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Abstract: Semiconductor nanocrystals known as quantum dots (QDs) are of great interest for re-
searchers and have potential use in various applications in biomedicine, such as in vitro diagnostics,
molecular tracking, in vivo imaging, and drug delivery. Systematic analysis of potential hazardous
effects of QDs is necessary to ensure their safe use. In this study, we obtained water-soluble core/shell
QDs differing in size, surface charge, and chemical composition of the core. All the synthesized
QDs were modified with polyethylene glycol derivatives to obtain outer organic shells protecting
them from degradation. The physical and chemical parameters were fully characterized. In vitro
cytotoxicity of the QDs was estimated in both normal and tumor cell lines. We demonstrated that QDs
with the smallest size had the highest in vitro cytotoxicity. The most toxic QDs were characterized by
a low negative surface charge, while positively charged QDs were less cytotoxic, and QDs with a
greater negative charge were the least toxic. In contrast, the chemical composition of the QD core
did not noticeably affect the cytotoxicity in vitro. This study provides a better understanding of the
influence of the QD parameters on their cytotoxicity and can be used to improve the design of QDs.

Keywords: quantum dots; semiconductor nanocrystals; cytotoxicity; nanotoxicity; nanomaterial
biological interactions

1. Introduction

The development of integrated pharmaceutical agents that could be used in both
diagnosis and personalized targeted treatment is a prevailing trend in modern medicine. A
common approach to this issue is the use of nanomaterials as components of preparations
that are essentially combinations of active pharmaceutical agents and multifunctional
nanoparticles with various structures. Quantum dots (QDs), fluorescent nanocrystals up
to 10 nm in size, are the most widely used and extensively studied nanomaterials. They
are most commonly used as fluorescent agents for highly sensitive in vivo imaging [1]
or in vitro diagnostics [2] as well as in surgical manipulations, but they can also serve as
drugs themselves, e.g., in photodynamic therapy [3]. Apart from the only clinical trial on
the diagnosis of melanoma with the use of QDs approved in 2011 [4], to the best of our
knowledge, QDs have not been used in clinical practice because of the numerous issues
and contradictions concerning their toxicity [5].

The specific mechanisms of nanoparticle toxicity have been studied in sufficient
detail. Cd-containing QDs have been found to cause DNA damage [6,7] and cytoskeletal
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alterations [8]. A number of studies evidence that QDs may induce excessive production of
ROSs (reactive oxygen species) which may oxidize proteins, membrane lipids, and nucleic
acids and, conclusively, cause mitochondrial dysfunction [9]. CdTe QDs have been shown
to induce apoptosis [10], while both CdTe and CdTe/CdS/ZnS QDs decrease the viability
of cells via an autophagy-dependent mechanism [11]. In contrast, CuInS2/ZnS QDs have a
low cytotoxicity and cause no significant increase in ROS production [12].

It should be noted that the cytotoxic effects depend not only on external factors, such
as the cell or body location of QDs and the local biological environment, but also on
the properties of the QDs themselves, including the chemical composition, size, shape,
and the chemical and physical characteristics of their inorganic and organic outer shells,
such as the surface charge and hydrophilicity/hydrophobicity, as well as the resistance to
environmental factors [13]. Given the QD structure, their toxicity should be considered
as a function of the chemical compositions of the core and inorganic shell, the QD size,
and the physical and chemical characteristics of the organic outer shell determining the
QD properties in biological media and the mechanisms of QD interaction with biological
molecules and structures. It is supposed that the contribution of different factors to the
overall cytotoxicity can be ranked as follows: charge > functionalization > size [14]. The
analysis of nanoparticle toxicity at the cellular and molecular levels is necessary not only
for revealing the possible harmful consequences of the use of nanoparticles but also for
finding ways to reduce their toxicity.

In this study, we compared the cytotoxicity of QDs with different chemical composi-
tions, sizes, and the properties of the organic outer shell in two in vitro models in order to
analyze the effect of each factor in more detail.

2. Materials and Methods
2.1. Synthesis of Quantum Dots

Core/multishell CdSe/CdS QDs (with eight monolayer (8 ML) of CdS) and CdSe/CdS/ZnS
QDs (with 6 ML of CdS and 3 ML of ZnS) were synthesized by the method of continuous
shell precursor injection described in more detail in [15]. The synthesis of CdSe/ZnS (3 ML,
hereafter denoted by CdSe/ZnS) QDs was performed according to the protocol reported
in [16]. CuInS2/ZnS QDs were obtained by colloidal synthesis in organic medium by a
two-stage shell growth procedure as described in [17]. Finally, PbS/CdS/ZnS QDs were
obtained in a sequential synthetic routine starting from hot-injection fabrication of PbS
cores and their treatment by ion exchange as reported in [18] and later overcoating of the
intermediate thin-shell PbS/CdS QDs by a thick two-component CdS/ZnS shell.

2.2. Optical Characterization of Quantum Dots

The absorption spectra of CdSe/ZnS, CdSe/CdS/ZnS (6+3 ML), and CdSe/CdS
(8 ML) QDs were measured using a Cary 60 UV-Vis spectrophotometer (Agilent, Santa
Clara, CA, USA). The fluorescence excitation and emission spectra of these QDs, as well as
CuInS2/ZnS QDs, were measured using a Varian Cary Eclipse spectrofluorometer (Agilent,
Santa Clara, CA, USA). An AvaSpec-NIR256-1.7 spectrophotometer (Avantes, Apeldoorn,
Netherlands) was used for the characterization of PbS/CdS/ZnS QDs.

