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Abstract

The purpose of this article (composed of two parts) is the study of the generalized
dispersal operator of a reaction-diffusion equation in Lp-spaces set in the finite conical
domain Sω,ρ of angle ω > 0 and radius ρ > 0 in R2.

This first part is devoted to the behaviour of the solution near the top of the cone
which is completely described in the weighted Sobolev space W 4,p

3− 1
p

(Sω,ρ), see Theo-
rem 2.2.
Key Words and Phrases: Fourth order boundary value problem, conical domain,
weighted Sobolev spaces.
2020 Mathematics Subject Classification: 35B65, 35J40, 35J75, 35K35, 46E35.

1 Introduction
This work required the use of many calculations and non-trivial checks linked, among other,
to the theory of sums of linear operators. This is why we were forced to split this work into
two more or less independent parts.

In this first part, we consider the generalized following reaction-diffusion equation
∂u

∂t
= −∆2u+ k∆u+ f∗(u) in R+ × Ω,

u(0) = u0 given
Boundary conditions for u on ∂Ω,

(1)

where k is a positive number, f∗ is a non-linear reaction function and Ω is a bounded conical
domain. This work is a natural continuation of the one studied in [5]. The originality of this
work lies in the fact that the open set Ω is conical whereas in [5], it was cylindrical.

The study of the spatial operator, that is the linear combination of the laplacian and the
bilaplacian, in (1) required the analysis of a sum of unbounded linear operators in a Banach
space, carried out in part II, see [6]. Note that, by similar techniques, we can prove that the
dispersal operator in (1) generates an analytic semigroup, see for instance [7].

Such problems, set in conical domains, model many concrete situations related to pollu-
tion for instance.

More precisely, in this work, we consider the following 2 dimensional sector

Ω = Sω = {(x, y) = (r cos θ, r sin θ) : r > 0 and 0 < θ < ω} ,

with its lateral edges {
Γ0 = (0,+∞)× {0}
Γω = {(r cosω, r sinω) : r > 0 } ;
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here ω ∈ (0, 2π].
It is known that the study of problem (1) in Lp-spaces needs the analyze of the following

linear stationary problem 
∆2u− k∆u = f in Sω

u = ∂u

∂n
= 0 on Γ0 ∪ Γω.

(2)

This work is inspired by the one done in [3] and [4], where the author has considered, in
a hilbertian framework, the following boundary problem

∆2u = 0 in Sω

u = ∂u

∂n
= 0 on Γ0 ∪ Γω.

The author has proved that the solution of this problem writes as a "superposition" of
particular solutions with separate variables of the form χ1,j(r)χ2,j(θ), for j ∈ N. The basic
tools used are based on the compact operators belonging to the so-called Carleman class and
the Fredholm determinants.

Let us recall some known results concerning the biharmonic equation in a conical domain
or in a Lipschitz domain. In [9], the authors gave many estimates concerning the solution of
the Dirichlet problem in Lp for the biharmonic equation in Lipschitz domain. In [1], many
results are given for general higher-order elliptic equations in non smooth-domains. In [10],
the author has studied the following problem{ ∆2u = f in Sω,1

u = ∆u = 0 on ∂Sω,1,

where f ∈ L2(Sω,1). He has proved the two following results

1. If ω < π, the variational solution writes, in the neighbourhood of O, as

uω = u1,ω + u2,ω + u3,ω,

with u1,ω ∈ H1+ π
ω
−ε, u2,ω ∈ H2+ π

ω
−ε and u3,ω ∈ H4, for a small ε > 0.

2. If ω = π, in the neighbourhood of O, the variational solution is verifies

uπ ∈ H4.

This article is organized as follows. In Section 2, we state our problem in polar coordinates
and our main result in Theorem 2.2. In Section 3 we reformulate our problem as a sum of
linear operators. Then, Section 4 is devoted to its proof.

2 Statement of the main result
We introduce the following polar variables function

v(r, θ) = u(r cos θ, r sin θ) = u(x, y).

It is known that the laplacian and the bilaplacian, in polar coordinates, respectively write

∆u = 1
r2

[(
r
∂

∂r

)2
+ ∂2

∂θ2

]
v = ∂2v

∂r2 + 1
r

∂v

∂r
+ 1
r2
∂2v

∂θ2 := Λ1v, (3)
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and

∆2u =
(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2

)2

v := Λ2v

= ∂4v

∂r4 + 2
r2

∂4v

∂r2∂θ2 + 1
r4
∂4v

∂θ4 + 2
r

∂3v

∂r3 −
2
r3

∂3v

∂r∂θ2 −
1
r2
∂2v

∂r2 + 4
r4
∂2v

∂θ2 + 1
r3
∂v

∂r
.

