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Abstract
This article focuses on the practical issue of a recent theoretical method
proposed for trend estimation in high dimensional time series. This
method falls within the scope of the low-rank matrix factorization meth-
ods in which the temporal structure is taken into account. It consists
of minimizing a penalized criterion, theoretically efficient but which
depends on two constants to be chosen in practice. We propose a two-step
strategy to solve this question based on two different known heuristics.
The performance and a comparison of the strategies are studied through
an important simulation study in various scenarios. In order to make the
estimation method with the best strategy available to the community,
we implemented the method in an R package TrendTM which is presented
and used here. Finally, we give a geometric interpretation of the results
by linking it to PCA and use the results to solve a high-dimensional
curve clustering problem. The package is available on CRAN.

Keywords: trend estimation; dimension reduction; high-dimensional data;
penalized contrast; slope heuristic

1



Springer Nature 2021 LATEX template

2 Trend of high-dim. time series estimat.

1 Introduction
Since the 1970’s, it is usual to model a one-dimensional time series by a process
(Xt)t∈Z satisfying

Fθ(Xt+q, . . . , Xt−q, ηt+p, . . . , ηt−p) = 0 ; t ∈ Z, (1)

where p, q ∈ N, η = (ηt)t∈Z is a second order stationary process, often a
white noise, and F = (Fθ)θ∈Θ is a family of continuous maps from R2(p+q+1)

into R indexed in a set Θ. For instance, ARMA models, GARCH models,
and all their extensions are defined this way. An advantage of Model (1)
is that F can be chosen in order to take into account properties known on
the dynamics of the modeled phenomenon regardless to the data. However,
except in simple cases, Model (1) is difficult to extend to the high-dimensional
framework. For instance, the vector autoregressive (VAR) and vector autore-
gressive moving average (VARMA) models have been intensively investigated
on the theoretical side and in applications (see Lütkepohl (2005)). However,
in the high-dimensional framework, these models cannot be applied directly.
Indeed, as mentioned in Gao and Tsay (2022), VARMA models often suffer
the difficulties of over-parametrization and lack of identifiability. To bypass
such difficulties, some authors have studied extensions of the VAR models:
the LASSO regularization of the VAR models (see Shojaie and Michailidis
(2010)), the sparse VAR models (see Davis et al. (2016)), the VAR models
with low-rank transition matrix (see Alquier et al. (2020)), the factor models
(see Lam and Yao (2012a), Gao and Tsay (2022), etc.). Note that the VAR
models and their extensions are tailor-maid to take into account a (linear)
relationship between the Xt’s, but not a sophisticated high-dimensional trend
component as in Model (2) presented below and considered throughout our
paper. Finally, note that it is also difficult to bypass the stationary condition
on η (for a good reference on the classic time series models, see Gourieroux
and Monfort (1997)).

Independently, for almost two decades, in particular thanks to the Netflix
challenge on movies recommendations, the low rank matrix factorization for
the denoising (also for the completion) of high-dimensional matrices with i.i.d.
entries has been deeply investigated on the theoretical side (see Cai and Zhang
(2015); Klopp et al. (2017, 2019); Koltchinskii et al. (2011); Moridomi et al.
(2018)). Indeed, high-dimensional time series often have strong correlation,
and it is thus natural to assume that the matrix that contains such a series
is low rank (exactly, or approximately). Let denote by X the observed d × n
matrix which rows are d time series with length n and assume that both d
and n are high. Matrix factorization consists in approximating X by a matrix
M of low rank k ∈ N∗ (i.e. k � d ∧ n), which can therefore be written as the
product UV of two matrix U ∈ Md,k(R) and V ∈ Mk,n(R) where Md,k(R)
is the set of the matrices of size d × k with coefficients in R. Formally, let us
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consider the model
X = M + ε (2)

The matrix M is usually estimated by using a contrast minimization approach,
the most popular being the least squares contrast associated to the Frobenius
norm: the best rank-k approximation of X is

M̂k ∈ arg min
U∈Md,k,V∈Mk,n(R)

‖X−UV‖2F , (3)

where ‖.‖F is the Frobenius norm (for a matrix A, ‖A‖F := trace(AA∗)1/2).
Then, the choice of the rank k can be viewed as a model selection issue. In the
matrix factorization framework, several approaches have been proposed in the
literature (see for instance Candes et al. (2013); Ulfarsson and Solo (2008);
Lam and Yao (2012b) for criteria based on the estimated eigenvalue study,
Seghouane and Cichocki (2007); Lopes and West (2004) for the classical BIC
criterion or dos S. Dias and Krzanowski (2003) for a cross-validation strategy).

When dealing with time series, the matrix X, besides being of low rank, can
have a temporal structure, a structure in time, as periodicity, smoothness, etc.
It is likely that the temporal properties of the data can be exploited to obtain
an accurate factorization. Recently, Alquier and Marie (2019) has extended
the latter factorization method in order to take into account the time series
trends properties. To this aim, they assume that the matrix M is structured
as follows:

M = MΛ, (4)
where M is a d × τ matrix of low rank k (thus with τ > k) and Λ is a
known τ × n full rank matrix reflecting the temporal structure of the data.
To estimate M, they developed a penalized least squares criterion (based on
the Frobenius norm) and shown that, on the theoretical side, to take into
account trends properties in the definition of the denoising estimator allowed
to improve existing risk bounds. The penalization aims to choose two param-
eters: the rank k of the matrix and the parameter τ related to the temporal
structure. This penalty function depends also on the noise structure and
involves an unknown constant.

In practice, this joint model selection issue is not standard. In addition to
a penalty constant to be chosen, parameters from the distribution of the noise
need to be estimated in advance. In this paper, we propose an automatic way
to deal with these two problems. First, the parameters of the noise distribution
are combined with the penalty constant to get a penalty function involving a
single constant. This avoids having to estimate the parameters beforehand.
Then, we propose a two-stage strategy, as in Devijver et al. (2017); Collilieux
et al. (2019), combined with the use of a heuristic for the constant calibration
problem. Several heuristics have been considered here, now well-known for the
penalty constant calibration in model selection frameworks Lavielle (2005);
Birgé and Massart (2001). We demonstrate the performances of our procedure
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and compare the considered heuristics in the case of independent Gaussian
noises through simulation experiments. The robustness to an autoregressive
noise and a nonnormality distribution are also studied.
The method has been implemented in the R package TrendTM, for Trend of
High-Dimensional Time Series Matrix Estimation, which is available on the
CRAN and presented here. When the factorization problem is solved using
the Singular Value Decomposition (svd) method, we can make a link to the
Principal Component Analysis (PCA) and give an geometrical interpretation
of the factorization results. Moreover, we show that, based on this interpreta-
tion, a simple clustering method of multiple time series can be derived. It is
illustrated on a benchmark dataset of such statistical purpose (see the review
and the comparison in Jacques and Preda (2014)).

