ ε 0 ω 0 e -p(ω-θ) √ -λ dθ 1/p + -λ (1 -λ) 2 F 1 L p (0,ω) + √ 1 -λ 2 J L p (0,ω) + v L p (0,ω) √ 1 -λ (|J(0)| + |J(ω)|) √ -λ 1/p 1 -e -2ω √ ε 0 + 1 1 -λ F 1 L p (0,ω) + √ 1 -λ 2 J L p (0,ω) + v L p (0,ω) ,
From Lemma 3.6, we have

S L p (0,ω) 2 √ 1 -λ √ -λ 1-1/p+1/p 1 -e -2ω √ ε 0 v L p (0,ω) + √ 1 -λ √ -λ v L p (0,ω) + v L p (0,ω) + 1 1 -λ F 1 L p (0,ω) 2M 1 -λ 1 -e -2ω √ ε 0 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) + 2M 1 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) + 1 1 -λ F 1 L p (0,ω) .
Finally, we obtain

S L p (0,ω) M 2 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) , ( 36 
)
where

M 2 = 2M 1
1-e -2ω √ ε 0 + 2M 1 + 1. Now, we consider ψ 1 -S which reads as

ψ 1 (θ) -S (θ) = α 2 2 e -θα 2 (β 1 + β 2 + β 3 + β 4 ) + α 2 2 e -(ω-θ)α 2 (β 3 + β 4 -β 1 -β 2 ) +α 2 2 e -θα 1 -e -θα 2 (β 2 + β 4 ) +α 2 2 e -(ω-θ)α 1 -e -(ω-θ)α 2 (β 4 -β 2 ),
where β i , i = 1, 2, 3, 4 are given by ( 17) and [START_REF] Mihlin | On the multipliers of Fourier integrals[END_REF]. Then, we have

ψ 1 -S L p (0,ω) (1 -λ)(|β 1 + β 2 | + |β 3 + β 4 |) ω 0 e -pθ √ -λ dθ 1/p +(1 -λ)(|β 1 + β 2 | + |β 3 + β 4 |) ω 0 e -p(ω-θ) √ -λ dθ 1/p +(1 -λ)(|β 2 | + |β 4 |) ω 0 e -θα 1 -e -θα 2 p dθ 1/p +(1 -λ)(|β 2 | + |β 4 |) ω 0 e -(ω-θ)α 1 -e -(ω-θ)α 2 p dθ 1/p . Since -λ ε 0 > 0, we have 1 -λ -λ = 1 + 1 -λ 1 + 1 ε 0 ,
and thus, from Lemma 3.7 and Lemma 3.8, we obtain

ψ 1 -S L p (0,ω) 2(1 -λ) (|β 1 + β 2 | + |β 3 + β 4 |) √ -λ 1/p + 8(1 -λ)(|β 2 | + |β 4 |) √ -λ 1+1/p M 3 F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) -λ ,
where

M 3 = 4M 1( 1+ 1 ω ) 1+ 1 ε 0 (1-e -2ω √ ε 0 -2ω √ ε 0 e -ω √ ε 0 )(1-e -ω √ ε 0 ) .
From (36), it follows that

ψ 1 L p (0,ω) ψ 1 -S L p (0,ω) + S L p (0,ω) M 3 + M 2 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 3(M 2 + M 3 ) -λ F X .
From the Poincaré inequality, there exists C ω > 0 such that

ψ 1 W 2,p 0 (0,ω) C ω ψ 1 L p (0,ω) 3C ω (M 2 + M 3 ) -λ F X . ( 37 
)
Now, we focus ourselves on ψ 2 L p (0,ω) . As previously, by (33), using Lemma 3.7 and Lemma 3.8, we obtain

ψ 2 L p (0,ω) |λ|(|β 1 + β 2 | + |β 3 + β 4 |) ω 0 e -pθ √ -λ dθ 1/p +|λ|(|β 1 + β 2 | + |β 3 + β 4 |) ω 0 e -p(ω-θ) √ -λ dθ 1/p +|λ|(|β 2 | + |β 4 |) ω 0 e -θα 1 -e -θα 2 p dθ 1/p +|λ|(|β 4 | + |β 2 |) ω 0 e -(ω-θ)α 1 -e -(ω-θ)α 2 p dθ 1/p + λS + F 1 L p (0,ω) M 2 + M 3 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) + λS + F 1 L p (0,ω) .
Moreover, from (34) and Lemma 3.6, we deduce