(4)

Remark 2.1. We can generalize this work to the dimension n :

∆u = ∂2v

∂r2 + n− 1
r

∂v

∂r
+ 1
r2 ∆′v,

where ∆′ is the Laplace-Beltrami operator.

We set
f(x, y) = f (r cos θ, r sin θ) = g(r, θ).

Let γ ∈ R. In the sequel, we will use the following weighted space Sobolev spaces on Sω by:

Wm,p
γ (Sω) =

{
v ∈ D′(Sω),∀ (i, j) ∈ N2 : 0 6 i+ j 6 m, rγ−m+i+j ∂

i+jv

∂ri∂θj
∈ Lp(Sω)

}
. (5)

Note that f ∈ Lp(Ω) means that g ∈ Lp1
p

(Sω) := W 0,p
1
p

(Sω). In fact, we have

∫
Ω
|f(x, y)|pdxdy =

∫
Sω
|g(r, θ)|prdrdθ =

∫
Sω
|r

1
p g(r, θ)|pdrdθ.

We will focus ourselves, on the case when Sω is replaced by the finite sector:

Sω,ρ = {(x, y) = (r cos θ, r sin θ) : 0 < r < ρ and 0 < θ < ω} ,

and its two lateral edges:{
Γ0 = (0, ρ)× {0}
Γω,ρ = {(r cosω, r sinω) : 0 < r < ρ} ,

where ρ > 0 is given small enough.
Then, in polar coordinates, problem (2) writes

Λ2v − kΛ1v = g in Sω,ρ

v(r, 0) = v(r, ω) = ∂v

∂θ
(r, 0) = ∂v

∂θ
(r, ω) = 0

v(ρ, θ) given,

(6)

where Λ1 and Λ2 are given by (3) and (4).
In this article, we will focus ourselves on the resolution of problem (6) to obtain the

behavior of the solution v to problem (6) in Lp-weighted spaces, in the neighborhood of
the top of the cone. To this v corresponds a solution u0 to problem (2) by applying the
inverse changes of variables and functions. We point out, that there is no reason for this
solution u0 to coincide with the variational solution uvar belonging to the Hilbert space
H2(Sω,ρ) ∩H1

0 (Sω,ρ).
To solve problem (6), we will use results given in [6] and to this end, we need to consider

τ = min
j>1
|Im(zj)| > 0,
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where (zj)j>1 are the solutions of the following transcendent equation

(sinh(z) + z) (sinh(z)− z) = 0, with Re(z) > 0.

Actually, according to [2], we have
τ ' 4.21239.

We assume that
ω

(
3− 2

p

)
< τ. (7)

Recall that 3− 2
p
is exactly the Sobolev exponent of the space W 3,p in two variables.

Let us remark that we have two cases:

1. if 0 < ω 6
τ

3 ' 0.45π, then (7) is satisfied for all p ∈ (1,+∞).

2. if τ3 < ω < τ ' 1.34π, then (7) is satisfied for 1 < p <
2ω

3ω − τ .

Our main result is the following:

Theorem 2.2. There exists ρ0 > 0 such that for all ρ ∈ (0, ρ0], g ∈ Lp1
p

(Sω,ρ) with p

satisfying assumption (7), problem (6) has a unique strong solution

v ∈W 4,p
3− 1

p

(Sω,ρ).

More precisely, for i = 0, 1, 2 and j = 0, 1, 2, 3, 4 such that 0 6 i+ j 6 4, we have

∂i+jv

∂ri∂θj
∈ Lp(Sω,ρ),

and
∂3v

∂r3 ,
∂4v

∂r3∂θ
∈ Lp2− 1

p

(Sω,ρ) and ∂4v

∂r4 ∈ L
p

3− 1
p

(Sω,ρ).

3 Reformulations of problem (6)
3.1 Some preliminary calculus

Let us introduce the auxiliary function v

r
. Then

(
r
∂

∂r

)2 (v
r

)
=

(
r
∂

∂r

)(
r
∂

∂r

)(
v

r

)
= v

r
− ∂v

∂r
+ r

∂2v

∂r2

= v

r
− 2 ∂

∂r

(
r.
v

r

)
+ r

(
1
r

∂v

∂r
+ ∂2v

∂r2

)

= −v
r
− 2r ∂

∂r

(
v

r

)
+ r

(
1
r

∂v

∂r
+ ∂2v

∂r2

)
,

so

∆u =
(

1
r

∂v

∂r
+ ∂2v

∂r2

)
+ 1
r2
∂2v

∂θ2 = 1
r

[(
r
∂

∂r

)2 (v
r

)
+ v

r
+ 2r ∂

∂r

(
v

r

)]
+ 1
r

∂2

∂θ2

(
v

r

)
.
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Moreover, we have

Π1 :=
(
r
∂

∂r

)2 [(
r
∂

∂r

)2 [v
r

]]