2.3. Transmission Electron Microscopy

Transmission electron microscopy (TEM) measurements of the QDs were performed
using a JEOL JEM-1400Plus microscope (Croissy Sur Seine, France) operating at 120 kV.
The TEM samples were prepared by dropping 10 µL of a diluted QD solution onto a
Formvar/carbon coated 200 mesh copper grid and subsequently evaporating the solvent
under ambient conditions.
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2.4. Obtaining Water-Soluble Cdse/Zns (3 ML), Cdse/Cds/Zns (6+3 ML), Cdse/Cds (8 ML),
Cuins2/Zns, and Pbs/Cds/Zns Quantum Dots

For obtaining water-soluble QDs, a 20 mg sample of QDs of each type was placed
into a 2 mL test tube (Eppendorf France SAS, Montesson, France), and 800 µL of chlo-
roform (Sigma-Aldrich, Saint-Quentin-Fallavier, France) was added. For purifying the
original organically QD solution was intensely stirred in a test tube for 2 min. Afterwards,
1200 µL of methanol (Sigma-Aldrich, Saint-Quentin-Fallavier, France) was added to the
QD solution in chloroform. The mixture was carefully stirred on a shaker and centrifuged
at room temperature at 14,000 rpm for 5 min. After the centrifugation, the supernatant
was removed, and the QD pellet was resuspended in 800 µL of chloroform. The cycle of
washing, including QD dissolution in chloroform, addition of methanol, centrifugation, and
withdrawal of the supernatant, was repeated three times. After the third centrifugation, The
QD pellet was dissolved in 800 µL of chloroform by intensely stirring. Then, a 10 mg/mL
DL-cysteine (Sigma-Aldrich, Saint-Quentin-Fallavier, France) solution in methanol was
prepared. 200 µL of the DL-cysteine solution was added to the chloroform solution of every
type of QDs under constant stirring. The resultant mixture was centrifuged at room tem-
perature at 14,000 rpm for 5 min. After the centrifugation, the supernatant was withdrawn
to remove unbound DL-cysteine. 1000 µL of methanol was added to the QD pellet and
unbound DL-cysteine was washed off three times by centrifugation at 14,000 rpm for 3 min,
which was followed by withdrawal of the supernatant, and another addition of methanol.
After the last washing step, the supernatant was removed, and the QD pellet was dried
in a Concentrator Plus vacuum concentrator for 2 min at room temperature to eliminate
the remaining methanol. Then, 600 µL of water and 50 µL of 1 M sodium hydroxide were
added to the dry residue of QDs. The resultant mixture was intensely stirred to dissolve
the QDs in water. For better dissolution, the QD samples were placed onto an ultrasound
water bath for 20 min. After that, the QD solutions were centrifuged at 8000 rpm for 10 min
at room temperature. The QD solution obtained after centrifugation was filtered through a
0.22 µm Millex Syringe-driven Filter Unit (Sigma-Aldrich, Saint-Quentin-Fallavier, France).

To calculate the mass concentrations of the QD preparations when studying the
effect of size and surface charge on QD toxicity, the absorption spectra of CdSe/ZnS,
CdSe/CdS/ZnS (6+3 ML), and CdSe/CdS (8 ML) QD solutions were recorded, and the QD
concentrations were calculated from the estimated first-exciton optical densities using the
Beer–Lambert–Bouguer law, with the calculated molar weight of QDs and the QD sample
dilution factor taken into account.

The concentrations of CdSe/ZnS QD or the infrared CuInS2/ZnS and PbS/CdS/ZnS
QDs were calculated by the weight method when studying the effect of chemical compo-
sition on QD toxicity. After the final purification of the QDs, 35 µL of the QD solution
was placed into a preliminarily weighted 0.5-mL low-bind test tube (Eppendorf France
SAS, Montesson, France) and then dried in a Concentrator Plus (Eppendorf France SAS,
Montesson, France) for 3 h at the temperature of 30◦C. After that, the test tube was weighted
again. The quantity of QDs contained in 35 µL of the original QD solution was calculated
by subtracting the initial weight of the empty test tube from the final weight of the test tube
containing the QD preparation after drying. The QD quantity per milliliter of solution was
calculated to obtain the mass concentration.

2.5. Modification of the Quantum Dot Surface with Polyethylene Glycol Derivatives

When the QD concentration in the solution had been determined, the amount of
organic ligands based on thiol-containing polyethylene glycol (PEG) derivatives that is
necessary for the QD surface modification was calculated. Generally, three PEG derivatives
were used: HS-(CH2)11-EG6-OH, HS-(CH2)11-EG6-OCH2-COOH, and HS-(CH2)11-EG6-
NH2 (ProChimia Surfaces, Gdynia, Poland). For the modification of all types of QDs,
mixtures of QDs at the following ratios were used: 70% of HS-(CH2)11-EG6-OH/30%
of HS-(CH2)11-EG6-OCH2-COOH, 70% of HS-(CH2)11-EG6-OH/30% of HS-(CH2)11-EG6-
NH2, and 100% of HS-(CH2)11-EG6-OH. The specified amounts of ligands were added
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to working mixtures with the corresponding pH values: 0.1 M sodium phosphate buffer
solution (pH 7.2) if the HS-(CH2)11-EG6-OH ligand was used, 0.1 M sodium phosphate
buffer solution (pH 8.0) in the case of the mixture of 70% of HS-(CH2)11-EG6-OH/30%
of HS-(CH2)11-EG6-OCH2-COOH, and 0.1 M sodium phosphate buffer solution (pH 6.6)
in the case of 70% of HS-(CH2)11-EG6-OH/30% of HS-(CH2)11-EG6-NH2. After that, the
mixtures were incubated at a temperature of 4 ◦C for 24 h.