λS + F 1 L p (0,ω) -λ (|J(0)| + |J(ω)|) 2 √ 1 -λ 1 -e -2ω √ ε 0 ω 0 e -pθ √ -λ dθ 1/p + -λ (|J(0)| + |J(ω)|) 2 √ 1 -λ 1 -e -2ω √ ε 0 ω 0 e -p(ω-θ) √ -λ dθ 1/p + 1 - λ 2 α 2 1 α 2 2 F 1 L p (0,ω) + -λ 2 √ 1 -λ J L p (0,ω) -λ (|J(0)| + |J(ω)|) √ -λ 1+1/p 1 -e -2ω √ ε 0 + 1 - λ 2 (1 -λ) 2 F 1 L p (0,ω) + v L p (0,ω) -2λ √ -λ 2 1 -e -2ω √ ε 0 v L p (0,ω) + 1 -2λ (1 -λ) 2 F 1 L p (0,ω) + v L p (0,ω) 2 1 -e -2ω √ ε 0 + 1 v L p (0,ω) + 1 λ 2 + 1 -λ F 1 L p (0,ω) 2 1 -e -2ω √ ε 0 + 1 v L p (0,ω) + 1 ε 0 + 1 -λ F 1 L p (0,ω) .
Then, from Lemma 3.6, we obtain

λS + F 1 L p (0,ω) M 4 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) ,
where

M 4 = 2 1-e -2ω √ ε 0 + 1 M 1 + 1 ε 0 + 1. Thus, it follows that ψ 2 L p (0,ω) M 2 + M 3 + M 4 -λ F 2 L p (0,ω) + 2 F 1 L p (0,ω) + 3 F 1 L p (0,ω) 3 (M 2 + M 3 + M 4 ) -λ F X .
Finally, from (37), we have

(A -λI) -1 F X = ψ 1 W 2,p 0 (0,ω) + ψ 2 L p (0,ω) M |λ| F X ,
where M = 3 ((C ω + 1)(M 2 + M 3 ) + M 4 ), which gives the result since 0 ∈ ρ(A) from Proposition 3.2.

Since -A is the realization of L 2 , we deduce the following corollary.

Corollary 3.10. There exist ε L 2 ∈ (0, π) small enough and M L 2 > 0 such that

∀ z ∈ Σ L 2 := B(0, ε 0 ) ∪ {z ∈ C \ {0} : | arg(z)| ε L 2 }, we have (L 2 -zI) -1 L(X) M L 2 1 + |z| .
Therefore, assumption (H 1 ) in Section 2.2 is verified for L 2 with

θ L 2 = π -ε L 2 . ( 38 
) Remark 3.11. A is anti-compact; since σ(-L 2 ) = σ(A) then σ(-L 2
) is uniquely composed by isolated eigenvalues (λ j ) j 1 such that |λ j | → +∞, see [START_REF] Kato | Perturbation theory for linear operators[END_REF], Theorem 6.29, p. 187. More precisely, the calculus of the resolvent operator (A -λI) -1 requires that, for all λ ∈ C \ R + , U -and U + defined by ( 18) do not vanish. Since

U -U + = 0 is equivalent to sinh(ω √ -λ) -ω √ -λ sinh(ω √ -λ) + ω √ -λ = 0,
then, using (z j ) j 1 defined in Section 1, we deduce that

∀ j 1, λ j = - z 2 j ω 2 ∈ C \ R + .
Now, we prove that operator A has Bounded Imaginary Powers, see Definition 2.4.

Proposition 3.12. A ∈ BIP (X, θ A ), for any θ A ∈ (0, π).