=
(
r
∂

∂r

)2 [(
r
∂

∂r

)(
−v
r

+ ∂v

∂r

)]
=

(
r
∂

∂r

)2 [v
r
− ∂v

∂r
+ r

∂2v

∂r2

]

=
(
r
∂

∂r

)[
−v
r

+ ∂v

∂r
+ r2∂

3v

∂r3

]

= v

r
− ∂v

∂r
+ r

∂2v

∂r2 + 2r2∂
3v

∂r3 + r3∂
4v

∂r4 ,

and

Π2 := 2
(
∂2

∂θ2 − 1
)(

r
∂

∂r

)2 (v
r

)
+
(
∂2

∂θ2 + 1
)2 (

v

r

)

= 2
(
∂2

∂θ2 − 1
)(

v

r
− ∂v

∂r
+ r

∂2v

∂r2

)
+ 1
r

(
∂2

∂θ2 + 1
)2

v

= 2∂v
∂r
− 2r∂

2v

∂r2 + 4
r

∂2v

∂θ2 − 2 ∂3v

∂θ2∂r
+ 2r ∂4v

∂θ2∂r2 + 1
r

∂4v

∂θ4 −
v

r
.

Therefore, we obtain that
r3∆2u = Π1 + Π2.

We set
w = v

r
.

Then, in Sω,ρ, problem (6) writes

1
r3

(r ∂
∂r

)2 [(
r
∂

∂r

)2
w

]
+ 2

(
∂2

∂θ2 − 1
)(

r
∂

∂r

)2
w +

(
∂2

∂θ2 + 1
)2

w


−k
r

[((
r
∂

∂r

)2
w + 2

(
r
∂

∂r

)
w + w

)
+ ∂2w

∂θ2

]
= g

w(r, 0) = w(r, ω) = ∂w

∂θ
(r, 0) = ∂w

∂θ
(r, ω) = 0

w(ρ, θ) given.

(8)

3.2 Vector formulation of problem (8)
Now, let us consider the vector variable Ψ(r, θ) :

Ψ =

 w(
r
∂

∂r

)2
w

 ,
and the following matrix

A =


0 1

−
(
∂2

∂θ2 + 1
)2

−2
(
∂2

∂θ2 − 1
)
 .
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We have(
r
∂

∂r

)2
Ψ−AΨ

=


(
r
∂

∂r

)2
w(

r
∂

∂r

)2 (
r
∂

∂r

)2
w

+


−
(
r
∂

∂r

)2
w(

∂2

∂θ2 + 1
)2

w + 2
(
∂2

∂θ2 − 1
)(

r
∂

∂r

)2
w



=


0(

r
∂

∂r

)2 (
r
∂

∂r

)2
w + 2

(
∂2

∂θ2 − 1
)(

r
∂

∂r

)2
w +

(
∂2

∂θ2 + 1
)2

w


=

(
0

Π1 + Π2

)
=
(

0
r3∆2u

)
.

We set

A0 =

 0 0
∂2

∂θ2 + 1 1

 and B0 =

 0 0

2
(
r
∂

∂r

)
0

 .
We will precise the domain of all these operators in section 3.4. It is clear that the action of
these operators are independent. Then

(A0 + B0) Ψ =

 0 0

∂2

∂θ2 + 1 1


 w(

r
∂

∂r

)2
w

+

 0 0

2
(
r
∂

∂r

)
0


 w(

r
∂

∂r

)2
w


hence

(A0 + B0) Ψ =

 0

∂2

∂θ2w + w +
(
r
∂

∂r

)2
w

+

 0

2
(
r
∂

∂r

)
w



=

 0

2r ∂
∂r
w + ∂2

∂θ2w + w +
(
r
∂

∂r

)2
w


=

(
0

r∆u

)
= r

(
0

∆u

)
.

The generalized diffusion equation writes as

1
r3

[(
r
∂

∂r

)2
Ψ−AΨ

]
− k

r
(A0 + B0) Ψ =

(
0
g

)
.

Finally, we obtain the following complete equation[(
r
∂

∂r

)2
Ψ−AΨ

]
− kr2A0Ψ− kr2B0Ψ =

(
0
r3g

)
. (9)

Note that linear operators A and A0 act with respect to variable θ whereas operator B0 acts
with respect to variable r ∂

∂r
.
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3.3 New formulation in a finite cone

We apply the following variables and functions change

r = ρe−t, φ(t, θ) = w(ρe−t, θ) and g(ρe−t, θ) = G(t, θ)

then, it is easy to verify that(
r
∂

∂r

)
w = −∂φ

∂t
and

(
r
∂

∂r

)2
w =

[
r
∂

∂r
+ r2 ∂

2

∂r2

]
w = ∂2φ

∂t2
.