After the incubation, the QDs were purified from unbound excess ligands. For this
purpose, the QD solutions were placed into the upper chambers of Amicon Ultra-15 10K
filter (Millipore SAS, Molsheim, France), and the filter devices were centrifuged upon
addition of 15 mL of 0.1 M sodium phosphate buffer (pH 7.2) in the case of HS-(CH2)11-
EG6-OH, 0.1 M sodium phosphate buffer (pH 8.0) in the case of the mixture of 70% of
HS-(CH2)11-EG6-OH/30% of HS-(CH2)11-EG6-OCH2-COOH, and 0.1 M sodium phosphate
buffer solution (pH 6.6) in the case of 70% of HS-(CH2)11-EG6-OH/30% of HS-(CH2)11-EG6-
NH2. The centrifugation was performed three times at room temperature at 4000 rpm for
10 min. Then, the preliminarily purified and concentrated QD solutions were purified by
gel-filtration chromatography on PD MiniTrap G-25 columns (GE Healthcare, Chicago,
Illinois, USA) according to the manufacturer’s protocol. For this purpose, 500 µL of a
QD solution was applied onto a column preliminarily equilibrated with a 0.1 M sodium
phosphate buffer solution with the corresponding pH. 1 mL of the same buffer solution
was used for elution. The fractions containing QDs were collected into a separate test tube.
After two cycles of QD purification using gel-filtration chromatography, the solution was
passed through Whatman Unstop filters with 100 nm pores. The concentrations of the
resultant preparations were estimated for subsequent characterization and further analyses.

2.6. Estimation of the Optical Properties, Stability, Sizes, and Charges of the Solubilized
Quantum Dots

The QD size (hydrodynamic diameter) was measured in each preparation step of
water-soluble QDs using a Malvern Zetasizer Nano ZS dynamic light scattering analyzer
(Malvern Instruments Ltd., Worcestershire, UK)). The QD size was measured by analyzing
electrophoretic light scattering by means of the same instrument. The size and charge
of all QD samples were studied in the concentration range of 0.1–0.2 mg/mL. Each mea-
surement was made at least five times and the results were estimated using the standard
statistical methods.

The QD colloidal stability was estimated in two different media at two different
incubation temperatures. First, two media were prepared for the experiment: 0.1 M sodium
phosphate buffer solution (pH 7.2) and the RPMI-1640 culture medium (Thermo Fisher
Scientific, Waltham, MA, USA). QDs were placed into each medium to a concentration of
1 mg/mL. Then, all samples were divided into two groups: samples to be incubated at
37◦C in a ThermoMixer C thermal shaker (Eppendorf France SAS, Montesson, France) and
those to be incubated at room temperature. The hydrodynamic diameter determined by a
Malvern Zetasizer Nano ZS analyzer of dynamic light scattering served as a criterion of
QD stability. This value was measured daily for five days.

2.7. Estimation of Quantum Dot Cytotoxicity In Vitro

The QD cytotoxicity was analyzed using the SK-BR-3 human breast cancer cell line
(ATCC, Manassas, VA, USA) and the WI-38 normal human fibroblast cell line (ATCC,
Manassas, VA, USA). Before the experiment, the cells were allowed to thaw for 1–2 min in
a water bath at the temperature of 37 ◦C. After thawing, the cells were transferred to 15 mL
test tubes containing 5 mL of RPMI-1640 medium (Thermo Fisher Scientific, Waltham,
MA, USA). In order to remove the cryoprotectant, the cell suspension was stirred and
centrifuged at 1500 rpm for 5 min, and the supernatant was carefully withdrawn in such a
way as to minimize the loss of cells. After that, the cells of both lines were grown in culture
flasks containing RPMI-1640 medium supplemented with 10% of fetal calf serum, 2 mM
L-glutamine, penicillin–streptomycin antibiotic, sodium pyruvate, and RPMI-1640 vitamin
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solution (Thermo Fisher Scientific, Waltham, MA, USA) for complete growth medium in an
incubator at 37 ◦C in a 5% CO2 atmosphere. When the cells had formed a monolayer, they
were detached from culture flasks with Versene solution. To do this, the culture medium
was removed, the cells were incubated in 2 mL of Versene solution for 2–5 min, 5 mL of
complete growth medium was added to the flask, and the cells detached from the flask
bottom were collected into a centrifuge test tube. The cell suspension was centrifuged
at 1500 rpm for 5 min, the cell pellet was resuspended in 5–10 mL of complete growth
medium, and the cells were counted in KOVA™ Glasstic™ Slide (Thermo Fisher Scientific,
Waltham, MA, USA) and placed into a fresh culture flask, 5 × 105 cells per flask containing
8 mL of complete growth medium.

The effect of the QDs on the viability of cell cultures was estimated using 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), a tetrazolium dye, accord-
ing to supplier’s protocol (Thermo Fisher Scientific, Waltham, MA, USA). In the mitochon-
dria of viable cells, MTT was metabolized to form formazan crystals, which have a purple
color. The results of this reaction were estimated photometrically.