Proof. This proof follow the same steps than those in the proofs of Proposition 3.1 in [START_REF] Labbas | On the resolution of the heat equation with discontinuous coefficients[END_REF] or Proposition 4.1 in [START_REF] Labbas | Smoothness of the solution of a fourth order parabolic equation in a polygonal domain[END_REF]. From Proposition 3.9, we deduce that A is a sectorial operator and from Proposition 3.2, we have 0 ∈ ρ(A). Moreover, since

X = W 2,p 0 (0, ω) × L p (0, ω) is a reflexive space, from [9], Proposition 2.1.1, h), statement i) of Definition 2.4 holds with T 2 = A.
For all λ > 0, we have

A ψ 1 ψ 2 + λ ψ 1 ψ 2 = F 1 F 2 ,
which writes

         ψ 2 = F 1 -λψ 1 ψ (4) 1 + 2(1 -λ)ψ 1 -(λ + 1) 2 ψ 1 = G λ ψ 1 (0) = ψ 1 (ω) = ψ 1 (0) = ψ 1 (ω) = 0, (39) 
where

G λ = -F 2 -2(F 1 -F 1 ) + λF 1 .
From Proposition 3.4, the explicit expression of the solution to problem (39) is

ψ 1 ψ 2 = (A + λI) -1 F 1 F 2 .
Let ε > 0 and r ∈ R. We have

(A + I) -ε+ir F 1 F 2 (θ) = 1 Γ ε,r +∞ 0 λ -ε+ir (A + I + λI) -1 F 1 F 2 (θ)dλ,
where Γ ε,r = Γ(1 -ε + ir)Γ(ε -ir), see for instance [START_REF] Triebel | Interpolation theory, function Spaces, differential Operators[END_REF], (6), p. 100. Now, we only focus on the first component ψ 1 since calculations are similar for ψ 2 . Moreover, from [START_REF] Seeley | Norms and domains of the complex powers A Z B[END_REF], we only have to study the convolution term, which is the most singular term. In our case, this term is given by

I S (θ) = 1 4α 1 α 2 ω 0 e -|θ-s|α 2 ω 0 e -|s-t|α 1 G λ+1 (t) dtds = 1 4α 1 α 2 ω 0 e -|θ-s|α 2 ω 0 e -|s-t|α 1 -F 2 -2(F 1 -F 1 ) + (λ + 1)F 1 (t) dtds.
Note that, in order to simplify calculations, we have used the convolutions terms given in ( 23) and (24). Moreover, since

F 1 (0) = F 1 (0) = F 2 (0) = F 1 (ω) = F 1 (ω) = F 2 (ω) = 0, we wet G 0 (x) = -F 2 (x) -2F 1 (x) + 2F 1 (x), if x ∈ [0, ω] 0, else, with F 1 (x) = F 1 (x), if x ∈ [0, ω] 0, else,
and

E α (x) = e -|x|α .
It follows that

I ε,r (θ) = 1 Γ ε,r +∞ 0 λ -ε+ir I S (θ) dλ = 1 Γ ε,r +∞ 0 λ -ε+ir 4α 1 α 2 E α 2 E α 1 G 0 + (λ + 1) F 1 (θ) dλ = 1 Γ ε,r +∞ 0 λ -ε+ir 4α 1 α 2 F -1 F E α 2 E α 1 G 0 + (λ + 1) F 1 (ξ) (θ) dλ = F -1 1 Γ ε,r +∞ 0 λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ)F G 0 + (λ + 1) F 1 (ξ) dλ (θ) = F -1 1 Γ ε,r +∞ 0 λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) dλ F G 0 (ξ) (θ) +F -1 1 Γ ε,r +∞ 0 λ -ε+ir (λ + 1) 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) dλ F F 1 (ξ) (θ).
We recall that

F (E α ) (ξ) = 2α α 2 + 4π 2 ξ 2 , and here α 1 = √ λ + 1 + i and α 2 = √ λ + 1 -i. Hence λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) = λ -ε+ir 4α 1 α 2 4α 1 α 2 (α 2 1 + 4π 2 ξ 2 )(α 2 2 + 4π 2 ξ 2 ) = λ -ε+ir α 2 1 α 2 2 + 4π 2 ξ 2 (α 2 1 + α 2 2 ) + 16π 4 ξ 4 = λ -ε+ir λ 2 + 4(1 + 2π 2 ξ 2 )λ + 4(1 + 4π 4 ξ 4 ) = λ -ε+ir (λ + λ 1 )(λ + λ 2 )
,

where

         λ 1 = 2 + 4πξ + 4π 2 ξ 2 = 4π 2 ξ - (1 + i) 2π ξ - (1 -i) 2π λ 2 = 2 -4πξ + 4π 2 ξ 2 = 4π 2 ξ + (1 + i) 2π ξ + (1 -i) 2π .
Thus, since we have

