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Summary

The ghost note is a natural note which can be
played exclusively on bass brass instruments with a
predominantly-expanding bore profile such as tubas,
euphoniums or saxhorns. It stands between the pedal
note – the lowest natural note playable, or first regime
– and the instrument’s second regime. However, if
the interval between the pedal note and the second
regime remains close to an octave regardless of the
instrument, the interval between the pedal note and
the ghost note vary from a minor third to a perfect
fourth. References about this note are very scarce,
and it is not commonly known among tuba players.

This study shows that an elementary brass model
describing the player coupled to the instrument is ca-
pable of bringing both the ghost and the pedal note
to light. Here, we adopt a dynamical systems point
of view and perform a bifurcation analysis using a
software of numerical continuation. The numerical re-
sults provided in terms of frequency intervals between
pedal note and ghost note are compared with fre-
quency intervals experimentally inferred from record-
ings of seven different types of tuba, each of them
being played by two professional tuba players.

1 Introduction

One important goal of the acoustics of wind instru-
ments is to describe and quantify the intonation and
ease of playing of an instrument. From the physics
point of view, a classical approach consists in mod-
elling the coupled system composed of the musician
and the instrument. Of particular interest is the influ-
ence of the musician’s control parameters on the os-
cillation frequency (linked to the intonation), and the
minimum blowing mouth pressure required to trig-
ger self-oscillations (related to the ease of playing).
Indeed, it is assumed here that the musician’s feel-
ing of ease of playing partly relies on the blowing
threshold pressure: the higher the latter, the higher
the physical effort the player has to make to play
a note [Campbell et al., 2021]. In practice, the mu-

sician can play several notes without changing the
acoustical properties of the instrument itself, that is
to say without depressing any valves in the case of a
tuba, or moving the slide in the case of a trombone.
These notes are called the natural notes (B♭1, B♭2,
F3, B♭3, D4, F4,... in the case of a trombone or a B♭-
bass saxhorn for instance), and their frequencies are
close to the resonance frequencies of the instrument
as a whole, except for the lowest note playable (B♭1,
frequency ≈ 58Hz).

The oscillation regimes and ease of playing of
bass brass instruments have been investigated in
[Mattéoli et al., 2021]: a bifurcation analysis showed
that a simple mathematical model accurately de-
scribes all the natural notes of a bass trom-
bone and a euphonium in terms of frequency.
However, a main difference was highlighted in
[Velut et al., 2017, Mattéoli et al., 2021], between in-
struments with predominantly-cylindrical bore pro-
file such as the trombone, and instruments with
predominantly-expanding bore profile such as the eu-
phonium or bass saxhorn. Indeed, the latter exhibit
an extra regime located between the pedal note and
the second regime, referred to as “ghost note”. It
was also pointed out that the frequency interval be-
tween the pedal note and the ghost note could vary
between a minor third and a perfect fourth, depend-
ing on the bore geometry of the instrument, whereas
all other intervals between natural notes remained ap-
proximately the same.

This paper aims at proving that the same generic
brass model is also able to render the variety of ghost
notes existing among the tuba family. In that re-
spect, a bifurcation analysis is performed to deter-
mine the easiest-to-play pedal note, ghost note and
second regime. Then, the frequency intervals between
the pedal note and the second regime, and between
the ghost note and the second regime are assessed for
the seven tubas displayed in figure 1, and compared to
recordings of two professional tuba players playing the
same set of tubas. A more exhaustive description of
the characteristics of each tuba and their mouthpiece
can be found in table 1. It is worth noting from this
table that the baritone saxhorn, the bass saxhorn and
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Figure 1: Photograph showing the different tubas
studied in the present publication. From left to right
(lowest to highest nominal pitch): contrabass tuba in
B♭, contrabass tuba in C, bass tuba in E♭, bass tuba
in F, euphonium in B♭, bass saxhorn in B♭, baritone
saxhorn in B♭. Details about each tuba can be found
in the table 1.

the euphonium have the same nominal pitch (B♭), and
the same set of natural notes. However, while the bass
saxhorn and the euphonium have a bore profile quite
similar to the other tubas (predominantly-expanding
bore profile), the baritone saxhorn’s bore profile is in-
termediate between a tuba’s and a trombone’s bore
profile (predominantly-cylindrical bore profile), as it
is seen in the bottom plot of figure 8. Therefore, this
instrument constitutes a borderline case in this paper.

In section 2, we describe the considered model and
numerical methods, namely linear stability analysis
and numerical continuation. In section 3, we use lin-
ear stability analysis and bifurcation diagrams, re-
spectively, to investigate the minimal mouth pressure
and playing frequencies of two particular tubas. Even-
tually, we present in section 4 the procedure used to
assess experimental oscillation frequencies based on
recordings of two professional tuba players, which we
use for comparison with numerical oscillation frequen-
cies.

2 Theoretical background

2.1 Physical model of brass instru-
ment

This subsection briefly presents the brass in-
strument model considered throughout the ar-
ticle. It has already been thoroughly de-
scribed in [McIntyre et al., 1983, Hirschberg, 1995,
Velut et al., 2017, Mattéoli et al., 2021]. Brass in-
struments as a whole can be described through both
linear and nonlinear mechanisms. More precisely,

1See for instance paragraph 1.2.3 of [Campbell et al., 2021]
for more details about the notion of nominal pitch.

a localised nonlinear element (the lips’ valve effect,
namely the velocity modulation caused by the lips’
vibration) excites a passive linear acoustic multi-
mode element (the musical instrument, usually char-
acterised by its input impedance in the frequency do-
main) [Fletcher and Rossing, 1998]. The latter acous-
tic resonator exerts, in turn, a retroaction on the
former mechanical resonator. Such musical instru-
ments are self-sustained oscillators: they generate
an oscillating acoustic pressure (the note played)
from a static overpressure in the player’s mouth (the
blowing pressure) [Chaigne and Kergomard, 2016,
Campbell et al., 2021, Fletcher and Rossing, 1998].