We set Φ(t, θ) = Ψ(ρe−t, θ); then

Φ =

 φ

∂2φ

∂t2

 .
Therefore, equation (9) is now set on the strip Σ = (0,+∞)× (0, ω) and writes[(

r
∂

∂r

)2
Ψ−AΨ

]
− kr2A0Ψ− kr2B0 [Ψ]

=
[
∂2Φ
∂t2
−AΦ

]
− kρ2e−2tA0Φ + kρ2e−2tB1 [Φ] =

(
0

ρ3e−3tG

)
,

where

B1 =

 0 0

−2 ∂
∂t

0

 .
The boundary conditions, in problem (8), on w become

φ(r, 0) = φ(r, ω) = ∂φ

∂θ
(r, 0) = ∂φ

∂θ
(r, ω) = 0.

As usual, we will use the vector valued notation:

Φ(t)(θ) := Φ(t, θ) =

 φ(t, θ)

∂2φ

∂t2
(t, θ)

 =

 φ(t, .)

∂2φ

∂t2
(t, .)

 (θ) :=

 φ(t)

∂2φ

∂t2
(t)

 (θ).

Hence, we deduce the following abstract vector valued equation

[
Φ′′(t)−AΦ(t)

]
− kρ2e−2tA0Φ(t) + kρ2e−2t [B1Φ] (t) =

(
0

ρ3e−3tG(t)

)
,

where

[B1Φ] (t) =

 0 0

−2 ∂
∂t

0


 φ

∂2φ

∂t2

 (t) =

 0

−2∂φ
∂t

(t)

 .
Note that A and A0 act on Φ(t) with respect to θ, while B1 acts on Φ with respect to t.

To determine completely Ψ in a suitable space and also Φ, it is necessary to give us a
boundary condition on Ψ in ρ. It means that Φ is given at t = 0 :

Φ(0) = Φ0.

Now, we have to solve on (0,+∞) the following problem Φ′′(t)−AΦ(t)− kρ2e−2tA0Φ(t) + kρ2e−2t [B1Φ] (t) =
(

0
ρ3e−3tG(t)

)
Φ(0) = Φ0.

(10)

7



Remark 3.1. Note that the boundary condition at t = +∞, will be included in the vector
valued space containing the solution Φ.

3.4 Sums of linear operators

In this section, we are going to write problem (10) as a sum of linear operators, firstly in the
following Banach space

X = W 2,p
0 (0, ω)× Lp(0, ω),

see (12) below and secondly, in Lp(0,+∞;X), see (13) below.
Here X is equipped, for instance, with the following norm∥∥∥∥∥

(
ψ1
ψ2

)∥∥∥∥∥
X

= ‖ψ1‖W 2,p
0 (0,ω) + ‖ψ2‖Lp(0,ω) ,

where
W 2,p

0 (0, ω) =
{
ϕ ∈W 2,p(0, ω) : ϕ(0) = ϕ(ω) = ϕ′(0) = ϕ′(ω) = 0

}
.

Then, we define the linear operator A by

D(A) =
[
W 4,p(0, ω) ∩W 2,p

0 (0, ω)
]
×W 2,p

0 (0, ω) ⊂ X

A
(
ψ1
ψ2

)
=

 ψ2

−
(
∂2

∂θ2 + 1
)2

ψ1 − 2
(
∂2

∂θ2 − 1
)
ψ2

 , (
ψ1
ψ2

)
∈ D(A).

In the same way, we define operator A0 by

D(A0) = W 2,p

0 (0, ω)× Lp(0, ω) = X

A0

(
ψ1
ψ2

)
=

 0(
∂2

∂θ2 + 1
)
ψ1 + ψ2

 , (
ψ1
ψ2

)
∈ D(A0).

It is clear that D(A) ⊂ D(A0). Note that operator A0 is continuous from X into itself since

∥∥∥∥∥A0

(
ψ1
ψ2

)∥∥∥∥∥
X

=

∥∥∥∥∥∥∥
 0(

∂2

∂θ2 + 1
)
ψ1 + ψ2


∥∥∥∥∥∥∥
X

=
∥∥∥∥∥
(
∂2

∂θ2 + 1
)
ψ1 + ψ2

∥∥∥∥∥
Lp(0,ω)

6 ‖ψ1‖W 2,p
0 (0,ω) + ‖ψ2‖Lp(0,ω) =

∥∥∥∥∥
(
ψ1
ψ2

)∥∥∥∥∥
X

.