1 (λ + λ 1 )(λ + λ 2 ) = 1 λ 1 -λ 2 - 1 λ + λ 1 + 1 λ + λ 2 , it follows that λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) = 1 8πξ - λ -ε+ir λ + λ 1 + λ -ε+ir λ + λ 2 .
Then, setting

σ 1 = λ λ 1 and σ 2 = λ λ 2 ,
we obtain

+∞ 0 λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) dλ = 1 8πξ - +∞ 0 λ -ε+ir λ + λ 1 dλ + +∞ 0 λ -ε+ir λ + λ 2 dλ = - λ -ε+ir 1 8πξ +∞ 0 σ -ε+ir 1 σ 1 + 1 dσ 1 + λ -ε+ir 2 8πξ +∞ 0 σ -ε+ir 2 σ 2 + 1 dσ 2 .
Moreover, for all z ∈ C \ N -, where N -is the set of negative integer, we have

+∞ 0 σ -z σ + 1 dσ = Γ(z)Γ(1 -z), (40) 
thus, it follows that

+∞ 0 σ -ε+ir σ + 1 dσ = Γ(ε -ir)Γ(1 -ε + ir) = Γ ε,r , (41) hence 1 
Γ ε,r +∞ 0 λ -ε+ir 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) dλ = 1 8πξ Γ ε,r λ -ε+ir 2 -λ -ε+ir 1 Γ ε,r = 1 8πξ λ -ε+ir 2 -λ -ε+ir 1 .
In the same way, we have

λ -ε+ir (λ + 1) 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) = 1 λ 1 -λ 2 - (λ + 1)λ -ε+ir λ + λ 1 + (λ + 1)λ -ε+ir λ + λ 2 = 1 8πξ - λ 1-ε+ir λ + λ 1 + λ 1-ε+ir λ + λ 2 + 1 8πξ - λ -ε+ir λ + λ 1 + λ -ε+ir λ + λ 2 .
Then, setting

σ 1 = λ λ 1 and σ 2 = λ λ 2 , we obtain Υ = +∞ 0 λ -ε+ir (λ + 1) 4α 1 α 2 F (E α 2 ) (ξ)F (E α 1 ) (ξ) dλ = - 1 8πξ +∞ 0 λ -ε+ir λ + λ 1 dλ + 1 8πξ +∞ 0 λ -ε+ir λ + λ 2 dλ - 1 8πξ +∞ 0 λ 1-ε+ir λ + λ 1 dλ + 1 8πξ +∞ 0 λ 1-ε+ir λ + λ 2 dλ = - λ -ε+ir 1 8πξ +∞ 0 σ -ε+ir 1 σ 1 + 1 dσ 1 + λ -ε+ir 2 8πξ +∞ 0 σ -ε+ir 2 σ 2 + 1 dσ 2 - λ 1-ε+ir 1 8πξ +∞ 0 σ 1-ε+ir 1 σ 1 + 1 dσ 1 + λ 1-ε+ir 2 8πξ +∞ 0 σ 1-ε+ir 2 σ 2 + 1 dσ 2 .
Moreover, from (40) and (41), we deduce that

Υ = λ -ε+ir 2 -λ -ε+ir 1 8πξ Γ ε,r + λ -ε+ir 2 -λ -ε+ir 1 8πξ Γ(ε -ir -1)Γ(1 -(ε -ir -1)) = λ -ε+ir 2 -λ -ε+ir 1 2πξ (Γ ε,r + Γ(ε -ir -1)Γ(1 -(ε -ir -1))) .
For all z ∈ C \ Z, we have

Γ(z -1)Γ(1 -(z -1)) = π sin(π(z -1)) = - π sin(πz) = -Γ(z)Γ(1 -z),
Setting z = ε -ir, with ε ∈ (0, 1), it follows that

Γ(ε -ir -1)Γ(1 -(ε -ir -1) = -Γ(ε -ir)Γ(1 -ε + ir) = -Γ ε,r ,
hence Υ = 0. Finally, we obtain that