Figure 2: Schematic representation of the player’s
mouth coupled to the mouthpiece of a brass instru-
ment. pm stands for the blowing mouth pressure, u(t)
is the volume velocity flowing from the player’s mouth
into the mouthpiece, p(t) is the acoustic pressure in-
side the mouthpiece, and h(t) is the height between
the lips.

The brass instrument coupled to the player is then
described by a system of three equations. Because it
relies on major simplifications [Campbell et al., 2021,
Elliott and Bowsher, 1982], this model is often re-
ferred to as “elementary”2. More precisely, the three
equations link the lip-opening height h(t), the pres-
sure in the mouthpiece p(t) and the volume velocity
entering the instrument u(t), which are the three in-
dependent variables of interest in this paper. These
are all represented schematically in figure 2. Several
control parameters (that is to say controlled by the
musician) are involved: this includes, in particular,
the blowing mouth pressure pm – which is simply re-
ferred to as the mouth pressure in the following – and
the lips’ resonance frequency fℓ.

First, the vibrating lips of the musician are de-
scribed by a one-degree-of-freedom damped oscillator
[Fletcher, 1993]:

d2h

dt2
+

ωℓ

Qℓ

dh

dt
+ ω2

ℓ (h(t)−H(ωℓ)) =
pm − p(t)

µ
, (1)

where ωℓ = 2πfℓ and Qℓ are the angular resonance
2The vibrating lips are modeled as a linear one-degree-of-

freedom oscillator. The upstream resonances of the player’s
windway are neglected, as is nonlinear propagation of sound
in the air column of the instrument. Wall vibrations are also
ignored.
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B♭-contrabass tuba C-contrabass tuba E♭-bass tuba F-bass tuba B♭-euphonium B♭-bass saxhorn B♭-baritone saxhorn
Nominal pitch 18-ft B♭ 16-ft C 13-ft E♭ 12-ft F 9-ft B♭ 9-ft B♭ 9-ft B♭

Brand Besson Hirsbrunner Besson Melton Besson A. Courtois SML
Model BE994 HBS 510 BE983 2250 BE967 AC164 BA16

Mouthpiece Perantucci PT-50 Perantucci PT-50 Romera FT20 Romera FT20 A. Courtois T2 A. Courtois T2 A. Courtois T2

Visual

Table 1: Characteristics of the seven tubas studied in this paper, classified in the same order as in figure 1.
By convention, the nominal pitch specifies a number of feet (ft) coupled with a musical pitch name, being the
nominal fundamental of the instrument (lowest note playable without any valve depressed). The number of feet
corresponds to the equivalent cone length Lec

nom, related to the frequency Fnom of its nominal fundamental by
the formula Lec

nom = c0
2Fnom

, with c0 the speed of sound in the air1.

frequency and the quality factor of the lips, re-
spectively, µ is the lips’ mass per unit area, and
H(ωℓ) is the lip-opening height at rest. Based on
in vivo measurements of H with respect to ωℓ from
[Elliott and Bowsher, 1982], H is assumed to be
proportional to the inverse of the lips’ resonance fre-
quency as in [Mattéoli et al., 2021]. In this respect,
we write H(ωℓ) = 2πk/ωℓ, k being given in table 2
along with the other parameters of the model.

The Bernoulli’s principle is applied between the
mouth and the mouthpiece. Taking into account the
pressure drop caused by the presence of turbulence in
the mouthpiece, one obtains the following equation:

u(t) = wh+(t) sgn (pm − p(t))

√
2 |pm − p(t)|

ϱ
, (2)

with w the lip-opening width (considered to be con-
stant) and ϱ the air density. Here, h+ = max(h, 0)
accounts for the fact that the lips cannot physically
interpenetrate: as soon as the lips touch (h = 0), the
volume velocity is forced to zero. The sign function
sgn accounts for the possibility of air flowing from
the instrument into the player’s mouth.

Finally, the acoustic input impedance Z(ω) of the
resonator is described in the Fourier domain as the
ratio between the acoustic pressure and the volume
velocity at the input of the instrument. This provides
another link between the mouth pressure and the vol-
ume velocity:

P (ω) = Z(ω)U(ω), (3)

with ω the angular frequency. Figure 3a shows the
modulus and phase of Z with respect to the frequency
f , for the B♭-contrabass tuba (see table 1 for details)
which will be considered in subsection 3.1.

w [m] Qℓ
1
µ [m2 kg−1]

1.2× 10−2 7.0 1.1× 10−1

ϱ [kg m−3] c0 [m s−1] k [m Hz]
1.2 3.4× 102 7.4× 10−2

Table 2: Lips’ parameters used throughout the article,
taken from [Mattéoli et al., 2021].

2.2 Numerical considerations

We aim here at determining the minimal mouth pres-
sure for which each periodic regime (natural notes
B♭1, B♭2, F3, B♭3, D4, F4,... in the case of an eu-
phonium) is observable, as well as the corresponding
playing frequencies.