Equation (10) is set in the Banach space X.
Recall that the second member in problem (2) satisfies

f ∈ Lp (Sω,ρ) , for p ∈ (1,+∞).

Set
t 7→ e−3tG(t)(.) = e−3tG(t, .) = H(t, .) = H(t)(.).

8



Therefore, we have∫
Sω,ρ
|f(x, y)|p dxdy =

∫
Sω,ρ
|g(r, θ)|p rdrdθ = ρ2

∫
Σ
|G(t, θ)|p e−2tdtdθ

= ρ2
∫

Σ

∣∣∣∣e(3− 2
p

)
t
H(t, θ)

∣∣∣∣p dtdθ
= ρ2

∫ +∞

0

∣∣∣∣e(3− 2
p

)
t
∣∣∣∣p
[(∫ ω

0
|H(t)(θ)|p dθ

)1/p
]p
dt

= ρ2
∫ +∞

0

[
e
(
3− 2

p

)
t ‖H(t)‖Lp(0,ω)

]p
dt.

It follows that the second member H is in the weighted Sobolev space{
H : t 7→ e

(
3− 2

p

)
t
H ∈ Lp(Σ)

}
= Lpν(0,+∞;Lp(0, ω)).

where
ν = 3− 2

p
> 1,

is exactly the Sobolev exponent of the space W 3,p(Σ) in dimension 2.
Then, since it would not be easy to work in weighted Sobolev spaces, we will use the

following new vector valued function :

V (t) = eνtΦ(t) =
(

eνtφ(t)
eνtφ′′(t)

)
=
(
V1(t)
V2(t)

)
. (11)

Since we have
Φ(t) =

(
e−νtV1(t)
e−νtV2(t)

)
,

we deduce that

Φ′(t) = −νe−νtV (t) + e−νtV ′(t) = e−νt (∂t − νI)V (t),

and
Φ′′(t) = ν2e−νtV (t)− 2νe−νtV ′(t) + e−νtV ′′(t) = e−νt (∂t − νI)2 V (t).

Moreover, we obtain

[B1Φ] (t) =
(

0 0
−2∂t 0

)(
e−νtV1(t)
e−νtV2(t)

)

= e−νt
(

0 0
−2(∂t − νI) 0

)(
V1(t)
V2(t)

)
= e−νt [B2V ] (t)

where
B2 =

(
0 0

−2(∂t − νI) 0

)
.

Hence, problem (10) becomes
e−νt (∂t − νI)2 V (t)− e−νtAV (t)− kρ2e−νte−2tA0V (t)

−kρ2e−νte−2t [(B2V )] (t) =
(

0
ρ3H(t)

)
V (0) = Φ0,
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then (∂t − νI)2 V (t)−AV (t)− kρ2e−2tA0V (t)− kρ2e−2t [(B2V )] (t) =
(

0
ρ3eνtH(t)

)
V (0) = Φ0.

Note that Remark 3.1 holds true for V .
We will be interested, in particular, in the following homogeneous problem (∂t − νI)2 V (t)−AV (t)− kρ2e−2tA0V (t)− kρ2e−2t [(B2V )] (t) =

(
0

ρ3eνtH(t)

)
V (0) = 0.

(12)

We have
t 7→ ρ3eνtH(t) ∈ Lp(Σ) = Lp(0,+∞;Lp(0, ω)),

and
t 7→

(
0

ρ3eνtH(t)

)
∈ Lp

(
0,+∞;W 2,p

0 (0, ω)× Lp(0, ω)
)

= Lp(0,+∞;X).

Finally, let us introduce the following abstract linear operators: D(L1) =
{
V ∈W 2,p(0,+∞;X) : V (0) = V (+∞) = 0

}
[L1(V )] (t) = (∂t − νI)2 V (t) = V ′′(t)− 2νV ′(t) + ν2V (t),

with ν = 3− 2
p ∈ (1, 3),

{
D(L2) = {V ∈ Lp(0,+∞;X) : for a.e. t ∈ (0,+∞), V (t) ∈ D(A)}

[L2(V )] (t) = −AV (t),{
D(P1) = {V ∈ Lp(0,+∞;X) : for a.e. t ∈ (0,+∞), V (t) ∈ D(A0)}

[P1(V )] (t) = −e−2tA0V (t),

and  D(P2) = W 1,p(0,+∞;X)

[P2(V )] (t) = −e−2t (B2V ) (t).

Then, problem (12) can be written as the following abstract equation

(L1 + L2)V + kρ2 (P1 + P2)V = F , (13)

set in Lp(0,+∞;X), with p ∈ (1,+∞), where, for almost every t ∈ (0,+∞)

F(t) =
(

0
ρ3eσtH(t)

)
.