I ε,r (θ) = F -1 m ε (ξ)F G 0 (ξ) (θ),
where

m ε (ξ) = λ -ε+ir 2 -λ -ε+ir 1 8πξ . Setting m(ξ) := lim ε→0 m ε (ξ) = λ ir 2 -λ ir 1 8πξ ,
due to the Lebesgue's dominated convergence Theorem, it follows that

I 0,r (θ) := lim ε→0 I ε,r (θ) = F -1 m(ξ)F G 0 (ξ) (θ).
Moreover, for all x 1 , x 2 ∈ R, we have Since we have From the Mihlin Theorem, see [START_REF] Mihlin | On the multipliers of Fourier integrals[END_REF], for all γ > 0, there exists C γ,p > 0, such that, for all r ∈ R, we have

e ix 1 -e ix 2 |x 1 -x 2 |,
ξ m (ξ) = 2πξ 2 irλ ir-1 2 (-4π + 8π 2 ξ) -irλ ir-1 1 (4π + 8π 2 ξ) -2πξ λ ir 2 -λ ir 1 64π 2 ξ 2 = ir 32 λ ir-1 2 (-1 + 2πξ) -λ ir-1 1 (1 + 2πξ) - λ ir 2 -λ ir
I 0,r (.) L(X) = F -1 m(ξ)F ( G 0 )(ξ) (.) L(X) C γ,p e γ|r| .
We can treat the others terms using [START_REF] Seeley | Norms and domains of the complex powers A Z B[END_REF] and obtain similar results. Finally, for all γ > 0, there exists a constant C γ,p > 0 such that for all r ∈ R, we obtain

(A + I) ir L(X) C γ,p e γ|r| .
Therefore, taking θ A = γ > 0, we obtain that A + I ∈ BIP (X, θ A ). Finally, using Theorem 2.3, p. 69 in [START_REF] Arendt | Functional calculus, variational methods and Liapunov's theorem[END_REF], we deduce that

A = A + I -I ∈ BIP (X, θ A ).
4 Study of the sum L 1 + L 2

Invertibility of the closure of the sum

In this section, we will apply the results described in Section 2.2. We take

L 1 = M 1 and L 2 = M 2 .
Theorem 4.1. Assume that (3) holds. Then L 1 + L 2 is closable and its closure L 1 + L 2 is invertible.

Proof. Assumption (H 1 ) is satisfied from Proposition 3.1 and Corollary 3.10, with

θ M 1 + θ M 2 = ε L 1 + π -ε L 2 ,
where it suffices to take ε L 2 > ε L 1 in order to obtain θ M 1 + θ M 2 < π.

For assumption (H 2 ), due to Proposition 3.2, it follows that 0 / ∈ σ(L 1 ) ∩ σ(-L 2 ). Moreover, from Proposition 3.1, we have 

σ(-L 2 ) = {λ ∈ C \ R + : sinh(ω √ -λ) = ±ω √ -λ} = - z 2 j ω 2 ∈ C \ R + : j ∈ N \ {0} . Then, since Re   - z 2 j ω 2   = 1 ω |Im(z j )| , the condition σ(L 1 ) ∩ σ(-L 2 ) = ∅ is fulfilled if (3) holds.
The commutativity assumption (H 3 ) is clearly verified since the actions of operators L 1 and L 2 are independent. Now, applying Theorem 2.6, we obtain the result.

Remark 4.2. We can conjecture that, for the critical case ν = τ , the sum L 1 + L 2 is not closable.

Convexity inequalities

In view to apply Corollary 2.7, we are going to verify inequality (6) in two situations.

Proposition 4.3.

Let

E 1 = W 1,p (0, +∞; X) ⊂ E =L p (0, +∞; X), and E 2 = L p 0, +∞; W 3,p (0, ω) ∩ W 2,p 0 (0, ω) × L p (0, ω) ⊂ E. Then, we have D L 1 + L 2 ⊂ E 1 ∩ E 2 . ( 42 
)
Proof. Let V ∈ D(L 1 ). We must prove that there exists δ ∈ (0, 1) such that

V E 1 C V E + V 1-δ E L 1 (V ) δ E .
For all V ∈ W 2,p (0, +∞; X), from [START_REF] Kato | Perturbation theory for linear operators[END_REF], inequality (1.15), p. 192, we have the convexity inequality