In order to prepare the MTT test, 0.5 g of the MTT reagent was dissolved in 100 mL of
sodium phosphate buffer solution (pH 7.4) to a final concentration of 5 mg/mL, and the
resultant solution was filtered through a filter with 0.22 µm pores and placed into 4 mL
test tubes. The dissolved MTT reagent was stored frozen at −20 ◦C, the necessary amount
being thawed before the reaction.

For the MTT test, the cells were detached from the bottom of the culture flask and
centrifuged at 1500 rpm for 5 min. The pellet was resuspended in complete RPMI-1640
growth medium, and the cells were counted in a hemocytometer. Then, the cells were
cultured in a 96-well flat pate, 7 × 103 cells per well containing 180 µL of the culture
medium. The growth medium without cells was placed into the wells at the edge of the
plate. The plates were incubated at 37◦C in a 5% CO2 atmosphere overnight for the cells to
attach to the well bottom. After that, QD samples with concentrations from 0.2 mg/mL
to 0.781 ng/mL prepared by binary dilution in triplicate were placed into the wells that
contained cells and, next, the plates were incubated for 24 or 48 h in an incubator at 37 ◦C
in a 5% CO2 atmosphere.

After the cells were incubated in the presence of QDs for the specified period of
time, the plates were centrifuged at 1500 rpm for 6 min, the supernatant was carefully
withdrawn, and the complete RPMI-1640 growth medium was added to the wells. The
centrifugation followed by removal of the supernatant and addition of fresh cell growth
medium was performed in order to wash off QDs from the cells and eliminate the optical
contribution of QDs during the subsequent measurement of the formazan optical density.
Then, 20 µL of the MTT reagent solution was added into each experimental well to a final
concentration of 1 mg/mL, and the plates were incubated for 4 h at 7 ◦C in a 5% CO2
atmosphere. During this time, formazan crystals were formed in the wells containing viable
cells. The plates were centrifuged at 1500 rpm for 6 min, the supernatant was withdrawn,
and 150 µL of DMSO was added into each well to dissolve the formazan crystals. After
that, the plates were placed into an incubator for 10 min and then stirred on a shaker to
make the formazan solution homogeneous. The optical density of the formazan solution in
the wells was measured using a Multiskan EX photometric analyzer of immunoenzyme
reactions (Thermo Fisher Scientific, Waltham, MA, USA) at a wavelength of 540 nm. The
optical density was directly proportional to the number of live cells. The cytotoxicity (CT)
was estimated in percent as

CT =

(
1 − ODe

ODc

)
× 100% (1)

where ODc and ODe are the optical densities in the control and experimental wells, respectively.
Finally, the inhibitory concentration of QDs that caused death of 50% of the cells (IC50)

was calculated.



Nanomaterials 2022, 12, 2734 6 of 16

2.8. Fluorescence Microscopy

SK-BR-3 human breast cancer cells were seeded into wells of the borosilicate Nunc™
Lab-Tek II Chambered Coverglass slide (Thermo Fisher Scientific, Waltham, MA, USA),
1 × 105 cells in 200 mL of RPMI-1640 culture medium supplemented with 10% fetal calf
serum. After the cells adhered to the substrate, the medium was replaced with a serum-free
one, and QDs were added to each well on the slides to a final concentration of IC10 under
standardized conditions to analyze the QD uptake by the cells. An Axio Observer A1
microscope (Carl Zeiss, Oberkochen, Germany) was used for imaging. The measurements
were carried out using an Axiocam 506 camera with an LD A-plan 40×/0.55 lens. An
excitation filter with the bandpass of 455–495 nm and an emission filter with a bandpass
of 505–555 nm were used for excitation and emission at wavelengths of 495 and 519 nm,
respectively. The exposure time was 13.33 ms. The QD accumulation in cells was estimated
by the fluorescence intensity with the use of the ImageJ software (Wayne Rasband, Bethesda,
MD, USA).

2.9. Statistical Treatment

The GraphPad Prizm 6 software (GraphPad Software Inc., San Diego, CA, USA) was
used for the statistical treatment of the results.

3. Results
3.1. Size, Composition, and Optical Properties of Water-Insoluble Qds

For studying the QD toxicity, we used QDs with different chemical compositions of the
cores, which were coated with inorganic shells of different thicknesses to obtain QDs of dif-
ferent sizes. The diameters of the CdSe/ZnS, CdSe/CdS (8 ML), CdSe/CdS/ZnS (6+3 ML),
PbS/CdS/ZnS, and CuInS2/ZnS QDs were measured from TEM images (Figure 1).
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Figure 1. Analysis of the structure of the synthesized quantum dots by means of transmission
electron microscopy.

Table 1 shows the chemical compositions, sizes, and optical properties of the water-
insoluble QDs. The absorption spectra of the water-insoluble QDs are shown in Figure S1
(Supporting Materials).
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Table 1. Composition and optical properties of the synthesized water-insoluble quantum dots.