4 Proof of Theorem 2.2

4.1 Resolution of equation (13)
Equation (13) will be completely studied in the second part of this work by using the sum
theory of linear operators, where the main result described by Theorem 1.1 in [6] states that
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there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0], there exists a unique solution V ∈ D(L1 +L2)
to equation (13) that is

V ∈W 2,p(0,+∞;X) ∩ Lp(0,+∞;D(A)).

Thus, we know that there exists a continuous extension fromW 2,p(0,+∞;X) intoW 2,p(R;X)
and also from Lp(0,+∞;D(A)) into Lp(R;D(A)); it suffices, for instance to use the well-
known Babich techniques.

Set Ṽ , this extension of V which writes

Ṽ =
(
Ṽ1
Ṽ2

)
.

Then,
Ṽ1 ∈W 2,p

(
R;W 2,p

0 (0, ω)
)
∩ Lp

(
R;W 4,p(0, ω) ∩W 2,p

0 (0, ω)
)
,

and
Ṽ2 ∈W 2,p (R;Lp(0, ω)) ∩ Lp

(
R;W 2,p

0 (0, ω)
)
.

We deduce, for instance, that

Ṽ1, Ṽ2 ∈W 2,p (R× (0, ω)) ,

by using the Mihlin’s theorem (see [8]) and

Ṽ1 ∈W 2,p
(
R;W 2,p

0 (0, ω)
)
∩ Lp

(
R;W 4,p(0, ω)

)
.

Therefore, we deduce that V1 and V2 have the same regularities on (0, ρ) × (0, ω), with
ρ ∈ (0, ρ0].

4.2 Regularity of V (t, θ) = V (t)(θ)
Recall that, from (11), we have

V (t) = eνtΦ(t) and Φ(t) = e−νtV (t).

Moreover, since r = ρe−t, we have

V1(t, θ) = v(ρe−t, θ)
(ρe−t)ν+1 ,

where ν = 3− 2
p
∈ (1, 3) and

V2(t, θ) =
(
r
∂

∂r

)2 (v
r

)
(ρe−t, θ).

4.2.1 Regularity of V1

Here, we explicit the fact that

V1 ∈W 2,p ((0,+∞)× (0, ω)) . (14)

We have ∫ +∞

0

∫ ω

0
|V1(t, θ)|p dθ dt =

∫ +∞

0

∫ ω

0

∣∣∣∣∣ v(ρe−t, θ)
ρν+1e−t(ν+1)

∣∣∣∣∣
p

dθ dt < +∞.
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Setting r = ρe−t, we obtain∫ +∞

0

∫ ω

0

∣∣∣∣∣v(ρe−t, θ)
(ρe−t)ν+1

∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0

∣∣∣∣∣ v (r, θ)
r
ν+1+ 1

p

∣∣∣∣∣
p

dθ dr

=
∫ ρ

0

∫ ω

0
r−4p+1 |v (r, θ)|p dθ dr.

Then, we have
v ∈ Lpγ0(Sω,ρ), (15)

where γ0 = −4 + 1
p . Moreover

∂V1
∂t

(t, θ) = 1
ρν+1

∂

∂t

(
v(ρe−t, θ)e(ν+1)t

)
= 1

ρν+1

(
(ν + 1)e(ν+1)tv(ρe−t, θ)− ρeνt∂v

∂r
(ρe−t, θ)

)
,

hence
1

(ρe−t)ν
∂v

∂r
(ρe−t, θ) = (ν + 1)

(ρe−t)ν+1 v(ρe−t, θ)− ∂V1(t, θ)
∂t

.

Thus, in virtue of (14) and (15), it follows that

(t, θ) 7−→ 1
(ρe−t)ν

∂v

∂r
(ρe−t, θ) ∈ Lp((0,+∞)× (0, ω)),

and ∫ +∞

0

∫ ω

0

∣∣∣∣ 1
(ρe−t)ν

∂v

∂r
(ρe−t, θ)

∣∣∣∣p dθ dt =
∫ ρ

0

∫ ω

0

∣∣∣∣∣ 1
r
ν+ 1

p

∂v

∂r
(r, θ)

∣∣∣∣∣
p

dθ dr

=
∫ ρ

0

∫ ω

0
r−3p+1

∣∣∣∣∂v∂r (r, θ)
∣∣∣∣p dθ dr.