V E 2 √ 2 V 1/2 E V 1/2 E .
Thus, we deduce

V E 1 = V E + V E V E + 2 √ 2 V 1/2 E V 1/2 E .
Since L 1 is not invertible, we are going to estimate

V E by L 1 (V ) -λ 0 V E , where λ 0 ∈ ρ(L 1 ). We have V -2νV + (ν 2 -λ 0 )V = L 1 (V ) -λ 0 V.
Then, there exists a constant C > 0 such that

V E + V E + V E C L 1 (V ) -λ 0 V E , hence V E C L 1 (V ) -λ 0 V E C L 1 (V ) E + |λ 0 |C V E .
Thus, we deduce

V E 1 = V E + V E V E + 2 √ 2 V 1/2 E V 1/2 E V E + 2 √ 2C V 1/2 E ( L 1 (V ) E + |λ 0 | V E ) 1/2 V E + 2 √ 2C V 1/2 E L 1 (V ) 1/2 E + |λ 0 | 1/2 V 1/2 E 1 + 2 √ 2C |λ 0 | 1/2 V E + 2 √ 2C V 1/2 E L 1 (V ) 1/2 E .
Therefore, inequality ( 6) is satisfied for δ = 1/2 and M 1 = L 1 . Using Corollary 2.7, we obtain

D L 1 + L 2 ⊂ E 1 .
Now, we must show that, for all V ∈ D(L 2 ), we have

V E 2 C V E + V 1/2 E L 2 (V ) 1/2 E .
To this end, it suffices to do it for A. Set

G 1 = W 3,p (0, ω) ∩ W 2,p 0 (0, ω) × L p (0, ω) ⊂ X.
We must prove that

∀ ψ 1 ψ 2 ∈ D(A), ψ 1 ψ 2 G 1 C   ψ 1 ψ 2 X + ψ 1 ψ 2 1/2 X A ψ 1 ψ 2 1/2 X   .
Here, we have

ψ 1 ψ 2 G 1 = ψ 1 W 3,p (0,ω) + ψ 2 L p (0,ω) = ψ 1 L p (0,ω) + ψ 1 L p (0,ω) + ψ 1 L p (0,ω) + ψ 1 L p (0,ω) + ψ 2 L p (0,ω) .
Set ϕ = ψ 1 . Then, for all η > 0, from [START_REF] Kato | Perturbation theory for linear operators[END_REF], inequality (1.12), p. 192, taking n = η + 1 and b -a = ω, we obtain

ϕ L p (0,ω) ω η ϕ L p (0,ω) + 2 ω η + 3 + 2 η ϕ L p (0,ω) .
It is not difficult to see that the second member is minimal when

η = √ 2 2 ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 ϕ 1/2 L p (0,ω)
.

Therefore, we deduce that

ϕ L p (0,ω) ω √ 2 ϕ 1/2 L p (0,ω) ϕ L p (0,ω) ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 + 4 ω √ 2 ϕ 1/2 L p (0,ω) ϕ L p (0,ω) ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 + √ 2 ω ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 ϕ L p (0,ω) ϕ 1/2 L p (0,ω) + 6 ω ϕ L p (0,ω) √ 2 ω ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 ϕ 1/2 L p (0,ω) + 6 ω ϕ L p (0,ω) + 4 ω ϕ L p (0,ω) + ω ϕ L p (0,ω) √ 2 ϕ 1/2 L p (0,ω) ϕ L p (0,ω) + 4 ϕ L p (0,ω) 1/2 C ω ϕ L p (0,ω) + ϕ 1/2 L p (0,ω) ϕ 1/2 L p (0,ω) .
Then, we have

ψ 1 L p (0,ω) C ω ψ 1 L p (0,ω) + ψ 1 1/2 L p (0,ω) ψ (4) 1 1/2 L p (0,ω) .
Hence

ψ 1 ψ 2 G 1 ψ 1 L p (0,ω) + ψ 1 L p (0,ω) + ψ 1 L p (0,ω) +C ω ψ 1 L p (0,ω) + ψ 1 1/2 L p (0,ω) ψ (4) 1 1/2 L p (0,ω) + ψ 2 L p (0,ω) (1 + C ω ) ψ 1 W 2,p 0 (0,ω) + C ω ψ 1 1/2 W 2,p 0 (0,ω) ψ (4) 1 1/2 L p (0,ω) + ψ 2 L p (0,ω)
Now, in virtue of the invertibility of A, see Proposition 3.2, we have proved that there exists a constant C ω depending only on ω such that ψ (4) 1 L p (0,ω)