In this subsection, the numerical methods allow-
ing for the investigation of the periodic solutions
of model {(1) ∪ (2) ∪ (3)} are presented, and the
modal representation [Pagneux et al., 1996] of the in-
put impedance required for the practical implementa-
tion of these methods is discussed.

2.2.1 Numerical methods

Several numerical methods are available to in-
vestigate the influence of a control parameter
– such as pm or fℓ, which are the main con-
trol parameters of the musician – on the dy-
namics of the system. Linear stability analysis
[Velut et al., 2017, Seydel, 2010, Fletcher, 1993]
consists in studying the stability of the system
linearised around an equilibrium solution, obtained
by zeroing all time derivatives. This allows one
to determine the threshold value of the control
parameter at which the equilibrium solution desta-
bilises. This happens here in a Hopf bifurcation
[Kuznetsov, 2004], which means that two complex
conjugate eigenvalues of the linearised system cross
the imaginary axis. At this point, a small-amplitude
periodic regime (stable or unstable) can emerge.
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This method has already been applied to physical
models of musical instruments, such as wood-
wind instruments in [Wilson and Beavers, 1974,
Chang, 1994, Silva et al., 2008, Karkar et al., 2012,
Saneyoshi et al., 1987], flute-like instruments
in [Terrien et al., 2014], and brass instru-
ments in [Cullen et al., 2000, Lopez et al., 2006,
Silva et al., 2007]

In the case of brass instruments, both pm and fℓ
are considered as control parameters. Figure 4 (blue
curve) represents the pressure threshold predicted by
the linear stability analysis with respect to fℓ. This
analysis also provides the oscillation frequency at
threshold (referred to as the threshold frequency in
the following), that is to say the frequency of the pe-
riodic regime that emerges when the equilibrium solu-
tion destabilises. This method is applied in subsection
3.1.1 to the case of the B♭-contrabass tuba.

One of the main advantages of this method is its
straight-forward implementation. However, it gives
very little information on the oscillation regime of the
model far from the so-called Hopf bifurcation point
at which the equilibrium loses its stability. To know
more about the oscillating solution arbitrarily far from
the bifurcation point (namely the point at which the
equilibrium solution becomes unstable), another ap-
proach – not considered in this article – consists in
numerically solving the whole system, thanks to an
ODE solver [Velut et al., 2017, Gilbert et al., 2020,
Silva et al., 2014]. In doing so, both the transient and
the stationary parts of the solution are obtained for
any value of the control parameter. Nevertheless, this
approach becomes tedious and unsuitable in the con-
text of the systematic investigation of the influence of
the control parameter on the oscillation regime. It is
also unsure that all regimes are described with this
method, due to sensitivity to initial conditions.

Continuation methods, on the other hand, are more
suitable to gain access to an extensive knowledge of
all the oscillating regimes of the system, that is to
say a family of periodic solutions with respect to
a parameter of interest for instance. It consists in
computing the waveform of the oscillating solution
for successive values of the control parameter. The
waveform corresponding to a new value of the control
parameter is then deduced from previously computed
waveforms, through a predictor/corrector algorithm.
The behaviour of an oscillating solution of the system
with respect to a control parameter such as pm
is then assessed by plotting bifurcation diagrams,
which are shown in section 3. This approach is
implemented in several softwares dedicated to ad-
vanced numerical bifurcation analysis, such as AUTO
[Doedel et al., 1999], which is used in this publication
and in [Gilbert et al., 2020, Akay et al., 2021] as well.
While AUTO relies on the collocation method, other
softwares – such as Manlab [Guillot et al., 2019,
Cochelin and Vergez, 2009, Karkar et al., 2013,

Colinot et al., 2019, Fréour et al., 2020] – are
based on the Harmonic Balance Method
[Nakhla and Vlach, 1976]. It is worth noting
that continuation methods require the system to
be written in the form dX

dt = F (X), with certain
smoothness properties on F . Therefore, some work
has yet to be done on the equations presented in
section 2.1, which is done in the following.

2.2.2 Input impedance

The implementation of the continuation method re-
quires to rewrite equation (3) in the time domain. An
analytical form of the input impedance Z is there-
fore required to perform an inverse Fourier trans-
form of (3). This quantity is quite easily mea-
sured, and is represented in figure 3a (blue curve).
This measured impedance is then numerically fitted,
in the frequency domain, by a sum of N individ-
ual acoustical resonance modes of the following form
[Ablitzer, 2021, Silva et al., 2014]:

Zfit(ω) =
N∑

n=1

jωAn

ω2
n − ω2 + 2jξnωnω

. (4)

Here, (An, ωn, ξn) ∈ R3 are the modal parameters of
the modal decomposition. For numerical reasons, this
set of parameters has been converted here into an-
other one (Cn, sn) so that the fitted input impedance
is written:

Zfit(ω) = Zc

N∑
n=1

(
Cn

jω − sn
+

C∗
n

jω − s∗n

)
, (5)

where z∗ stands for the complex conjugate of z, Zc

is the characteristic input impedance of the resonator
defined as Zc =

ϱc0
Se

with Se the input cross-sectional
area, and (Cn, sn) ∈ C2 defined as follows:Cn = An

2

(
1 + j ξn√

1−ξ2n

)
,

sn = ωn

(
−ξn + j

√
1− ξ2n

)
.