So, we obtain
∂v

∂r
∈ Lpγ1(Sω,ρ), (16)

where γ1 = −3 + 1
p . Furthermore, we have

∂2V1
∂t2

(t, θ) = ν + 1
ρν+1

∂

∂t

(
v(ρe−t, θ)e(ν+1)t

)
− ν

ρν
eνt

∂v

∂r
(ρe−t, θ) + ρ

ρν
e−teνt

∂2v

∂r2 (ρe−t, θ)

= ν + 1
ρν+1

(
(ν + 1)e(ν+1)tv(ρe−t, θ)− ρeνt∂v

∂r
(ρe−t, θ)

)
− ν

ρν
eνt

∂v

∂r
(ρe−t, θ)

+ 1
ρν−1 e

(ν−1)t∂
2v

∂r2 (ρe−t, θ)

= (ν + 1)2

(ρe−t)ν+1 v(ρe−t, θ)− 2ν + 1
(ρe−t)ν

∂v

∂r
(ρe−t, θ) + 1

(ρe−t)ν−1
∂2v

∂r2 (ρe−t, θ),

hence

1
(ρe−t)ν−1

∂2v

∂r2 (ρe−t, θ) = ∂2V1
∂t2

(t, θ) + 2ν + 1
(ρe−t)ν

∂v

∂r
(ρe−t, θ)− (ν + 1)2

(ρe−t)ν+1 v(ρe−t, θ).
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Thus, in virtue of (14), (15) and (16), it follows that

(t, θ) 7−→ 1
(ρe−t)ν−1

∂2v

∂r2 (ρe−t, θ) ∈ Lp((0,+∞)× (0, ω)),

and ∫ +∞

0

∫ ω

0

∣∣∣∣∣ 1
(ρe−t)ν−1

∂2v

∂r2 (ρe−t, θ)
∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0

∣∣∣∣∣ 1
r
ν−1+ 1

p

∂2v

∂r2 (r, θ)
∣∣∣∣∣
p

dθ dr

=
∫ ρ

0

∫ ω

0
r−2p+1

∣∣∣∣∣∂2v

∂r2 (r, θ)
∣∣∣∣∣
p

dθ dr.

So, we obtain
∂2v

∂r2 ∈ L
p
γ2(Sω,ρ),

where γ2 = −2 + 1
p .

On the other hand
∂V1
∂θ

(ρe−t, θ) = 1
(ρe−t)ν+1

∂v

∂θ
(ρe−t, θ).

Thus, it follows that∫ +∞

0

∫ ω

0

∣∣∣∣∂V1
∂θ

(ρe−t, θ)
∣∣∣∣p dθ dt =

∫ +∞

0

∫ ω

0

1
(ρe−t)p(ν+1)

∣∣∣∣∂v∂θ (ρe−t, θ)
∣∣∣∣p dθ dt

=
∫ ρ

0

∫ ω

0
r−4p+1

∣∣∣∣∂v∂θ (r, θ)
∣∣∣∣p dθ dr.

So, we obtain
∂v

∂θ
∈ Lpγ0(Sω,ρ).

In the same way, we deduce that

∂2v

∂θ2 ∈ L
p
γ0(Sω,ρ) and ∂2v

∂r∂θ
∈ Lpγ1(Sω,ρ).

Now, we explicit the fact that

∂3V1
∂t∂θ2 ,

∂3V1
∂t2∂θ

,
∂4V1
∂t2∂θ2 ∈ L

p ((0,+∞)× (0, ω))

We have

∂3V1
∂t2∂θ

(t, θ) = (ν + 1)2

(ρe−t)ν+1
∂v

∂θ
(ρe−t, θ)− 2ν + 1

(ρe−t)ν
∂2v

∂r∂θ
(ρe−t, θ) + 1

(ρe−t)ν−1
∂3v

∂r2∂θ
(ρe−t, θ),

hence

1
(ρe−t)ν−1

∂3v

∂r2∂θ
(ρe−t, θ) = ∂3V1

∂t2∂θ
(t, θ)− (ν + 1)2

(ρe−t)ν+1
∂v

∂θ
(ρe−t, θ) + 2ν + 1

(ρe−t)ν
∂2v

∂r∂θ
(ρe−t, θ).

Thus, we obtain
∂3v

∂r2∂θ
∈ Lpγ2(Sω,ρ),
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and in the same way, we have also

∂3v

∂r∂θ2 ∈ L
p
γ1(Sω,ρ) and ∂4v

∂r2∂θ2 ∈ L
p
γ2(Sω,ρ).

Now, we explicit the fact that

V1 ∈ Lp
(
(0,+∞);W 4,p(0, ω)

)
,

that is, for all i = 1, 2, 3, 4 ∫ +∞

0

∥∥∥∥∥∂iV1
∂θi

(t, θ)
∥∥∥∥∥
p

Lp(0,ω)
dt < +∞.