QD Type λmax exc., nm λmax fl., nm Diameter, nm

PbS/CdS/ZnS 1300 1400 8.9
CuInS2/ZnS 550 690 4.5
CdSe/ZnS 570 590 5.5

CdSe/CdS (8 ML) 470 590 8.5
CdSe/CdS/ZnS (6+3 ML) 450 610 9.2

3.2. Size, Charge, Optical Properties, and Colloidal Stability of Water-Soluble Quantum Dots

In order to transfer the water-insoluble QDs into the aqueous phase, their surface
was modified with DL-cysteine, which was replaced afterwards with thiol-containing PEG
derivatives with different end groups to impart different surface charges to the QDs. The
sum of the QD diameter and the thickness of the organic shell is not a strictly correct
estimate of the size of the QDs modified with PEG derivatives; therefore, below we use
the word size to mean the hydrodynamic diameter (HDD) of the water-soluble QDs. The
surface charge and HDD were determined, respectively, by the electrophoretic mobility
method employing the Doppler effect and by the dynamic light scattering method using a
Zetasizer Nano ZS instrument (Figure 2). Table 2 shows the sizes and charges of the QDs
used in this study. The number of monolayers (ML) of the inorganic shells applied onto the
QD cores are indicated in parentheses. Estimation of the colloidal stability by the dynamic
light scattering method showed that the QD HDD remained unchanged for at least five
days in a sodium phosphate buffer solution (pH 7.2) or RPMI-1640 culture medium.
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Table 2. Sizes and surface charges of the QDs used in this study.

QD Composition Size, nm ζ-Potential, mV

PbS/CdS/ZnS-PEG-OH 1 32.04 ± 0.87 –10.60 ± 2.92
CuInS2/ZnS-PEG-OH 16.08 ± 0.51 –6.12 ± 1.81

CdSe/CdS/ZnS (6+3 ML)-PEG-OH 26.48 ± 0.92 –8.88 ± 1.87
CdSe/CdS (8 ML)-PEG-OH 25.86 ± 1.22 –11.20 ± 1.37

CdSe/ZnS-PEG-OH 16.74 ± 0.28 –4.72 ± 0.38
CdSe/ZnS-PEG-COOH 2 15.37 ± 0.14 –17.80 ± 3.01

CdSe/ZnS-PEG-NH2
3 22.77 ± 0.36 6.43 ± 1.12
1 PEG-OH denotes 100% of HS-(CH2)11-EG6-OH. 2 PEG-COOH denotes a mixture of 70% of HS-(CH2)11-EG6-OH
and 30% of HS-(CH2)11-EG6-OCH2-COOH. 3 PEG-NH2 denotes a mixture of 70% of HS-(CH2)11-EG6-OH and
30% of HS-(CH2)11-EG6-NH2.

We used the CdSe/CdS/ZnS (6+3 ML)-PEG-OH and CdSe/CdS (8 ML)-PEG-OH
QDs with HDD ≈ 25 nm and CdSe/ZnS-PEG-OH QDs with HDD ≈ 17 nm to study
the dependence of QD toxicity on their size. The CdSe/ZnS-PEG-OH, CdSe/ZnS-PEG-
COOH, and CdSe/ZnS-PEG-NH2 QDs coated with differently charged PEG derivatives
and carrying, respectively, low negative, higher negative, and positive surface charges were
used to study the dependence of QD toxicity on the charge. The QDs with PbS, CuInS2, and
CdSe cores, namely PbS/CdS/ZnS-PEG-OH, CuInS2/ZnS-PEG-OH, and CdSe/ZnS-PEG-
OH QDs, were used to study the dependence of QD toxicity on the chemical composition of
their core. Thus, we prepared sets of QDs differing from one another in size, surface charge,
and composition. Figure S2 shows the fluorescence spectra of the water-soluble QDs.

3.3. In Vitro Cytotoxicity of Quantum Dots

We estimated the cytotoxicities of QDs with different HDDs, surface charges, and
chemical compositions for SK-BR-3 human breast cancer cells and WI-38 normal human
fibroblasts with the use of the MTT test after 24 and 48 h of cell culturing in the presence of
QDs. The results of cytotoxicity estimation are shown in Figures 3–8 and Table 3.
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Table 3. Effects of the parameters of QDs of different types on their IC50 for SK-BR-3 human breast
cancer cells and WI-38 human fibroblasts.

Time, h QD Type
SK-BR-3 WI-38

IC50, mg/mL SD 1 IC50, mg/mL SD 1

Effect of the hydrodynamic diameter

24
CdSe/ZnS-PEG-OH 0.044 0.025 0.044 0.005

CdSe/CdS/ZnS (6+3 ML)-PEG-OH 0.058 0.003 0.108 0.004
CdSe/CdS (8 ML)-PEG-OH 0.053 0.003 0.104 0.003

48
CdSe/ZnS-PEG-OH 0.031 0.018 0.032 0.008

CdSe/CdS/ZnS (6+3 ML)-PEG-OH 0.046 0.001 0.056 0.009
CdSe/CdS (8 ML)-PEG-OH 0.035 0.002 0.046 0.002

Effect of the surface charge

24
CdSe/ZnS-PEG-OH 0.044 0.025 0.044 0.004

CdSe/ZnS-PEG-COOH 0.058 0.005 0.078 0.003
CdSe/ZnS-PEG-NH2 0.055 0.003 0.061 0.009

48
CdSe/ZnS-PEG-OH 0.031 0.018 0.032 0.008

CdSe/ZnS-PEG-COOH 0.052 0.003 0.058 0.003
CdSe/ZnS-PEG-NH2 0.035 0.006 0.045 0.009