(6)

The new coefficients (Cn, sn) also verify the rela-
tion Re (Cns

∗
n) = 0, since one switched from a 3-

real parameter description with (An, ωn, ξn) to a 2-
complex parameter description with (Cn, sn). The
fitted impedance Zfit(ω) is plotted (orange dashed
curve) in figure 3a.

Reinjecting equation (5) in equation (3) and apply-
ing an inverse Fourier transform3 leads to the follow-
ing expression in the time domain [Fréour et al., 2020,
Silva et al., 2014]:

dpn
dt

= ZcCnu+ snpn, n ∈ J1, NK. (7)

3For details about this calculation, see appendix A of
[Mattéoli et al., 2021].
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(a) Input impedance as a func-
tion of frequency.

(b) Experimental set-
up.

Figure 3: Left: modulus (top) and phase (bot-
tom) of the input impedance of the B♭-contrabass
tuba with respect to frequency. Blue curve: mea-
sured impedance; dashed orange curve: modal fit
function with N = 13 modes; green curve: er-
ror between measured and fitted impedances, de-
fined by ||Zfit| − |Zexp|| and arg (Zfit) − arg (Zexp)
as regards the modulus and phase, respectively.
Right: photograph of the experimental set-up for
the measure of the input impedance of the B♭-
contrabass tuba, displaying the device described in
[Macaluso and Dalmont, 2011], here mounted on the
tuba’s mouthpiece.

The mouthpiece pressure p is then written as
p = 2

∑N
n=1 Re (pn). Eventually, the system

{(1) ∪ (2) ∪ (7)} is now written in the form dX
dt =

F (X), with:

X =
(
{Xm}m∈J1,2(N+1)K

)
=

(
h;

dh

dt
; {Re(pn)}n∈J1,NK ; {Im(pn)}n∈J1,NK

)
(8)

the state vector, so that h = X1, dh
dt = X2, and p =

2
∑N

n=1 Re (pn) = 2
∑N+2

n=3 Xn. Taking the real and
imaginary part of the N equations (7) yields 2N real
equations, so that the nonlinear function F is defined
as:

F : X 7→



X2

− ωℓ

Qℓ
X2 − ω2

ℓ (X1 −H) +
pm−2

∑N+2
n=3 Xn

µ

Re [s1 (X3 + jXN+3) + ZcC1u(X)]
Re [s2 (X4 + jXN+4) + ZcC2u(X)]

...
Re

[
sN

(
XN+2 + jX2(N+1)

)
+ ZcCNu(X)

]
Im [s1 (X3 + jXN+3) + ZcC1u(X)]
Im [s2 (X4 + jXN+4) + ZcC2u(X)]

...
Im

[
sN

(
XN+2 + jX2(N+1)

)
+ ZcCNu(X)

]



,

(9)
with u : X 7→ wX+

1 sgn
(
pm − 2

∑N+2
n=3 Xn

)
×√

2
ϱ

∣∣∣pm − 2
∑N+2

n=3 Xn

∣∣∣.
2.2.3 Regularization of the volume velocity

Continuation methods rely on the assumption of
a smooth nonlinear vector function F , which
needs to be at least C1. Consequently, equation
(2) is regularised in the exact same way as in
[Mattéoli et al., 2021, Colinot et al., 2019]:

u ∼
η→0

w×
h+ h0

√(
h
h0

)2

+ η

2
× pm − p

√
p0

4

√(
pm−p
p0

)2

+ η

,

(10)
or equivalently

u ∼
η→0

w ×
X1 + h0

√(
X1

h0

)2

+ η

2

× pm − 2
∑N+2

n=3 Xn

√
p0

4

√(
pm−2

∑N+2
n=3 Xn

p0

)2

+ η

(11)

in terms of the components of the state vector X,
with η the regularization parameter, which is fixed
to 10−4 in the following. h0 = 5 × 10−4 m is defined
for purely dimensional reasons, and p0 is defined simi-
larly to the closure pressure for woodwind instruments
[Gilbert et al., 2020]: p0 = µω2

0h0, except that ω0 is
chosen close to the first resonance frequency of the
resonator. Indeed, the choice of the lips’ angular reso-
nance frequency ωℓ generally considered for woodwind
instruments is not suitable in the case of brass instru-
ments where ωℓ is no longer constant. In practice, the
choice is not ω0 = ωres,1 (where {ωres,n}n∈J1,NK are
the resonance angular frequencies of the resonator),
but rather ω0 = ωres,4/4, because the fourth reso-
nance of instruments having the same nominal pitch
(a trombone and a euphonium for instance) appears
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to be quite constant, in contrast to the first resonance
frequency which varies up to 8 semitones between a
trombone and euphonium.

In the following, the system of equations (9) with
u(X) given by equation (11) are processed numerically
in a dimensionless form, which is detailed in appendix
B of [Mattéoli et al., 2021]. Typical bifurcation dia-
grams of the system will be shown in section 3.

3 Minimal blowing pressures
and playing frequencies

It was shown in [Velut et al., 2017,
Mattéoli et al., 2021] that the linear stability analysis
was able to accurately describe the ghost note in
terms of playing frequency. However, this method
did not allow to describe the pedal note of any tuba.
Therefore, this section aims at proving that the
pedal note can actually be described by the generic
brass model analysed through a complete bifurcation
analysis instead of a linear stability analysis only.
This section focuses on the first three natural notes of
the B♭-contrabass tuba and the B♭-baritone saxhorn,
as they show a variety of different behaviours of the
system.