The paper is organized as follows. Section 2 recalls the estimation procedure
proposed in Alquier and Marie (2019). Section 3 presents the proposed two-
stage heuristic for the joint selection of the rank and the trend parameter
whose performances are studied in Section 4 on simulated data. Section 5 gives
some details and guidelines on the proposed method in the TrendTM package
and shows an application on real data. In Section 6, we give a geometrical
interpretation of our results and present the clustering method we proposed.

2 Recall of the trend estimation method
proposed by Alquier and Marie (2019)

In this section, we present the method they proposed for estimating M in
model (3) when M := MΛ (see (4)) and when the noise ε has Gaussian i.i.d.
rows of covariance matrix Σε. The general idea of the proposed inference is to
estimate first M from the data X (with X := XΛ) by solving the optimization
problem (3) on this new dataset and then to come back to the estimation of M.

First, the two temporal structures they considered are the following:

• periodicity: if the trend of X is τ -periodic, then Λ = (Iτ | · · · | Iτ ) where
Iτ is the identity matrix inMτ,τ (R),

• smoothness: if the form of the trend is t ∈ {1, . . . , n} 7→ f(t/n) with
f ∈ L2([0, 1]; Rd), then

Λ =

(
ϕ`

(
t

n

))
(`,t)∈{1,...,τ}×{1,...,n}

,

where τ is odd and (ϕ1, . . . , ϕτ ) is the τ -dimensional trigonometric basis
defined by

ϕ`(x) :=


1 if ` = 1√

2 cos(2πmx) if ` = 2m√
2 sin(2πmx) if ` = 2m+ 1
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for every x ∈ [0, 1] and m ∈ {1, . . . , (τ − 1)/2}.

So, the estimation procedure consists in two steps:

Step 1: Estimation of M for k and τ being fixed. They define the following
auxiliary model

X = M + ε, (5)
where X := XΛ+, ε := εΛ+ and Λ+ = Λ∗(ΛΛ∗)−1 is the Moore-Penrose
inverse of Λ. This model doesn’t embed some trend’s property anymore. The
least squares estimator of the matrix M is thus classical:

M̂k,τ ∈ arg min
A∈Sk,τ

‖X−A‖2F , (6)

where Sk,τ = {UV ; U ∈ Md,k(R) and V ∈ Mk,τ (R)}. So, a natural
estimator of M is given by

M̂k,τ := M̂k,τΛ.

Step 2: Choice of k and τ . For a fixed s > 0, the final estimator of M is M̂s :=
M̂k̂(s),τ̂(s) where

(k̂(s), τ̂(s)) ∈ arg min
(k,τ)∈K×T

{‖X− M̂k,τ‖2F + pens(k, τ)}

with K = {1, . . . , d ∧ n}, T = {1, . . . , n}, and

pens(k, τ) := cpen‖Σε‖opk(d+ τ + s) ; ∀(k, τ) ∈ K × T , (7)

where cpen > 0 is a deterministic constant and ‖.‖op is the operator norm on
Mn,n(R) (‖A‖op := sup‖x‖=1 ‖Ax‖ with ‖.‖ the Euclidean norm on Rn). They
establish an oracle-type inequality on the resulting estimator (see Alquier and
Marie (2019) (Theorem 4.1)): for every θ ∈ (0, 1), with probability larger than
1− 2e−s,

‖M̂s −M‖2F 6 min
(k,τ)∈K×T

min
A∈Sk,τ

{(
1 + θ

1− θ

)2

‖AΛ−M‖2F (8)

+
4

θ(1− θ)2
pens(k, τ)

}
.

The parameter s in the penalty is linked to the confidence level in the risk
bound for a fixed k and τ . Making the penalty depend on s is necessary to
establish a risk bound on the adaptive estimator. This is a technical condition
in fact, which we could also get rid of if we only selected τ for a fixed k (see
Theorem 4.1 and Remark 4.2 in Alquier and Marie (2019)). The penalty is
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also proportional to the number of series d as in multiple serie estimation
framework (see for example Collilieux et al. (2019)) since the estimation cost
increases naturally with d.

Finally, note that through the penalty defined by (7), the right-hand side
of inequality (8) depends on ‖Σε‖op because of the concentration inequality
for random matrices with i.i.d. (sub-)Gaussian rows (see Vershynin (2012),
Theorem 5.39 and Remark 5.40.(2)) used to control the variance term in the
proof of Alquier and Marie (2019), Theorem 3.2 (and then Theorem 4.1). This
is one of the reasons why we consider the quadratic loss and why the second
order moment Σε of the rows of ε appears in the risk bound (8).

3 The proposed two-stage heuristic for the
model selection issue in practice

Discussion on the penalty function. The penalty function given by (7)
depends of some constants s and cpen that must be chosen or calibrated in
practice. It also depends on the parameters of the noise distribution through
‖Σε‖op that must be estimated thus in advance: we explicit just below this
norm in two cases that are considered in the simulation study (Section 4):

• when the errors are uncorrelated (cov(ε1,t, ε1,t′) = σ21t 6=t′), then

‖Σε‖op = σ2,

• when (ε1,t)t is a zero-mean stationary AR(1) Gaussian process (defined as
the solution of ε1,t = ρε1,t−1 + η1,t where ρ ∈ (−1, 1) and (η1,t)t is a white
noise of standard deviation σ), we can show that

‖Σε‖op > σ2(1 + ρ) =: f(ρ). (9)

Indeed, the covariance matrix of a row noise (ε0, . . . , εn−1) is

Σε := (σ2ρ|i−j|)i,j .

Then, for every x ∈ Rn such that ‖x‖ = 1,

x∗Σεx =

n∑
i,j=1

xixj [Σε]i,j = σ2

‖x‖2 +
∑
i 6=j

xixjρ
|i−j|


= σ2

(
1 + 2

∑
i>j

xixjρ
i−j

)
.
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Since Σε is a symmetric matrix,

‖Σε‖op = sup
‖x‖=1

|x∗Σεx| > |x∗Σεx| with x =
1√
2

(1, 1, 0, . . . , 0)

> x∗Σεx = σ2

(
1 + 2 · 1√

2
· 1√

2
· ρ2−1

)
= σ2(1 + ρ).

Two-stage heursitic.We set ccal = cpen‖Σε‖op, representing a global penalty
constant that we propose to calibrate using the data. So, this allows us to
avoid the estimation of the noise distribution parameters, which turns out to
be a difficult task. The penalty function is thus reduced to

pen(k, τ) := ccalk(d+ τ + s) ; ∀(k, τ) ∈ K × T ,

and the resulting adaptive estimator is denoted by M̂s := M̂k̂,τ̂ .