C ω A ψ 1 ψ 2 X .
Moreover, it follows

ψ 1 ψ 2 G 1 (1 + C ω ) ψ 1 ψ 2 X + C ω C ω ψ 1 ψ 2 1/2 X A ψ 1 ψ 2 1/2 X .
Therefore, inequality ( 6) is satisfied for δ = 1/2 and M 2 = L 2 . Using Corollary 2.7, we obtain

D L 1 + L 2 ⊂ E 2 ,
which gives the expected result.

Back to the abstract problem

Now, we are in position to solve the following equation

L 1 + L 2 V + kρ 2 (P 1 + P 2 ) V = F. (43) 
Theorem 5.1. Let F ∈ L p (0, +∞; X) and assume that (3) holds. Then, there exists ρ 0 > 0 such that for all ρ ∈ (0, ρ 0 ], equation (43) has a unique strong solution V ∈ L p (0, +∞; X), that is

               ∃ (V n ) n 0 ∈ D(L 1 ) ∩ D(L 2 ) :
V n -→ n→+∞ V in L p (0, +∞; X) and (L 1 + L 2 ) V n + kρ 2 (P 1 + P 2 ) V n -→ n→+∞ F in L p (0, +∞; X), (44) satisfying V ∈ W 1,p (0, +∞; X) ∩ L p 0, +∞; W 3,p (0, ω) ∩ W 2,p 0 (0, ω) × L p (0, ω) .

(45)

Proof. Due to Theorem 4.1, if (3) holds, then L 1 + L 2 is invertible. Thus, it follows that

I + kρ 2 (P 1 + P 2 ) L 1 + L 2 -1 L 1 + L 2 V = F.
From (42), we deduce that V ∈ D(L 1 + L 2 ) ⊂ E 1 ∩ E 2 , that is (45) which involves that (P 1 + P 2 )(L 1 + L 2 ) -1 ∈ L(X).

Then, there exists ρ 0 > 0 small enough such that, for all ρ ∈ (0, ρ 0 ], we have

V = L 1 + L 2 -1 I + kρ 2 (P 1 + P 2 ) L 1 + L 2 -1 -1 F, (46) 
which means that V is the unique strong solution of (43).

6 Proof of Theorem 1.1

From Theorem 5.1, there exists ρ 0 > 0 such that for all ρ ∈ (0, ρ 0 ], equation (43) has a unique strong solution V ∈ L p (0, +∞; X) satisfying (45). Then, due to (44), there exists (V n ) n∈N ∈ D(L 1 + L 2 ) such that V n -→ Thus, problem (47) writes

   lim n→+∞ V n (t) -AV n (t) = F ∞ (t)
V (0) = 0, V (+∞) = 0, Moreover, from Proposition 3.12, A ∈ BIP (X, θ A ), with θ A ∈ (0, π) and due to [START_REF] Haase | The functional calculus for sectorial Operators[END_REF], Proposition 3.2.1, e), p. 71, it follows that √ A ∈ BIP (X, θ A /2) with θ A /2 ∈ (0, π/2). Therefore, due to [START_REF] Eltaief | Second Order Abstract Differential Equations of Elliptic Type Set in R +[END_REF], Theorem 2, p. 712, with L 1 = L 2 = -√ A, there exists a unique classical solution to the following problem V (t) -AV(t) = F ∞ (t)

V(0) = 0, V(+∞) = 0, that is V ∈ W 2,p (0, +∞; X) ∩ L p (0, +∞; D(A)).

Thus, it follows that lim n→+∞ V n (t) -AV n (t) = V (t) -AV, hence lim From [START_REF] Prüss | Imaginary powers of elliptic second order differential operators in L p -spaces[END_REF], Theorem C, p. 166-167, it follows that -δ 2 ∈ BIP (X, θ δ 2 ), for every θ δ 2 ∈ (0, π) and due to Proposition 3.12, A ∈ BIP (X, θ A ), for all θ A ∈ (0, π). Thus, since -δ 2 and A are resolvent commuting with θ δ 2 + θ A < π, from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], Theorem 5, p. 443, we obtain that -δ 2 + A ∈ BIP (X, θ), θ = max(θ δ 2 , θ A ).