3.1 Case of the B♭-contrabass tuba

This subsection focuses on the study of the first three
natural notes of the B♭-contrabass tuba (B♭0, D1, B♭1,
see figure 5), which is the lowest-pitched tuba among
the seven tubas, namely the one with the longest tube
(see table 1).

3.1.1 Linear stability analysis

The results of the linear stability analysis of the sys-
tem are represented in figure 4 by the blue U-shaped
patterns. As described in subsection 2.2, these results
give the values of the mouth pressure pm at which the
equilibrium solution destabilises (the threshold mouth
pressures), as well as the related frequency at which
the oscillating solution emerges (the threshold fre-
quencies). As a matter of fact, the multiple U-shaped
patterns on the top plot of figure 4 reflect the fact that
for a given configuration of the resonator (that is to
say without depressing any valves), the tuba player is
able to play several notes represented in figure 5 called
“natural notes”, just by changing the lips’ resonance
frequency (see for instance [Campbell et al., 2021]).
In figure 4, we chose to perform a stability analysis
from D1 (37 Hz, first U-shaped pattern) up to B♭3
(233 Hz, eighth U-shaped pattern) in terms of thresh-
old frequency, even if a tuba player could play higher
notes in practice. For each natural note or regime
n to emerge, there is an optimal lips’ resonance fre-
quency fopt,eq

ℓ,n which corresponds to the minimum of

a U-shaped pattern. This is associated with an opti-
mal threshold mouth pressure popt,eq

thresh,n and an optimal
threshold frequency fopt,eq

thresh,n. The notation fopt,eq
ℓ,n has

been introduced and used in [Mattéoli et al., 2021],
and is chosen to be as consistent as possible with
[Velut et al., 2017], in which the equilibrium optimal
threshold value (namely the threshold given by the
linear stability analysis) of a quantity q in the nth

regime was written qopt
thresh,n. Here, the threshold

quantities are obtained either using linear stability
analysis or through a bifurcation analysis, which will
be defined and addressed in section 3.1.2. Therefore,
it has been chosen to add an extra superscript “eq” for
“equilibrium”, referring to the linear stability analysis,
or “per” for “periodic solutions”, referring to the anal-
ysis of bifurcation diagrams.

It is worth noting that the linear stability analy-
sis is not able to reproduce the pedal note (red note
in figure 5), in contrast to the case of the trombone
described in [Mattéoli et al., 2021]. Indeed, the first
U-shaped pattern exhibits an optimal threshold fre-
quency of 39Hz whereas the optimal threshold fre-
quency of the second regime is 65 Hz: there is a fre-
quency interval of 8.8 semitones between these two
notes instead of the expected octave (12 semitones)
between a B♭0 and a B♭1. Moreover, it is inferred from
recordings that the ghost note of the B♭-contrabass
tuba lies between a D1 and a D♯1, that is to say be-
tween a minor sixth (8 semitones) and a perfect fifth
(7 semitones) under the second regime B♭1. Thus, the
first U-shaped pattern likely corresponds to the ghost
note, which is thoroughly investigated in the follow-
ing sections. Furthermore, it can be noticed that the
patterns on the bottom plot of figure 4 are always
above the line fthresh = fℓ. This is a characteristic
of the outward-striking valve model: the instrument
always plays a note slightly above the lips’ resonance
frequency.

3.1.2 Bifurcation analysis

In contrast to the linear stability analysis which gives
information about the system close to its equilibrium
only, the continuation method described in section
2.2.1 allows to investigate the system’s behaviour ar-
bitrarily far from it. In particular, it was shown in
[Mattéoli et al., 2021] that the pedal note of an eu-
phonium could actually be described thanks to this
method. Figure 6 shows typical partial bifurcation
diagrams representing the branch of oscillating solu-
tions emerging from the first (left) and second (right)
Hopf bifurcations of the B♭-contrabass tuba.

Considering the second Hopf bifurcation (subfigure
6b) corresponding to a B♭1 (58 Hz), the upper bifur-
cation diagram exhibits a S-shaped branch emerging
from the equilibrium point (or Hopf point) H1, which
consists of two stable portions (thick lines) separated
by an unstable portion (thin line). Such a curve
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Figure 4: Results of the linear stability analysis ap-
plied to the B♭-contrabass tuba. Top and bottom
plots represent respectively the threshold mouth pres-
sure and the threshold frequency with respect to the
lips’ resonance frequency. Circles point out the min-
ima of each U-shaped pattern on the top plot. Hor-
izontal dotted lines on the bottom plots locate the
values of the acoustical resonances of the resonator;
the black dashed line on the bottom plots represents
fthresh = fℓ.

Figure 5: Natural notes playable by a B♭-contrabass
tuba, that is to say without depressing any valves.
From left to right: B♭0 (pedal note), D1 (ghost note,
naturally a bit sharp compared to an equal tempered
scale), B♭1, F2, B♭2, D3, F3, A♭3 (naturally a bit flat
compared to an equal tempered scale), B♭3.

means that the second Hopf bifurcation is actually re-
lated to the emergence of two stable regimes, and thus
two notes. However, it is worth noting that the oscilla-
tion frequencies (bottom plot) taken at the emergence
of each regime (namely the points H2 and S2′) are
about 62.6 Hz for H2 and 60.3 Hz for S2′, less than a
semitone away from H2. Therefore, both regimes are
assumed to correspond to the same note, namely the
B♭1.