Effect of the chemical composition

24
CdSe/ZnS-PEG-OH 0.044 0.025 0.044 0.003

PbS/CdS/ZnS-PEG-OH 0.083 0.003 0.080 0.011
CuInS2/ZnS-PEG-OH 0.045 0.007 0.051 0.006

48
CdSe/ZnS-PEG-OH 0.031 0.018 0.032 0.008

PbS/CdS/ZnS-PEG-OH 0.036 0.008 0.054 0.006
CuInS2/ZnS-PEG-OH 0.033 0.011 0.033 0.003

1 The standard deviation has been calculated from the results of three independent experiments.

3.4. Interaction of Quantum Dots with Cells

QDs with identical chemical compositions of the cores and inorganic shells but dif-
ferent HDDs and surface charges were used to analyze the QD penetration into and
accumulation in living cells. The CdSe/CdS/ZnS (6+3 ML)-PEG-OH, CdSe/ZnS (8 ML)-
PEG-OH, CdSe/ZnS (3 ML)-PEG-OH, CdSe/ZnS (3 ML)-PEG-COOH, and CdSe/ZnS
(3 ML)-PEG-NH2 QDs were used. The experiments were performed on SK-BR-3 human
breast cancer cells because the intracellular transport rate is higher in tumor cells. The cells
were examined 24, 48, and 72 h after the QD preparations were added. Figure 9 shows
the diagram of QD accumulation in cells based on the calculated integrated fluorescence
intensity normalized to the number of cells.

Figure 9. The intensity of fluorescence of SK-BR-3 cells incubated in the presence of QDs with
different sizes and charges for (a) 24 h, (b) 48 h, and (c) 72 h.
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4. Discussion
4.1. Fabrication and Characterization of Water-Insoluble Quantum Dots

We performed a consistent, systematic analysis to determine the dependence of the
toxicity of QDs, spherical fluorescent semiconductor nanocrystals, on their physical and
chemical characteristics. For this purpose, we used series of core/shell QDs that differed
from one another in the chemical composition of the core (containing cadmium, lead, or
copper) and the number of monolayers of the protective inorganic shell of zinc sulfide or
cadmium sulfide. By varying the number of shell layers, we fabricated QDs of different
sizes, which were used to obtain water-soluble QDs with different HDDs. TEM examination
of the synthesized water-insoluble QDs showed that they were highly homogeneous in size.

4.2. Obtaining Water-Soluble Quantum Dots

At the first stage of QD solubilization, we used the low-molecular-weight thiol-
containing ligand DL-cysteine [17]. This compound allows QDs to be effectively transferred
from the organic to the aqueous phase through the ligand substitution reaction of the or-
ganic preservatives adsorbed on the QD surface after the synthesis. This ensures colloidal
stability of the QD preparations for at least several days, which considerably simplifies the
subsequent modification of the QD surface. However, cysteine-coated QDs are prone to
spontaneous oxidation and, hence, are stable only in media containing a reducing agent. Be-
cause we had to obtain highly stable homogeneous QD preparations with different surface
charges, we replaced cysteine with low-molecular-weight thiol-containing PEG derivatives
for subsequent modification of the QD surface. PEG-based ligands were used because they
are nontoxic and have even been approved by FDA as materials for bone tissue regener-
ation [19]. PEG is highly biocompatible and nonimmunogenic, and it prevents protein
adsorption on QDs [20]. The resultant decrease in the nonspecific interaction of QDs with
proteins prolongs their circulation time in blood [21]. In addition, PEG-coated QDs have
a high colloidal stability at different pH values due to the interaction of the polyethylene
glycol chain with the solvent molecules [22]. This sets them apart from the surface ligands
based on organic acids, which are stable only at neutral or acidic pH values [23].

In order to impart different electrical charges to the QD surface, we used the PEG
derivatives that had a hydroxyl, a carboxyl, or an amine group at one end and an aliphatic
chain with a backbone of 11 carbon atoms and a terminal SH group at the other end:
HS-(CH2)11-EG6-OH/COOH/NH2 (the SH group serving for the displacement of cysteine
molecules from the QD surface). The hydrophobic aliphatic chains of the ligand formed
an additional dense shell around the QDs, which allowed them to retain the QD colloidal
stability for a long time. This approach made it possible to obtain a series of CdSe/ZnS
QDs that differed from one another only in the surface charge: (1) positive (the organic
shell consisting of 70% of HS-(CH2)11-EG6-OH and 30% of HS-(CH2)11-EG6-NH2), (2) low
negative (100% of HS-(CH2)11-EG6-OH), and (3) higher negative (70% of HS-(CH2)11-EG6-
OH and 30% of HS-(CH2)11-EG6-OCH2-COOH). Hereinafter, the QDs with these organic
shells are referred to as CdSe/ZnS-PEG-NH2, CdSe/ZnS-PEG-OH, and CdSe/ZnS-PEG-
COOH, respectively. The ratio of 7:3 between the neutral hydroxyl end group and the
negative carboxyl or positive amine group was used because it ensured colloidal stability
of QDs in a wide pH range due to the optimal distribution of charged groups over the
QD surface [24] while imparting the desired electrical charge to the surface. All the other
types of QDs were modified with the PEG derivative that had a hydroxyl end group
(hereinafter referred to as PEG-OH). It should also be noted that the QDs with this organic
shell remained colloidally stable in biological media not only for the first 5 days, but also
afterwards, as long as a year after synthesis (data not shown). This makes them suitable,
e.g., for using in diagnostic kits with a shelf life close to that of the traditional organic
fluorescent dyes.