Moreover, due to Proposition 3.2, we have 0 ∈ ρ(A), then we deduce from [START_REF] Prüss | On operators with bounded imaginary powers in Banach spaces[END_REF], remark at the end of p. 445, that 0 ∈ ρ(δ 2 + A). Therefore, due to (48), we obtain that lim n→+∞ V n (t) -V(t) = 0, hence, since V n -→ n→+∞ V , by uniqueness of the limit, we deduce that V = V ∈ W 2,p (0, +∞; X) ∩ L p (0, +∞; D(A)).

This prove that L 1 + L 2 is closed and that V ∈ D(L 1 + L 2 ).

2 ir 1 +2 ir 1 +

 11 then, for all ξ ∈ R \ {0}, we deduce that|m(ξ)| = λ ir 2 -λ ir 1 8π|ξ| = e ir ln(λ 2 ) -e ir ln(λ 1 ) 8π|ξ| |r| |ln(λ 2 ) -ln(λ 1 )| 8π|ξ| . ir -2πξ + 2π 2 ξ 2 + 2ir(ir -1)π 2 ξ 2 + o(ξ 2 ) 8πξ -lim ξ→0 ir 2πξ + 2π 2 ξ 2 + 2ir(ir -1)π 2 ξ 2 + o(ξ 2 ) 8πξ = lim ξ→0 2 ir -4irπξ + o(ξ 2 ) 8πξ = -2 ir-1 ir.Then sup ξ∈R |m(ξ)| = |r| 2 .

22 2 + λ ir-1 1 + 2πξ λ ir-1 2 -= 3 ×

 2123 ir-1 1 + (ir -1) -2πξ + 2π 2 ξ 2 + 4ir(ir -1)π 2 ξ 2 + o(ξ 2 ) = 2 ir-1 , ir-1 1 + (ir -1) 2πξ + 2π 2 ξ 2 + 4ir(ir -1)π 2 ξ 2 + o(ξ 2 ) = 2 ir-1 . 2 ir-5 ir.Then sup ξ∈R ξ m (ξ) = 3 × 2 ir-5 ir = 3

  σ(L 1 ) = {λ ∈ C : | arg(λ)| < π and Re( √ λ) ν}, and from Remark 3.11, it follows that

(L 1 + L 2 )

 12 V n + kρ 2 (P 1 + P 2 ) V n = F. Since (V n ) n∈N ∈ D(L 1 + L 2 ), then the previous equality writes t) -AV n (t) -F n (t) = 0 lim n→+∞ V n (0) = 0, lim n→+∞ V n (+∞) = 0, (47)whereF n (t) = kρ 2 e -2t A 0 V n (t) + kρ 2 e -2t [(B 2 V n )] (t) + 2νV n (t) -ν 2 V n (t) + F(t).Since V n -→ n→+∞ V and V satisfies (45), we deduce thatlim n→+∞ V n (0) = V (0) = 0 with lim n→+∞ V n (+∞) = V (+∞) = 0, and lim n→+∞ F n (t) = F ∞ (t) ∈ L p (0, +∞; X), where F ∞ (t) = kρ 2 e -2t A 0 V (t) + kρ 2 e -2t [(B 2 V )] (t) + 2νV (t) -ν 2 V (t) + F(t).

n→+∞(

  V n (t) -V(t)) -A (V n (t) -V(t)) = 0. Now, set D(δ 2 ) = ϕ ∈ W 2,p (0, +∞; X) : ϕ(0) = ϕ(+∞) = 0 δ 2 ϕ = ϕ , ϕ ∈ D(δ 2 ).Then, we can write0 = lim n→+∞ (V n (t) -V(t)) -A (V n (t) -V(t)) = lim n→+∞ -(-δ 2 + A) (V n (t) -V(t)) . (48)

) -1 (α 1 + α 2 ) 2 e -ωα 2 -e -ωα 1 = 1 -e -2ω √ -λ -i √ -λ e -ω( √ -λ-i) -e -ω( √ -λ+i) = 1 -e -2ω √ -λ + 2 √ -λ e -ω √-λ sin(ω).