Regarding the first Hopf bifurcation (subfigure 6a),
a part of the bifurcation diagram is discussed in the
same way as the second Hopf bifurcation (namely the

grey curve), since the oscillation frequencies taken
at H1 and S1′ are less than a semitone away from
each other4. Both these regimes are considered to
be only one, corresponding to the ghost note since
the whole branch arises from the equilibrium. How-
ever, there also exists another stable regime repre-
sented by the isolated lime curve, whose oscillation
frequency (taken at S1′′) lies 2.4 semitones away from
the stable regime emerging from H1 and 1.8 semitones
away from the stable regime emerging from S1′.
Given the significance of these intervals, the lime por-
tion is considered to correspond to the pedal note –
namely B♭0 – of the B♭-contrabass as pointed out
in [Mattéoli et al., 2021]. It can be noted that this
branch is not connected to the “principal branch”
(namely the branch arising from the Hopf point H1),
making it more difficult to access without any prior
work. As a matter of fact, the point S1′′ is a saddle-
node bifurcation point of the principal branch like
S1′. However, it only connects to the principal branch
above a critical value of the lips’ quality factor Qℓ, at
which the two distinct branches on figure 6 merge into
a unique branch. In the case of the B♭-contrabass tuba
for instance, this critical value lies around Qℓ = 21.7.
At such a value, S1′′ is accessed in the exact same
way as S1 or S1′, that is to say by performing a 1D-
continuation (with respect to pm) of the periodic so-
lution branch from the Hopf point H1. Then, S1′′ is
continued a second time in the plane (Qℓ, pm) (2D-
continuation) to obtain its locus at Qℓ = 7 which is
the value of interest in the present work.

In order to define the easiest notes playable ac-
cording to the model and our definition of the ease
of playing, the mouth pressure threshold of each so-
lution listed above – namely the mouth pressure at
which a stable oscillating solution arises – needs to
be determined, as well as its corresponding threshold
frequency. These minimal mouth pressures are given
by the abscissa of the point S1′′, H1 and S1′ on the
top plot of subfigure 6a for the first Hopf bifurcation,
and of H2 and S2′ on the top plot of subfigure 6b for
the second Hopf bifurcation. However, it was demon-
strated above that both for the first and second Hopf
bifurcation, Hi and Si′ actually corresponded to the
same note: the ghost note for the first Hopf bifurca-
tion and B♭1 for the second Hopf bifurcation. Taking
the results in figure 6 as an example, the minimal
mouth pressure of the ghost note is therefore given
by H1, whereas the minimal pressure of B♭1 is given
by S2′. The points S1 and S2 have no relevance to
our definition of the ease of playing, since they both
correspond to a point at which an oscillating solution
destabilises, meaning that they cannot be experimen-

4in contrast to the case of the trombone described in
[Mattéoli et al., 2021], in which the stable portion emerging
from the Hopf point is almost non-existent given its narrow
mouth pressure range of stability, as the stable portion emerg-
ing from the unstable portion actually corresponds to the pedal
note.
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(a) First Hopf bifurcation. (b) Second Hopf bifurcation.

Figure 6: Typical partial bifurcation diagrams for the first Hopf bifurcation and second Hopf bifurcation. Top
and bottom plots represent respectively the maximum amplitude of the periodic oscillation branches and their
oscillation frequency with respect to the blowing pressure. Left: case of the first Hopf bifurcation, fℓ = fopt,per

ℓ,PN =
28.67Hz; right: case of the second Hopf bifurcation, fℓ = 51.35Hz. The line thickness indicates whether the
branch portion is stable (thick line) or unstable (thin line). The points H1 and H2 correspond to the Hopf
bifurcation points at which a stable oscillation regime arises from the equilibrium for the first and second Hopf
bifurcation respectively. S1 and S2 correspond to the saddle-node bifurcation points at which the stable regime
arising from the Hopf point destabilises. S1′ and S2′ correspond to the saddle-node bifurcation points at which
another stable regime appears for the first and second Hopf bifurcation respectively. S1′′ corresponds to the
saddle-node bifurcation point at which the stable regime of the pedal note arises from the isolated branch (lime).

tally observed anymore. In that respect, they will not
be taken into account in what follows.

The minimal mouth pressure of a note highly de-
pends on the lips’ resonance frequency, as we saw in
figure 4 with the linear stability analysis. Therefore,
the points S1′′, H1, S1′, H2 and S2′ are continued in
the plane (fℓ, pm), which is represented in figure 7 in
a similar manner as the results of the linear stability
in figure 4. In this figure, the blue U-shaped patterns
are the locus in the plane (fℓ, pm) of the Hopf points
H1 and H2 resulting from the continuation, and pro-
vide the same information as the two first U-shaped
patterns in figure 4 obtained by performing a linear
stability analysis. The orange U-shaped patterns cor-
respond to the locus of S1′ and S2′5, and the green
one to the locus of S1′′. For the second Hopf bifur-
cation, the easiest note playable – namely the local
minimum of the lowest U-shaped pattern – is given

5The angular loop that is seen on the locus of S1′ is called a
swallowtail bifurcation [Seydel, 2010]. Since hardly any phys-
ical interpretation can be given of this zone, we chose not to
discuss it in this work.