If the constant s can be easily chosen, this is not the case for the penalty
constant ccal. Several heuristics have been proposed in the literature for this
purpose in model selection frameworks, but for a one-dimensional parameter
only (see Lavielle (2005); Birgé and Massart (2001)). First, in practice, we
could take s = − log((1 − α)/2) with α fixed to 99%, 95% or 90%. Here we
choose to fix s = 4. Then, for the selection of both k and τ , we follow the
same strategy than in Devijver et al. (2017), that is a two-stage heuristic. We
first recall some heuristics for the selection of one parameter, and then we
present the two-stage heuristic for the joint selection of (k, τ).

Up to our knowledge, there exit the three following heuristics dedicated
to the constant calibration question in the model selection frameworks of one
parameter:

• the one proposed in Lavielle (2005), denoted here ML, that involves a
threshold S which is fixed to S = 0.75 as suggested by the author, and

• the two proposed in Birgé and Massart (2001) (see the more recent version
of Arlot and Massart (2009) and the huge survey paper of Arlot (2019))
that are two versions of the well-known slope heuristic: the ’dimension
jump’ and the ’slope’, denoted here BJ and Slope respectively. The both
heuristics have been implemented in the R package capushe described in
Baudry et al. (2012).

A brief description of these heuristics is given in Appendix 8. For the joint
selection of (k, τ), the two-stage heuristic is the following: first, we choose the
best τ for each k ∈ K via the criterion

τ̂(k) ∈ arg min
τ∈T
{‖X− M̂k,τ‖2F + ccal,τk(d+ τ + s)},
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where the penalty constant ccal,τ is calibrated using one of the previous
heuristics, and then we select the best k among them via the criterion

k̂ ∈ arg min
k∈K
{‖X− M̂k,τ̂(k)‖2F + ccal,kk(d+ τ̂(k) + s)},

where the penalty constant ccal,k is calibrated using the same heuristic to be
consistant, and τ̂ = τ̂(k̂).

Note that in practice K = {1, . . . , kmax} and T = {k + 1, . . . , τmax}, where
kmax is the maximal rank and τmax is the maximal value of τ . These two
quantities need to be specified. Moreover, we propose this strategy and not
the opposite because on the one hand k < τ theoretically and on the other
hand the slope heuristic requires having a minimum point. Using the proposed
strategy allows to visit clearly more dimensions (k, τ).

4 Simulation study
In this study, we conduct different simulations studies to both evaluate
the performance of the proposed method and compare the three different
heuristics:

• Study 1: we consider the model selection issue for k and τ separatly,
• Study 2: we illustrate the importance to take into account the trend in the
estimation procedure when it exits,

• Study 3: we consider the model selection issue for both k and τ .

We also performed additional separate simulations:

• Study 4: we assume that for each series there exists a temporal dependency
which is modelled through an AR process,

• Study 5: we study the robustness of the proposed method to nonnormality
errors.

4.1 Simulation design and quality criteria

4.1.1 Simulation design

We’ve simulated datasets with d = 100 and n = 600 as follows:

(1) we generate a matrix M = UV by simulating U ∈ Md,k(R) and V ∈
Mk,τ (R) for which the entries of U and V are assumed to be i.i.d. and
follows a centered Gaussian distribution with same standard deviation σuv
fixed to 0.5;

(2) two cases are considered according to the presence or not of a trend in the
simulated series: if there is no trend, then τ = n and M = M, and otherwise
M = MΛ with the matrix Λ of the smooth case. To distinguish between
these two cases in the sequel, we call them datasetNoTrend and datasetTrend
respectively;



Springer Nature 2021 LATEX template

Trend of high-dim. time series estimat. 9

(3) the rows of the error matrix ε are assumed to be i.i.d. and follow a centered
Gaussian distribution of variance σ2 (i.e. Σε = σ2In) for Studies 1, 2 and
3; the rows of the error matrix ε are assumed to be i.i.d. stationary AR(1)
Gaussian processes with a white noise of standard deviation σ > 0 and an
autocorrelation parameter ρ ∈ (−1, 1) for Study 4.

We take k = 3 and τ = 25. We consider different values for the residual stan-
dard deviation σ in order to have different levels of difficulty for the estimation
problem. First, according to the previous considerations, var(Mij) = kσ4

uv for
datasetNoTrend and var(Mij) = τkσ4

uv for datasetTrend. For Studies 1, 2 and
3, let us consider sv ∈ {0.1, 0.5, 1.5, 2}. In order to have the same estimation
difficulty (same ratio between σ and the standard deviation of Mij) for the
two datasets, we set σ = sv for datasetNoTrend and σ =

√
τsv for datasetTrend.

The obtained four cases are judged as ‘Easy’, ‘Medium’, ‘Difficult’ and ‘Hard’
respectively. Study 4 is the same as Study 3 but with a noise modeled by an
autoregressive process. More precisely, we consider two values for the stan-
dard deviation of the noise sv ∈ {0.1, 1.5} and an autocorrelation parameter
ρ ∈ {−0.8,−0.3, 0, 0.3, 0.8}. For each combination of parameters, we’ve simu-
lated 200 datasets.

Let us precise that when the trend is not considered in the estimation
procedure, the resulting estimator is

M̂k or k̂,n (if k is selected or not),

and when it is considered the resulting estimator is

M̂k or k̂,τ or τ̂ (if both k and τ are selected or one of them or none).

For Study 5, we consider the same simulation design as in Study 3 but by
considering a heavy-tailed distribution for the errors {εt}t, namely, a Student
distribution with degrees of freedom ν = 50, 10, 3 (ν = 50 being the closest
Gaussian case).

4.1.2 Quality criteria

The performance of our procedure is assessed via:

• the estimated k and/or τ ; and
• the squared Frobenius distance between M and its estimate M̂k̂,τ̂ .

Moreover, we also consider the Frobenius distance between M and

• the estimator of M for the true k and/or τ , that is M̂k,τ ; and
• the trajectorial oracle, that is M̂k̃,τ̃ where

(k̃, τ̃) = arg min
(k,τ)∈K×T

‖M− M̂k,τ‖2F
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when both k and τ are selected, M̂k,τ̃ where

τ̃ = arg min
τ∈T
‖M− M̂k,τ‖2F

when k is fixed, and M̂k̃,n where

k̃ = arg min
k∈K
‖M− M̂k,n‖2F

when no trend is considered.

4.2 Study 1: behavior of the three heuristics for the
selection of k or τ

We first study the selection of k for datasetNoTrend when no trend is con-
sidered in the estimation procedure. We consider two different values of the
maximal rank kmax ∈ {15, 35}. The results are presented in Figure 1. When
the noise is small, i.e. the estimation problem is easy (cases ‘Easy’ and
‘Medium’), all the heuristics recover the true rank, and therefore the obtained
estimators perform as well as M̂k,n (the estimator of M for k fixed to its true
value). When the estimation problem gets more difficult (cases ‘Difficult’ and
‘Hard’), the heuristics tend to underestimate the rank. This underestimation
behavior seems to be logical and even desirable in the particular ‘Hard’ case.
Indeed, we observe that in terms of Frobenius norm, the obtained estimators
perform better compared to the one with the true rank. Moreover, they have
performance close to the oracle. Comparing the three heuristics, the Slope
heuristic shows better performances compared to the two other heuristics.
This is particularly marked for the ‘Medium’ case and kmax = 15. We can
note that the behavior of the three heuristics can be affected by the choice of
kmax. This problem is well-known for both the BJ and Slope heuristics (see
Arlot (2019) for more explanations in the case univariate series analysis).