Then, we have∫ +∞

0

∫ ω

0

∣∣∣∣∣∂iV1
∂θi

(t, θ)
∣∣∣∣∣
p

dθ dt =
∫ +∞

0

∫ ω

0

∣∣∣∣∣ 1
(ρe−t)ν+1

∂iv

∂θi
(ρe−t, θ)

∣∣∣∣∣
p

dθ dt

=
∫ ρ

0

∫ ω

0
r−4p+1

∣∣∣∣∣∂iv∂θi (r, θ)
∣∣∣∣∣
p

dθ dr,

which gives
∂iv

∂θi
∈ Lpγ0(Sω,ρ), for i = 1, 2, 3, 4.

4.2.2 Regularity of V2

In the same way, we explicit the fact that

V2 ∈W 2,p ((0,+∞)× (0, ω)) ,

where

V2(t, θ) =
(
r
∂

∂r

)2 (v
r

)
(ρe−t, θ) = r

∂2v

∂r2 (ρe−t, θ)− ∂v

∂r
(ρe−t, θ) + v

r
(ρe−t, θ).

It is clear, from subsection 4.2.1, that

r
∂2v

∂r2 ,
∂v

∂r
,
v

r
∈ Lpγ1(Sω,ρ).

Moreover, we have

∂V2
∂t

(t, θ) = −rρe−t∂
3v

∂r3 (ρe−t, θ) + ρe−t
∂2v

∂r2 (ρe−t, θ)− ρe−t

r

∂v

∂r
(ρe−t, θ),

hence
rρe−t

∂3v

∂r3 (ρe−t, θ) = ρe−t
∂2v

∂r2 (ρe−t, θ)− ρe−t

r

∂v

∂r
(ρe−t, θ)− ∂V2

∂t
(t, θ).

Then∫ +∞

0

∫ ω

0

∣∣∣∣∣ρe−t∂2v

∂r2 (ρe−t, θ)
∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0

r3p−1

r
r−3p+1

∣∣∣∣∣r∂2v

∂r2 (r, θ)
∣∣∣∣∣
p

dθ dr

=
∫ ρ

0

∫ ω

0
r3p−2r−3p+1

∣∣∣∣∣r∂2v

∂r2 (r, θ)
∣∣∣∣∣
p

dθ dr

6 ρ3p−2
∫ ρ

0

∫ ω

0
r−3p+1

∣∣∣∣∣r∂2v

∂r2 (r, θ)
∣∣∣∣∣
p

dθ dr < +∞,

14



and ∫ +∞

0

∫ ω

0

∣∣∣∣∣ρe−tr ∂v

∂r
(ρe−t, θ)

∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0

r3p−1

r
r−3p+1

∣∣∣∣∂v∂r (r, θ)
∣∣∣∣p dθ dr

6 ρ3p−2
∫ ρ

0

∫ ω

0
r−3p+1

∣∣∣∣∂v∂r (r, θ)
∣∣∣∣p dθ dr < +∞.

It follows that∫ +∞

0

∫ ω

0

∣∣∣∣∣rρe−t∂3v

∂r3 (ρe−t, θ)
∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0
r2p−1

∣∣∣∣∣∂3v

∂r3 (r, θ)
∣∣∣∣∣
p

dθ dr < +∞,

which means that
∂3v

∂r3 ∈ L
p
γ3(Sω,ρ),

where γ3 = 2− 1
p .

In the same way, we have

∂4v

∂r∂θ3 ∈ L
p
γ1(Sω,ρ) and ∂4v

∂r3∂θ
∈ Lpγ3(Sω,ρ).

Furthermore, we have

∂2V2
∂t2

(t, θ) = rρe−t
∂3v

∂r3 (ρe−t, θ) + r
(
ρe−t

)2 ∂4v

∂r4 (ρe−t, θ)− ρe−t∂
2v

∂r2 (ρe−t, θ)

−
(
ρe−t

)2 ∂3v

∂r3 (ρe−t, θ) + ρe−t

r

∂v

∂r
(ρe−t, θ) +

(
ρe−t

)2
r

∂2v

∂r2 (ρe−t, θ),

hence∫ +∞

0

∫ ω

0

∣∣∣∣∣r (ρe−t)2 ∂4v

∂r4 (ρe−t, θ)
∣∣∣∣∣
p

dθ dt =
∫ ρ

0

∫ ω

0
r3p−1

∣∣∣∣∣∂4v

∂r4 (r, θ)
∣∣∣∣∣
p

dθ dr < +∞.

Then
∂4v

∂r4 ∈ L
p
γ4(Sω,ρ),

where γ4 = 3− 1
p .
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