by the locus of the Hopf points H2 (circle labelled
“R2”). On the contrary, it is given by the locus of the
saddle-node bifurcation points S1′ in the case of the
ghost note (circle labelled “GN”) for the first Hopf bi-
furcation. There is no ambiguity for the easiest pedal
note playable as there is only one U-shaped pattern
(circle labelled “PN”). The easiest pedal note, ghost
note or second regime playable are then characterised
by their individual optimal blowing pressure popt,per

thresh,n
(ordinate of the circled point on the top plot), its opti-
mal lips’ resonance frequency fopt,per

ℓ,n (abscissa of the
circled point on both plots), and its optimal thresh-
old frequency fopt,per

thresh,n (ordinate of the circled point
on the bottom plot) which corresponds to the playing
frequency of the note. Since the U-shaped patterns
cross paths at some points, the minimal mouth pres-
sure pper

thresh is given by the blue curve if it is below the
orange one, and by the orange curve if it is below the
blue one.

Apart from the case of the B♭-baritone saxhorn
which is studied in subsection 3.2, the threshold pres-
sures and threshold frequencies of the other tubas
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Figure 7: Top and bottom plots represent respec-
tively the threshold pressures and threshold frequen-
cies given by the locus of the Hopf points (blue) and
the locus of the saddle-node bifurcation points (or-
ange and green) with respect to the lips’ resonance
frequency in the case of the B♭-contrabass tuba (col-
ors correspond to the ones in figure 6). The circles
identify the local minimum of blowing pressure for
each note, namely the pedal note (PN), the ghost note
(GN), and the second regime (R2). In the case of the
second Hopf bifurcation, the easiest note playable is
given by the minimum of the Hopf points’ locus (blue
curve), since its minimal threshold mouth pressure is
lower than the one given by the saddle-node bifurca-
tion points’ locus (orange curve). On the contrary, in
the case of the ghost note it is given by the minimum
of the saddle-node bifurcation points’ locus (orange
curve).

– namely the C-contrabass tuba, the E♭-bass tuba,
the F-bass tuba, the B♭-euphonium and the B♭-bass
saxhorn – are all displayed in appendix A in the
same manner as figure 7. Even though theses figures
are interpreted in the exact same way as the figure
7, they display various different shapes of U-shaped
patterns, due to presence of cusps and swallowtails
[Seydel, 2010].

Eventually, it could be noted that the pedal note
is supported by the first acoustic mode (that is to
say its frequency is close to the pedal note’s expected
playing frequency), but the frequency of the ghost
note does not correspond directly to one of the reso-
nance frequencies. The latter observation on the ghost
note appears similar to the case of the trombone’s
pedal note (playing frequency around 60 Hz), sound-

ing much higher than the first resonance frequency
(around 38Hz, see the red curve in the bottom plot
of figure 8). Another common characteristic of the
tuba’s ghost note and the trombone’s pedal note is
that, according to the model, both belong to a branch
of periodic solutions emanating from the branch of
equilibrium solutions (Hopf points). It is also worth
pointing out that the pedal note does not fundamen-
tally result from the cumulated contribution of higher
acoustic modes, as it is commonly admitted. Indeed,
[Velut et al., 2014] proves that the pedal note of a
trombone or a tuba does exist with a dummy input
impedance containing only the first peak, based on
time-domain simulations using the same brass model
as in the present paper. However, this work also
shows that the number of acoustic modes taken into
account highly impacts the playing frequency of the
pedal note: the more acoustic modes, the lower the
playing frequency, bringing it closer to the expected
playing frequency of the note.

3.2 Case of the B♭-baritone saxhorn

This subsection focuses on the study of the first three
natural notes of the B♭-baritone saxhorn (B♭1, C2,
B♭2, see figure 9), which is one of the highest-pitched
tubas among the seven tubas. Even though the bari-
tone saxhorn still belongs to the family of bass brass
instruments with predominantly-expanding bore pro-
file, it is worth noticing that both its bore profile and
the first peak of its input impedance lie between those
of a tuba and a trombone, as it is highlighted in figure
8.

In the case of the baritone saxhorn, the par-
tial bifurcation diagram for the first Hopf bifurca-
tion exhibits a S-shaped branch, similarly to the B♭-
contrabass trombone. Nevertheless, there seems to
exist no isolated branch corresponding to the pedal
note as in subfigure 6a. Instead, the S-shaped branch
includes a stable portion emerging from a saddle-node
bifurcation point S1′ corresponding to the pedal note,
whereas the same portion of this branch in the case
of the B♭-contrabass tuba was only related to another
specimen of the ghost note, as shown in subsection
3.1.2. The locus of the saddle-node bifurcation points
Si′ and Hopf points Hi in the plane (fℓ, pm) is dis-
played in figure 10. In the case of the second Hopf
bifurcation, it can be noted that similarly to the B♭-
contrabass tuba, the easiest-to-play note is not given
by the minimal mouth pressure of the saddle-node
bifurcation points’ locus, but by the minimal mouth
pressure of the Hopf points’ locus, as it lies lower.
More importantly, the saddle-node bifurcation curve
for the first Hopf bifurcation is W-shaped, namely
it displays two local minima, each of them labelled
PN and GN on the left side of figure 10. Their op-
timal threshold frequency on the bottom plot shows
that they correspond to two different notes, as they
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Figure 8: Top: bore profile as a function of
the axial distance to mouthpipe end, taken from
[Campbell et al., 2021] (where bore profiles of several
other instruments can be found); bottom: modulus of
the input impedance as a function of frequency (zoom
on the first two peaks). Red: bass trombone; purple:
B♭-baritone saxhorn; blue: B♭-euphonium.