Then, we study the selection of τ for datasetTrend for k fixed to the true
value. We fix τmax = 55. The results are presented in Figure 2. Except with
BJ that is more unstable, the heuristics retrieve the true value of τ whatever
the estimation difficulty with same performance as the oracle.

From this study, we choose the Slope heuristic for the model selection issue
for both k and τ in the sequel and in the developed package.

4.3 Study 2: accounting for the smooth structure in the
trend

We compare the performance of the procedure on the datasetTrend when the
trend is considered (τ = τ̂) or not (τ = n) for k fixed to the true value.
We choose τmax = 55. The results are represented in Figure 3. Whatever the
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k̂ ‖M− M̂
k̂,n
‖F

Fig. 1 Comparison of the three heuristics for the selection of k for datasetNoTrend (Study
1). Left: boxplot of estimated number of the rank k. Right: boxplot of ‖M − M̂

k̂,n
‖F for

two values of kmax = 15 (first line) and kmax = 35 (second line), and different values of σ.
On each graph and for each value of σ, from left to right, we have the result from ML, BJ,
Slope (k̂), the true rank (k) and the oracle (k̃).

difficulty of the estimation problem (different values of σ), accounting for the
trend increases the precision of the estimation. This is more marked for high
values of σ. Note that, similarly as Study 1, the estimation naturally degrades
with the increasing of σ.

4.4 Study 3: selection of k and τ
Table 1 shows that the joint heuristic retrieves the true values of k and τ what-
ever the difficulty of the estimation problem, except very few times. Thus, the
performance of the estimator of M is comparable to the one of the estima-
tor Mk,τ and moreover it has performance close to the oracle (see Figure 4).
Compared to Study 1 where τ = n, here for difficult estimation problems, k is
not underestimated.
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τ̂ ‖M− M̂k,τ̂‖F

Fig. 2 Comparison of the three heuristics for the selection of τ for datasetTrend when k is
fixed to the truth (k = 3) for different values of σ (Study 1). Left: boxplot of estimated τ .
Right: boxplot of ‖M − M̂k,τ̂‖F . In each graph and each value of σ, from left to right, we
have the result from ML, BJ, Slope (τ̂), the true value (τ) and the oracle (τ̃).

(k̂, τ̂) Easy Medium Difficult Hard

Mean (3.01, 25.26) (3.035, 25.18) (3.045, 25.14) (3.05, 25.29)
Sd (0.099, 0.926) (0.209, 0.728) (0.231, 0.618) (0.267, 1.159)

(k̃, τ̃) Easy Medium Difficult Hard

Mean (3, 25) (3,25) (3,25) (3,25)
Sd (0, 0) (0, 0) (0, 0) (0, 0)

Table 1 Estimated k and τ , (k̂, τ̂), and the oracle (k̃, τ̃) for different values of σ (Study
3). The true values are (k, τ) = (3, 25).

4.5 Study 4: robustness to autocorrelated noise
Whatever the dependence and the noise variance, the joint heuristic retrieves
the true values of k and τ (see Tables 2 and 3), except for a large variance
(sv = 1.5) and a high positive autocorrelation (ρ = 0.8) where it underesti-
mates k and the selection of τ is more variable. For all noise cases, the method
leads to estimators that have close performance compared to the oracle (see
Figures 5 and 6) and with better performance than the one with the true val-
ues for the excepted case.
Moreover, we can observe that the more the autocorrelation parameter ρ
increases (from −1 to 1), the more ‖M−M̂k,τ‖F increases also with a notice-
able gap between ρ = 0.3 and ρ = 0.8 for both values of sv. First, the estimation
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Fig. 3 Boxplot of ‖M−M̂k,τ‖F with τ = τ̂ (select_tau) and τ = n (tau = n) for different
values of σ (Study 2).

(k̂, τ̂) −0.8 −0.3 0 0.3 0.8

Mean (3, 25.24) (3.015, 25.3) (3.025, 25.25) (3.005, 25.16) (3.01, 26.01)
Sd (0, 0.973) (0.157, 1.075) (0.186, 0.895) (0.071, 0.760) (0.099, 2.242)

(k̃, τ̃) −0.8 −0.3 0 0.3 0.8

Mean (3, 25) (3, 25) (3, 25) (3, 25) (3, 25)
Sd (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Table 2 Estimated k and τ , (k̂, τ̂), and the oracle (k̃, τ̃) for different values of ρ and for
the standard deviation sv = 0.1 (Study 4). The true values are (k, τ) = (3, 25).

is better with high and negative autocorrelation. Then, the observed phe-
nomenon on the norm can be explained. The variance term in the risk bound
of the estimator M̂k̂,τ̂ (i.e. the penalty, see (8)) depends on ‖Σε‖op (see (7)).
Using (9), we can show that this term is lower-bounded by

f(ρ)
k(d+ τ)

dT

up to a multiplicative constant where f is increasing and nonnegative on
[−1, 1].
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Fig. 4 Boxplot of ‖M − M̂k,τ‖F with (k, τ) = (k̂, τ̂) the selected k and τ , (k, τ) = (k, τ)

the true values and (k, τ) = (k̃, τ̃) the oracle for different values of σ (Study 3).

(k̂, τ̂) −0.8 −0.3 0 0.3 0.8

Mean (3.05, 25.29) (3.025, 25.28) (3.015, 25.25) (3.025, 25.27) (1.4, 25.67)
Sd (0.279, 1.030) (0.157, 0.962) (0.158, 0.825) (0.157, 0.936) (0.783, 5.081)

(k̃, τ̃) −0.8 −0.3 0 0.3 0.8

Mean (3, 25) (3, 25) (3, 25) (3, 25) (1, 17.5)
Sd (0, 0) (0, 0) (0, 0) (0, 0) (0, 9.152)

Table 3 Estimated k and τ , (k̂, τ̂), and the oracle (k̃, τ̃) for different values of ρ and for
the standard deviation sv = 1.5 (Study 4). The true values are (k, τ) = (3, 25).

4.6 Study 5: robustness to nonnormality of the errors
Figure 7 and Table 4 display the results of the Student simulation. The joint
heuristic retrieves the true values of k and τ in average, but with a slight
overestimation of k for the extreme case (ν = 3). However, we observe a slight
degradation in the quality of the estimation of M, which is more marked as
we move away from the Gaussian hypothesis.