An undoubted advantage of this study is that all experiments were performed with
comprehensively characterized QDs, each type of them obtained in a single synthesis,
which prevented variations in applying the organic surface ligands [25].
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4.3. In Vitro Cytotoxicity of Quantum Dots

Study of QD cytotoxicity in in vitro models is simpler and less expensive than ex-
periments on laboratory animals, although it yields less information on the possible risks
related to the use of nanomaterials. While it is true that only in vivo models can clarify
the issues of the distribution, accumulation, and excretion of QDs, as well as their toxicity
for tissues, organs, and systems, estimation of the QD toxicity for cell lines is necessary
for initially screening the substances studied and determining whether or not they have a
damaging effect on cells.

We used both normal and tumor cell lines (WI-38 human fibroblasts and SK-BR-3
human breast cancer cells). It is known that the transport of substances into tumor cells is
more rapid than that into normal cells because of the rapid division and the related high
metabolic rate of the former. In addition, the pH inside tumor cells may be different due to
a more intense glycolysis [26], which may affect the QD stability and their surface charge
because of the protonation and deprotonation of the surface ligands. The surface charges
of the membranes of both tumor and normal cells may also differ from each other, because
the tumor cell membrane contains more negatively charged lipids. This may also affect the
QD interaction with the cells [27].

4.4. Dependence of the In Vitro Cytotoxicity of Quantum Dots on Their Hydrodynamic Diameter

Experiments were performed with three types of QDs with the same chemical com-
position whose surface was functionalized with PEG-OH. CdSe/ZnS-PEG-OH QDs had
the smallest HDD (about 17 nm); the HDD of CdSe/CdS/ZnS (6+3 ML)-PEG-OH and
CdSe/CdS (8 ML)-PEG-OH QDs was about 26 nm. The ζ-potentials of both types of the
larger QDs were approximately equal, varying between −9 and −11 mV, and the ζ-potential
of the 17 nm QDs was −5 mV. Figures 3 and 4 show the dependence of QD cytotoxicity
on their HDD for the SK-BR-3 and WI-38 cell lines, respectively. These data were used to
calculate the IC50 value for each type of QDs (Table 3).

Estimation of the IC50 shows that the smaller CdSe/ZnS-PEG-OH QDs are more
toxic than the larger QDs for both cell lines tested. It is known that QDs introduced into
a cell culture may interact with the components of the culture medium. The formation
of stable complexes of the QDs and proteins of the medium may promote the active
(receptor-dependent) or passive transport of the QDs [28]. In this case, the QD size and
surface characteristics determine the profile and conformational state of proteins in these
complexes, which also affects the effectiveness of their transmembrane and intercellular
transport. QDs penetrate into cells via phagocytosis, pinocytosis, and macropinocytosis,
whose effectiveness is inversely proportional to the size of the transported particles [14].
Irreversible damage of the membrane by larger QDs penetrating through it is more probable
compared to smaller QDs. This explains why tumor cells are more sensitive to large
QDs than normal cells are: their more intense metabolism determines an equally more
intense transmembrane transport [29], which increases the probability of cell death due
to membrane disruptions. At the same time, smaller QDs are more toxic than larger
ones for all types of cells, because smaller QDs more readily penetrate into a cell via
nonspecific transport mechanisms and cause cell death mainly through oxidation of inner
cell components rather than damage of the plasma membrane. The more effective transport
of small QDs into cells was further confirmed by our experiments on QD accumulation
in cells, which showed that QDs with an HDD of about 17 nm more rapidly penetrate
through the cell membrane than larger QDs. In addition, note that cells of all types are
more resistant to disruptions of plasma membrane than to oxidative destruction of their
inner components. After a longer culturing (48 h), the cytotoxicity of QDs was increased
(Figures 3b and 4b) compared to that after a 24 h culturing (Figures 3a and 4a), whereas the
difference in the QD cytotoxicity between tumor and normal cells was decreased, which
suggests intracellular accumulation of the QD preparations during long-term incubation.
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4.5. Dependence of the In Vitro Cytotoxicity of Quantum Dots on Their Surface Charge

We studied the effect of the QD surface charge on their cytotoxicity using CdSe/ZnS
QDs modified with different ligands: PEG-OH derivatives imparting a low negative charge
to the QD surface, a mixture containing PEG-COOH imparting a greater negative charge,
and a mixture containing PEG-NH2 imparting a positive charge. The QDs with a low and
high negative charge had equal HDDs of 15–16 nm, and the HDD of positively charged
QDs was 22–23 nm. Figures 5 and 6 show the dependence of the QD cytotoxicity on their
surface charge for SK-BR-3 and Wi-38 cells, respectively. We used these data to calculate
the IC50 for each type of QDs (Table 3).

The QDs with a low negative charge have were to be the most toxic for both cell types,
whereas the QDs with a high negative charge are the least toxic. It is obvious that the
QD surface charge influences the rate of their transport through the plasma membrane, as
well as their interaction with inner cell components. The physical, chemical, and reactive
parameters of the surface ligands determining the surface charge also make a considerable
contribution to the transport effectiveness [13]. The QD charge influence their toxicity in a
highly cell-specific way, because some cells are characterized by an increased sensitivity to
positively charged QDs [30], whereas others are more susceptive to the action of negatively
charged ones [31]. Our measurements show that QDs with a low negative surface charge
are the most toxic for both normal and cancer cells. Positively charged QDs most readily
penetrate into cells and accumulate there, but they have no strong toxic effect compared to
other QD types, probably, because of molecular interactions with cell components. After a
prolonged (48 h) incubation of the cells in the presence of QDs (Figures 5b and 6b), the IC50
values for both cell types were proportionally decreased compared to these values received
after 24 h of incubation (Figures 5a and 6a). This suggests that precisely the QD transport
rate depending on the surface charge is the limiting factor for the expression of toxicity.