5 Using the TrendTM package
The version of the package is 2.0.19.
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Fig. 5 Boxplot of ‖M − M̂k,τ‖F with (k, τ) = (k̂, τ̂) the selected k and τ , (k, τ) = (k, τ)

the true values and (k, τ) = (k̃, τ̃) the oracle for different values of ρ and for the standard
deviation sv = 0.1 (Study 4).

(k̂, τ̂) 50 10 3

Mean (3.02, 25.2) (3.02, 25.3) (3.28, 25.4)
Sd (0.157, 0.807) (0.122, 1.29) (0.539, 0.998)

(k̃, τ̃) 50 10 3

Mean (3, 25) (3, 25) (3, 25)
Sd (0, 0) (0, 0) (0, 0)

Table 4 Estimated k and τ , (k̂, τ̂), and the oracle (k̃, τ̃) for different values of ν (Study
5). The true values are (k, τ) = (3, 25).

5.1 Comments on the package
The package is organized around the main function TrendTM. In this section,
we present the arguments used in a call of this function to a dataset named
Data_Series

TrendTM(Data_Series, k_select = FALSE,
k_max = 20, struct_temp = "none", tau_select = FALSE,
tau_max = floor(n / 2), type_soft = "als")

This function returns a list containing six elements:

• k_est, the estimated k or the true k when no selection is chosen;
• tau_est, the estimated τ or the true τ when no selection is chosen;
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Fig. 6 Boxplot of ‖M − M̂k,τ‖F with (k, τ) = (k̂, τ̂) the selected k and τ , (k, τ) = (k, τ)

the true values and (k, τ) = (k̃, τ̃) the oracle for different values of ρ and for the standard
deviation sv = 1.5 (Study 4).

• M_est, the estimation of M (M_est = U_estV_est if no temporal struc-
ture is considered and M_est = U_estV_est Λ if a temporal structure is
considered);

• U_est, the component U of the decomposition of M̂;
• V_est, the component V of the decomposition of M̂;
• contrast, the squared Frobenius norm of Data_Series - M_est. If k and
τ are fixed, the contrast is an unique value; if k is selected and τ is fixed
or if τ is selected and k is fixed, the contrast is a vector containing the
norms for each visiting values of k or τ respectively; and if k and τ are
selected, the contrast is a matrix with kmax rows and τmax columns such
that contrastk,τ = ‖Data_Series− M̂k,τ‖2F .

5.1.1 Model selection

The selection of k or/and τ is requested using the options k_select or/and
tau_select that are booleans. When there is no selection, the option is set to
FALSE and k_max = k or/and tau_max = τ . Note that if no trend is considered
in the estimation procedure, τ = n, otherwise tau_max must be a smaller than
n and larger than k_max + 2 in order to ensure that the rank of M is k.

5.1.2 Taking the trend into account

Let us give more details about the different arguments of TrendTM that need
to be specified when accounting for a temporal structure in the estimation
procedure.
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Fig. 7 Boxplot of ‖M − M̂k,τ‖F with (k, τ) = (k̂, τ̂) the selected k and τ , (k, τ) = (k, τ)

the true values and (k, τ) = (k̃, τ̃) the oracle for different values of ν (Study 5).

Two temporal structures are considered: periodic trend and
smooth trend. This can be specified using the option struct_temp,
struct_temp="periodic" or struct_temp="smooth" respectively. Recall
that the selection of τ is only possible when a smooth trend is considered.
Thus, when

• struct_temp="periodic", then tau_select=FALSE and tau_max= τ . In
this case, τ must be such that n is a multiple of τ ;

• struct_temp="smooth", then tau_select is either FALSE or TRUE. What-
ever this choice, tau_max must be an odd number.

When no trend is taken into account, struct_temp="none" and tau_max = n.

5.1.3 Estimation of M, k and τ being fixed (Step 1)

The least squares estimator M̂k,τ of M, given by (6), is obtained by using
the softImpute function from the R package of the same name developed
for matrix completion by Hastie and Mazumder (2015). In this package, two
algorithms are implemented: ‘svd’ and ‘als’. In a simulation study, we observed
that they have both provided the same accuracy of the estimator (results not
shown). We decide to use the ‘als’ algorithm (als for Alternating Least Squares)
by default but the choice is left free to the user in our package TrendTM. In
this package, this choice is specified using the option type_soft.
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5.1.4 The Slope heuristic

Let us now focus on the selection problem of the rank k, and write the penalty
as pen(k) = ccal,kϕ(k). The Slope heuristic, proposed by Birgé and Massart
(2001), consists in estimating the slope ŝ of the contrast ‖X − M̂k,n‖2F as a
function of ϕ(k) with k ‘large enough’ and defining ccal,k = −2ŝ. The imple-
mentation of this heuristic requires the choice of the dimensions on which to
perform the regression, that can be difficult in practice. To deal with this prob-
lem, Baudry et al. (2012) proposed to make robust regressions for dimensions
between k and kmax for k = 1, 2, . . . , resulting in different selected k̂. The
choice of the final dimension is the maximal value k̂ such that the length of
successive same k̂ is greater than the option point of the function DDSE of
their R package capushe. In order to avoid some implementation problems as
such condition is not reached and no k is selected, we decide to take the value
k̂ associated to the maximal length of successive same k̂.

5.2 Application to pollution dataset
Let us use the package on a real dataset 1. The dataset contains :

• The date in the (DD/MM/YYYY) format,
• The time in the (HH.MM.SS) format,
• The hourly average concentration of 10 toxic gases in the air : CO, PT08.S1,
NMHC, C6H6, PT08.S2, NOx, PT08.S3, NO2, PT08.S4 and PT08.S5,

• The temperature in °C,
• The relative humidity (RH) in %,
• The absolute humidity (AH).

The concentration of the 10 toxic gases, the temperature and the relative and
absolute humidity have been recorded n = 9357 times during one year. We
do a first step of data imputation using the function complete of the pack-
age softImpute since missing values (coded with −200) exist in this dataset
(see Alquier et al. (2022) for more details on high-dimensional time series
completion).

Our procedure selects k̂ = 7 and τ̂ = 13. Figure 8 shows the obtained trend
estimation for the 13 toxic gases. The denoising process seems to have been
well applied to the data.

6 Link to PCA and clustering
In this section, we give a geometrical interpretation of the results when the fac-
torization problem is solved via a svd using the link to PCA. We also propose
a simple method for the clustering of high-dimensional time series based on
their projections on the resulting subspace. This method is compared to dif-
ferent existing methods described and compared in Jacques and Preda (2014)
on the benchmark ECG dataset.

1available at https://archive.ics.uci.edu/ml/datasets/Air+quality
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Fig. 8 Data (in grey) and trend estimation (in red) for the 13 toxic gases (red).

The ECG dataset.
The ECG dataset (taken from the UCR Time Series Classification and Clus-
tering website) consists in 200 electrocardiograms from 2 groups of patients
sampled at 96 time instants in which 133 are classified as normal and 67
as abnormal based on medical considerations. The time series are plotted in
Figure 9.

Geometrical interpretation of the factorization results.
Recall that the PCA problem is solved using a svd (Singular Value Decom-
position) leading to a matrix factorization. The svd solution is unique and
generates orthogonal factors allowing graphical representations. Our frame-
work without considering the temporal trend (Λ = I) and by solving the
optimization problem (3) with svd is thus equivalent to a PCA, up to a
centering of the matrix X. The rank-k svd solution provides Ûk and V̂k such
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Fig. 9 The ECG dataset (black: normal, red: abnormal).

that Ûk = XV̂∗k where V̂∗k is an othogonal matrix and the estimator of M

with rank k, i.e. the solution of (3), is M̂k = ÛkV̂k. Consequently, the d lines
of the matrix Ûk contains the coordinates of the projection of the d series
on the first k axes, i.e. in the basis given by the k lines of the matrix V̂k.
When a temporal structure is taken into account, as for example a τ -periodic,
M is estimated via the estimation of M resulting from a PCA on the trans-
formed data X = XΛ+. Indeed, the estimator of M is M̂k,τ = M̂k,τΛ where
M̂k,τ = ÛkV̂k,τΛ is the solution of (6) and thus the lines of Ûk contains the
coordinates of the transformed time series (X) in the basis defined by the
lines of V̂k,τ .

Some remarks:

• this interpretation is only possible if the factorization is solved by svd. For
example, this is no longer the case when the other classical NMF (Non
Negativ Matrix Factorization) method is used;

• our work provides a criterion, theoretically performant, for the choice of the
rank k, i.e. for the number of axes in PCA, usually chosen using empirical
criteria;

• the svd requires the calculation of eigenvalues of a matrix which is numer-
ically tedious when the dimension of the problem is very large as in
our framework. In this case, the svd is performed using the R package
softImpute;

• in a simple PCA, two projected time series are close if they share globally
the same trend’s property. However, in a high-dimensional space (n high),
the euclidean distance used in PCA can lose its meaning and a local trend
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similarity could be preferred as by using the temporal structure of the series.

To illustrate the effect of the trend reduction (using Λ+ on a period with
length τ), the PCA on the raw ECGs series and on the transformed ECGs
series are represented in Figure 10, respectively. The representation is given
only on the two first axes (thus with k = 2) and the series are colored according
to the normal (black) and abnormal (red) status. For the transformed data,
we considered that the temporal trend is periodic with period τ = 32. The
PCA on the raw data, called the raw PCA, is very structured with respect to
the time. Let us consider the 28th and the 121th time series. These series are
represented in Figure 11 on the left in their raw version and after the temporal
transformation on the right (called the transformed PCA). As we can observed,
the raw series differ quite strongly at the beginning and at the end of time,
which explains why they are quite far away on the principal components of
the raw PCA. This difference is largely attenuated by the smoothing carried
out by the transformation and they are close in the transformed PCA. We
also compared to a Sparse PCA using the function SPC of the R package PMA
(see Figure 10). The projection is different from the transformed PCA and in
particular the two previous series are no longer close or as far away as in the
raw PCA.

Clustering of the d times series.
When dealing with high-dimensional data, a large category of methods pro-
posed in the literature proceed in two steps: first we reduce the dimension of
the data and second we perform the clustering (see Jacques and Preda (2014)
for a review). Following this line, we propose here a very simple method
which consists in applying a classical clustering method (that is here the well-
known Hierarchical Agglomerative Clustering with the Ward’s linkage) to the
projected series, i.e. on the rows of Ûk. We apply this strategy on the ECG
dataset for a fixed number of groups to 2 since we want to compare our results
to those given in Jacques and Preda (2014) with different considerations: (1)
with and without taking into account for a trend (here a periodic trend with
τ = 32) and (2) for k = 2 and for a selected number k.

The Correct Classification Rates (CCR), that is the quality criterion used
by the authors, according to the known partitions are given in Table 5. We
also report the CCR obtained for the best method among those tested in
Jacques and Preda (2014). In addition, we indicate the time taken by the dif-
ferent methods on a laptop 1.6 GHz CPU. We observe that accounting for the
trend improves significantly the clustering performances, which are the same
compared to the best clustering method. However, our proposed strategy is
clearly much more faster. We apply also the clustering on the sparse PCA
result and obtained a CCR of 71 that is lower compared to both the raw and
the transformed PCA.
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Fig. 10 Top: PCA on X. Middle: PCA on X with a periodic trend (τ = 32). Bottom:
Sparse PCA for the ECGs series.
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Fig. 11 The 28th (dotted line) and the 121th (solid line) time series. Left: the raw series.
Right: the transformed series with a periodic trend (τ = 32).

procNoTrend procTrend Best method
periodic with τ = 32 in Jacques and Preda (2014):

Funclust

CCR 74.5 (k = 2) 83.5 (k = 2) 84 (see Jacques and Preda (2014))

mean times 0.012 0.0033 19.2
in second
(on 30 runs)

CCR 75.5 (k̂ = 4) 80.5 (k̂ = 6)
mean times 0.16 0.0392
in second
(on 30 runs)

Table 5 Correct classification rates (CCR) in percentage accounting or not for
a trend on the ECG dataset and with a selection or not for k. Mean times in
second obtained on 30 runs.

Note that for the ECG dataset, when a trend is considered with τ = 32
and k̂ = 6, 3 groups is prefered according to the NbClust R package (chosen
by the majority of model selection methods included in this package). Note
that, in Figure 12, the series of the ECG dataset are plotted on the left and
their projections, colored according to the 3 groups, are provided on the right.

7 Conclusion
The penalized criterion developed in Alquier and Marie (2019) for high-
dimensional time series analysis consists in selecting both the rank k of the
matrix and the parameter τ related to the temporal structure. The penalty
function involves a constant to be calibrated and depends on the temporal
structure through its associated parameters to be estimated. For such mini-
mization contrast estimation context, it is well-known in the literature that
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Fig. 12 Clustering of the ECG series with a periodic trend with τ = 32, k̂ = 6 and 3
groups. Left: the series and right: the PCA result, colored according to the groups.

despite the selection of both parameters issue that is not standard, the cali-
bration of penalty constant is not an easy task and many heuristics have been
proposed to this aim. We proposed in this paper a two-stage strategy based
on a popular heuristic: the slope heuristic proposed by Birgé and Massart
(2001) and used in many statistical problems. We conducted a large simula-
tion study to compare different heuristics as well as to study the performance
of the method. In particular, through these simulations, we show that the joint
heuristic performs well: the true values of k and τ are retrieved or underesti-
mated when the estimation problem is more difficult, but with good reasons
(the estimation is better than with the true values in this case). Moreover,
whatever all the tested cases, the performance of the final estimator is compa-
rable to that of the oracle. The method has been implemented in the R package
TrendTM yet available on the CRAN and which is detailed in this paper. We
also give a geometrical interpretation of the factorization results in the case of
using a svd method for solving the optimization problem and propose a simple
clustering method of multiple curves. On a benchmark dataset, we observed
that this simple method works as well as the best ones proposed in the liter-
ature but is computationally much faster. Moreover, we show that accounting
for the tendency in this dataset improve the clustering.
Our model assumes that the time series are independent. In some applications,
this assumption is not realistic and a perpective of this work will be to take
into account a between-series dependence.