4.6. Dependence of the In Vitro Cytotoxicity of Quantum Dots on Their Chemical Composition

Dependence of the QD toxicity on their chemical composition was studied in a series
of core/shell QDs with cores of different chemical compositions coated with identical ZnS
inorganic shells. The surface of all types of QDs was functionalized with PEG-OH. We
studied QDs with cores of heavy metal salts (CdS and PbS) and with CuInS2 cores. All the
QDs had a low negative surface charge varying from −6 to −10 mV, which was within
the measurement error. The HDDs of the QDs with Cu- and Cd-containing cores were of
about the same size, 16 nm, and that of the QDs with Pb-containing cores was twice as
large (32 nm).

Figures 7 and 8 show the data on the dependence of QD cytotoxicity for SK-BR-3 and
WI-38 cells, respectively, on the composition of the QD core. The IC50 values for different
types of QDs calculated from these data are shown in Table 3.

The results show that QDs with equal HDDs but different core compositions have
almost equal IC50 values for both tested cell lines, although there are published data that
QDs with CuInS2 cores are less toxic than those with CdSe cores [32]. The most plausible
explanation of our data is that the ZnS inorganic shell and the additional shell formed by
the aliphatic parts of the ligand molecules effectively prevent QD degradation and, hence,
protect cells against the heavy metals of the QD core. This is further confirmed by the
absence of a substantial difference in cytotoxicity between the two types of QDs after 24
and 48 h of cell incubation in the presence of these nanomaterials (Figure 7a, Figure 7b
and Figure 8a, Figure 8b). The cytotoxicity of the QDs with Pb-containing cores and CdS
or ZnS shells after 24 h of incubation was lower than the toxicities of the other two QD
types studied, which may have been determined by the substantially larger HDD of the
former QDs. After 48 h of incubation, the IC50 of the QDs with lead-containing cores for
tumor cells became comparable to the IC50 of those with cadmium- and copper-containing
cores. In contrast, the IC50 of the lead-containing QDs for the cells with normal metabolism
remained considerably higher compared to the other QD types. These data suggest a more
rapid transmembrane transport of lager QDs by tumor cells. We can conclude that the
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cytotoxicity of QDs of similar sizes but different chemical compositions of the core are
almost equal to one another, because the conditions of in vitro cell culturing do not induce
QD degradation. Thus, the difference in cytotoxicity between the types of QDs studied is
mainly determined by their different sizes.

4.7. Interaction of Quantum Dots with Cells In Vitro

For experiments on the QD penetration through the plasma membrane and accu-
mulation in cells, we used QDs with the same chemical composition but different HDDs
and surface charges: CdSe/CdS/ZnS (6+3 ML)-PEG-OH, CdSe/CdS (8 ML)-PEG-OH,
CdSe/ZnS-PEG-OH, CdSe/ZnS-PEG-COOH, and CdSe/ZnS-PEG-NH2. The study was
performed on SK-BR-3 human breast cancer cells because tumor cells have a high rate of
intracellular transport. The cells were studied 24, 48, and 72 h after the addition of the QDs
of different types. Figure 9 shows the diagram of QD accumulation in cells estimated by
the integrated fluorescence intensity normalized to the number of cells. As seen from the
diagram, positively charged QDs, despite their larger HDD, most effectively penetrated
through the cell membrane as early as after 24 h of incubation. This was because the
negative charge of the membrane facilitated the penetration of the positively charge QDs.
They could also effectively penetrate through the nuclear membrane and interact with the
negatively charged sugar–phosphate backbone of DNA. After 48 and 72 h of incubation,
the QDs with smaller HDDs penetrated into cells more effectively, which confirms the
conclusion that positively charged QDs with a small HDD are the most toxic for cells
in vitro.

5. Conclusions

A new approach to the optimization of the characteristics of potentially biocompatible
fluorescent semiconductor nanocrystals has been used to obtain a series of water-soluble
core/shell QDs differing from one another in one of three parameters: chemical composition
of the core, size, or surface charge. All the synthesized QDs have an organic outer shell
reliably protecting the QD core under the conditions of a cell culture. The physical and
chemical parameters of this shell are stable and were comprehensively characterized which,
has allowed us to perform systematic analysis of the in vitro cytotoxicity for all types of
QDs. The results demonstrate that the smaller the QDs’ size, the higher their in vitro
cytotoxicity, with the cytotoxic effect on tumor cells developing more rapidly compared to
normal cells. QDs with a low negative surface charge are more cytotoxic than QDs with
a greater negative or a positive charge, tumor cells being more susceptible to this effect.
In contrast, the chemical composition of the QD core has practically no effect on the QD
cytotoxicity in vitro, provided that the epitaxial inorganic shell and the additional outer
shell of the modifying ligand (ensuring the colloidal stability and biocompatibility of QDs)
reliably protect the QDs from degradation.
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