8 Appendix
We give here details on the heuristics for the calibration of the penalty con-
stant. Let us consider the model selection problem of selecting a parameter k
in the set {1, . . . , kmax} by minimizing a general penalized contrast:

k̂(β) ∈ arg min
k
C(k) + β pen(k),
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where β is the unknown penalty constant, C and pen are the contrast and
penalty function, respectively. The two well known heuristics for the calibration
of one penalty constant are the following:

• the one proposed by Lavielle (2005), calledML in our paper. The idea of this
heuristic is to select the dimension for which the curve C(k) w.r.t. pen(k)
ceases to decrease significantly, i.e. to look of a break in the slope of this
curve. The author thus proposed the following automatic procedure:

k̂ = max
k
{k ∈ {1, . . . , kmax} | D(k) < S}

whereD(k) is the second derivative of the previous curve and S is a threshold
to be fixed.

• the ‘slope heuristic’ proposed by Birgé and Massart (2001). The idea of
this heuristic is based on two theoretical facts: first there exists a minimal
penalty such that when the penalty is smaller then k̂ is huge leading to
overfitting, but when the penalty is larger then k̂ is reasonable. Two data-
driven algorithms have been proposed to search for this minimal penalty
(see the huge paper dedicated to this heuristic Arlot and Massart (2009)):

– Slope: this heuristic consists in estimating the slope βs of C(k) as a
function of pen(k) for ‘large’ k and to consider k̂(β̂) where β̂ = −2βs.

– Biggest Jump (BJ): this heursitic consists in taking the constant βbg
associated to the biggest jump in the curve β 7→ k̂(β) and to consider
k̂(β̂) where β̂ = 2βbg.
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Supplemental materiel
We give here a large majority of our codes.

Code for the simulations

The code of Study 3 is the following:

# Used packages ---------------------------

library("TrendTM")
library("tidyverse")
library("fda")
library("wesanderson")

# Used function ---------------------------

Simulated_Series <- function(d, n, k, tau, sUV, s0) {
U <- matrix(rnorm(d * k, 0, sUV), d, k)
V <- matrix(rnorm(k * tau, 0, sUV), k, tau)
times_eval <- seq(1 / n, 1, by = 1 / n)
fbasis_obj <- create.fourier.basis(rangeval = c(0, 1), nbasis = tau, period = 1)
fbasis_evals <- eval.basis(times_eval, fbasis_obj)
Lambda <- t(fbasis_evals)
M <- U %*% V %*% Lambda
s2 <- sqrt(tau) * s0
E <- matrix(rnorm(d * n, 0, s2), d, n)
X <- M + E
return(X)

}

# Used parameters ---------------------------

d <- 100
n <- 600
sUV <- 0.5
k_true <- 3
tau_true <- 25
k_select <- TRUE
k_max <- 15
tau_select <- TRUE
tau_max <- 55
type_soft <- "als"
struct_temp <- "smooth"

seq_s0 <- c(0.1, 0.5, 1.5, 2)
NbSim <- 10

# Simulation and Estimaiton ---------------------------

TrendTM_For_Study3 <- purrr::map(seq_s0, ~ {
Res_Total_Sim <- matrix(0, ncol = 6, nrow = NbSim)

for (i in 1:NbSim) {
Data_Series <- Simulated_Series(d, n, k_true, tau_true, sUV, .x)
# truth
NormeF_true <- TrendTM(Data_Series,

k_max = k_true,
struct_temp = struct_temp, tau_max = tau_true

)$contrast
# estimated
Res_TrendTM_k_tau <- TrendTM(Data_Series,
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k_max = k_max, k_select = k_select,
struct_temp = struct_temp, tau_select = tau_select,
tau_max = tau_max

)
k_est <- Res_TrendTM_k_tau$k_est
tau_est <- Res_TrendTM_k_tau$tau_est

Res_Total_Sim[i, ] <- c(
k_true, tau_true, NormeF_true, k_est,
tau_est, Res_TrendTM_k_tau$contrast[k_est, which(colnames(Res_TrendTM_k_tau$contrast) %in% tau_est)]

)
}

Res_Total_Sim <- Res_Total_Sim %>%
as.data.frame()

return(Res_Total_Sim)
})

TrendTM_For_Study3_Org <- TrendTM_For_Study3 %>%
bind_rows()

colnames(TrendTM_For_Study3_Org) <- c(rep(c("k", "tau", "norme"), 2))

Study3 <- bind_rows(TrendTM_For_Study3_Org[, 1:3], TrendTM_For_Study3_Org[, 4:6]) %>%
mutate(CaseDiff = rep(c("(true_k,true_tau)", "(select_k,select_tau)"), each = 4 * NbSim)) %>%
mutate(Case = rep(rep(c("Easy", "Medium", "Difficult", "Hard"), each = NbSim), 2))

Study3$Case <- fct_relevel(Study3$Case, c("Easy", "Medium", "Difficult", "Hard"))

# Plot result ---------------------------

ggplot(Study3, aes(x = Case, y = sqrt(norme), col = CaseDiff, fill = CaseDiff)) +
geom_boxplot() +
scale_fill_manual(values = wes_palette("Darjeeling1", n = 3)) +
scale_color_manual(values = wes_palette("Darjeeling1", n = 3)) +
xlab("") +
ylab("")

# Summarise results ---------------------------

Selected_k_tau_Mean_SD <- Study3 %>%
filter(CaseDiff == "(select_k,select_tau)") %>%
group_by(Case) %>%
summarise(

moy_selected_k = mean(k), sd_selected_k = sd(k),
moy_selected_tau = mean(tau), sd_selected_tau = sd(tau)

)

Code for the application

The code for the application on the pollution dataset presented in Section 5.2
is the following:

# Used packages ---------------------------

library("softImpute")
library("TrendTM")
library("tidyverse")

# Load data ---------------------------

AirPollution <- read.table("AirQualityUCI.csv", sep = ";", header = TRUE, dec = ",") %>%
dplyr::select(-Date, -Time) %>%
mutate_all(., ~ replace(., which(. == -200), 0))
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Names_Pol <- colnames(AirPollution)

AirPollution_Data <- AirPollution %>%
as.matrix() %>%
t()

AirPollution_Imp <- softImpute::complete(
AirPollution_Data,
softImpute(AirPollution_Data, rank = 1, lambda = 0)

)

# Trend estimation ---------------------------

AirPollution_Trend <- TrendTM(AirPollution_Imp,
k_select = TRUE, k_max = 13,
struct_temp = "smooth",
tau_select = TRUE, tau_max = 101

)

# Plot data and results ---------------------------

times <- rep(1:dim(AirPollution)[1], dim(AirPollution)[2])
AirPollution_Struc <- AirPollution %>%

gather(key = "Gaz", value = "Gaz_Conc") %>%
mutate(times = times)

Tendency_Struc <- t(AirPollution_Trend$M_est) %>%
as.data.frame() %>%
rename_all(funs(c(Names_Pol))) %>%
gather(key = "Gaz", value = "Gaz_Conc_Tendency") %>%
mutate(times = times)

Data_Res <- left_join(AirPollution_Struc, Tendency_Struc)

ggplot(Data_Res, aes(x = times, y = Gaz_Conc)) +
geom_line(color = "grey") +
facet_wrap(facets = ~ as.factor(Gaz), scales = "free_y", ncol = 3) +
geom_line(aes(x = times, y = Gaz_Conc_Tendency, color = "red")) +
theme(legend.position = "none")

Code for the PCA and clustering

The code of the study presented in Section 6 is the following:

# Used packages ---------------------------

library("TrendTM")
library("tidyverse")
library("FactoMineR")
library("factoextra")
library("PMA")
library("reshape2")
library("NbClust")

# Load data ---------------------------

TRAIN <- read.delim("ECG200_TRAIN", sep = ",", header = FALSE) %>%
rename_all(funs(c("label", paste("T", 1:96, sep = ""))))

TEST <- read.delim("ECG200_TEST", sep = ",", header = FALSE) %>%
rename_all(funs(c("label", paste("T", 1:96, sep = ""))))

ECG <- bind_rows(TRAIN, TEST)
Group <- ECG %>%

mutate(Group = replace(label, which(label == -1), 0)) %>%
dplyr::select(Group) %>%
as.matrix()

ECG <- ECG %>%



Springer Nature 2021 LATEX template

Trend of high-dim. time series estimat. 31

dplyr::select(-label) %>%
as.matrix()

n <- ncol(ECG)
d <- nrow(ECG)

# Plot data ---------------------------

ECG_For_Plot <- ECG %>%
t() %>%
melt(.) %>%
mutate(times = rep(c(1:n), d), Group = rep(Group, each = n))

ggplot(ECG_For_Plot, aes(x = times, y = value, group = Var2, col = as.factor(Group))) +
geom_line() +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "black"))

# Geometrical interpretation ---------------------------

Raw_ECG_k2_SVD <- TrendTM(ECG, k_max = 2, type_soft = "svd")$U_est %>%
as.data.frame() %>%
rename(dim1 = V1, dim2 = V2)

ggplot(Raw_ECG_k2_SVD, aes(x = dim1, y = dim2, col = as.factor(Group))) +
geom_text(label = as.character(c(1:d))) +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "black"))

Transf_ECG_k2_SVD <- TrendTM(ECG,
k_max = 2,
tau_max = 32, struct_temp = "periodic",
type_soft = "svd"

)$U_est %>%
as.data.frame() %>%
rename(dim1 = V1, dim2 = V2)

ggplot(Transf_ECG_k2_SVD, aes(x = dim1, y = dim2, col = as.factor(Group))) +
geom_text(label = as.character(c(1:d))) +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "black"))

Sparse_ECG_k2_SVD_out <- SPC(ECG, sumabsv = 1, K = 2, orth = TRUE, niter = 20, trace = FALSE)
Sparse_ECG_k2_SVD <- Sparse_ECG_k2_SVD_out$u %*% (diag(Sparse_ECG_k2_SVD_out$d)) %>%

as.data.frame() %>%
rename(dim1 = V1, dim2 = V2)

ggplot(Sparse_ECG_k2_SVD, aes(x = dim1, y = dim2, col = as.factor(Group))) +
geom_text(label = as.character(c(1:d))) +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "black"))

# Clustering ---------------------------

Clustering_funct <- function(Coord, P) {
CAH_Ward <- Coord %>%

dist(., method = "euclidean") %>%
.^2 %>%
hclust(., method = "ward.D")

return(cutree(CAH_Ward, k = P))
}

Group <- Group + 1
# Fixed P
P <- 2
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ECG_Clust_k2_WO_Temp <- TrendTM(ECG, k_max = 2, tau_max = n, type_soft = "svd")
cluster_k2_WO_Temp_P2 <- Clustering_funct(ECG_Clust_k2_WO_Temp$U_est, P)
sum(cluster_k2_WO_Temp_P2 == Group) / d * 100

ECG_Clust_k2_WITH_Temp <- TrendTM(ECG,
k_max = 2,
tau_max = 32, struct_temp = "periodic",
type_soft = "svd"

)
cluster_k2_WITH_Temp_P2 <- Clustering_funct(ECG_Clust_k2_WITH_Temp$U_est, P)
sum(cluster_k2_WITH_Temp_P2 == Group) / d * 100

ECG_Clust_kselect_WO_Temp <- TrendTM(ECG,
k_max = 10, k_select = TRUE,
tau_max = n, type_soft = "svd"

)
cluster_kselect_WO_Temp_P2 <- Clustering_funct(ECG_Clust_kselect_WO_Temp$U_est, P)
sum(cluster_kselect_WO_Temp_P2 == Group) / d * 100

ECG_Clust_kselect_WITH_Temp <- TrendTM(ECG,
k_max = 10, k_select = TRUE,
tau_max = 32, struct_temp = "periodic",
type_soft = "svd"

)
cluster_kselect_WITH_Temp_P2 <- Clustering_funct(ECG_Clust_kselect_WITH_Temp$U_est, P)
sum(cluster_kselect_WITH_Temp_P2 == Group) / d * 100

# Unknown P
Choice_Nbclust <- NbClust(

data = ECG, distance = "euclidean",
method = "ward.D2", index = "all",
min.nc = 2, max.nc = 16

)$Best.nc %>%
t() %>%
as.data.frame()

ggplot(Choice_Nbclust, aes(x = as.factor(Number_clusters))) +
geom_bar()

cluster_kselect_WITH_Temp_P3 <- Clustering_funct(ECG_Clust_kselect_WITH_Temp$U_est, P = 3)

ECG_For_Plot <- ECG_For_Plot %>% mutate(ClusterP3 = rep(cluster_kselect_WITH_Temp_P3, each = n))
ggplot(ECG_For_Plot, aes(x = times, y = value, group = Var2, col = as.factor(ClusterP3))) +

geom_line() +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "blue", "black"))

ggplot(Transf_ECG_k2_SVD, aes(x = dim1, y = dim2, col = as.factor(cluster_kselect_WITH_Temp_P3))) +
geom_text(label = as.character(c(1:d))) +
theme(legend.position = "none") +
ylab("") +
scale_color_manual(values = c("red", "blue", "black"))
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