Figure 9: Natural notes playable by a B♭-baritone
saxhorn, that is to say without depressing any valves.
From left to right: B♭1 (pedal note), C2 (ghost note,
perceived as a little flat), B♭2, F3, B♭3, D4, F4, A♭4
(naturally a bit flat compared to an equal tempered
scale), B♭4.

differ by about a whole tone from each other. Fur-
thermore, this W-shaped pattern having its minimal
mouth pressures both lower than the minimal mouth
pressure of the Hopf points’ locus, they are considered
to correspond to the pedal note and the ghost note,
respectively. It is worth noting that, in contrast to the
case of the B♭-contrabass tuba studied in subsection
3.1.2, for which the pedal note and the ghost note
belong to a distinct U-shaped pattern, these notes
belong to a unique W-shaped pattern in the case of
the baritone saxhorn. Furthermore, in the case of

the B♭-contrabass tuba, there also exists a similar
case of a W-shaped pattern for the first Hopf bifurca-
tion (orange curve on the left side of figure 7) caused
by a swallowtail, except here both local minima of
this W-shaped pattern correspond to the ghost note,
given their very close optimal oscillation frequency at
threshold.

Figure 10: Top and bottom plots represent respec-
tively the threshold pressures and threshold frequen-
cies given by the locus of the Hopf points (blue) and
the locus of the saddle-node bifurcation points (or-
ange) with respect to the lips’ resonance frequency
in the case of the B♭-baritone saxhorn. The circles
identify the local minimum of blowing pressure for
each note, namely the pedal note (PN), the ghost note
(GN), and the second regime (R2). In the case of the
second Hopf bifurcation, the easiest note playable is
given by the minimum of the Hopf points’ locus (blue
curve), as its minimal threshold mouth pressure is
lower than the one given by the saddle-node bifurca-
tion points’ locus (orange curve). In the case of the
first Hopf bifurcation, the locus of the saddle-node bi-
furcation points (orange curve) shows two local min-
ima, each one corresponding to the ghost note and
the pedal note, as both these minima lie lower than
the locus of the Hopf points and have a significantly
different threshold frequency.

4 Comparison between tubas
with different nominal pitch

In this section, the recording set-up used to exper-
imentally assess the playing frequencies of the first
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three natural notes of a tuba is first presented. Sec-
ond, the experimental playing frequencies of the seven
tubas are compared to the optimal threshold fre-
quencies obtained thanks to the numerical bifurcation
analysis presented in section 3.

4.1 Recording set-up
The frequency of the easiest-to-play pedal note, ghost
note and second regime was experimentally assessed
based on recordings of two professional tuba play-
ers, whose experimental set-up is described in figure
11. They were both asked to play successively these
three notes according to the procedure described in
figure 11b (all tuning slides completely pushed in).
They were asked to play the easiest notes playable in
terms of “slotted notes” (which are defined here as the
most stable notes) according to the player, regard-
less of the pitch. After recording the exercise using
a Zoom recorder H4n in a semi-anechoic room6, the
instantaneous frequency of each note was extracted
using Yin [de Cheveigné and Kawahara, 2002] based
on the time signal of the note without its transient
states, as displayed in figure 12 (dashed box). In this
way, the experimental conditions were as close as pos-
sible to the framework of the numerical bifurcation
diagrams, which provide informations on permanent
regimes only.

(a) Recording scheme. (b) Exercise to play.

Figure 11: Experimental scheme used to record the
professional tuba players (left) and score of the exer-
cise they were asked to play (right), here in the case
of the B♭-contrabass tuba. The audio recorder is a
Zoom H4n, allowing stereo recording. The recording
took place in a semi-anechoic room.

4.2 Results
The procedure described in section 4.1 was per-
formed by both professional tuba players on the
seven different tubas. The tubas were charac-
terised in the following manner: from the lowest
nominal pitch (B♭-contrabass tuba) to the highest
(baritone saxhorn), each tuba had first its input

6The signal displayed in figure 12 can be listened to
at http://perso.univ-lemans.fr/~rmatte/bb-contrabass_
tuba_exercise.mp4.
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Figure 12: Top: shape of the time signal recorded
from one tuba player playing the exercise described
in figure 11 on the B♭-contrabass tuba: each
“wavepacket” corresponds to a note of the exercise.
Bottom: details of the recorded signal of a ghost
note played during the exercise, corresponding to the
dashed box drawn in the top plot.

impedance measured thanks to the same device used
in [Macaluso and Dalmont, 2011] – which is seen in
figure 3b – and was afterwards given to the profes-
sional tuba players to be played.

Several experimental factors such as temperature
and hygrometry rate are known to have a significant
impact on the pitch of a note, but were not taken
into account in the numerical model. Moreover, the
lips’ parameters such as Qℓ were probably not held
constant in the experiments. Therefore, comparing
the notes’ pitches given by the numerical bifurcation
diagrams and the recordings would be irrelevant. In-
stead, we choose to compute the frequency interval
in semitones between two notes, as the quantity to
compare between the numerical results and the ex-
perimental results.

Since three notes are involved, namely the pedal
note PN, the ghost note GN and the second regime
R2, three intervals are computed: iPN/GN, iGN/R2 and
iPN/R2 = iPN/GN + iGN/R2. The results of these cal-
culations are displayed in figure 13. A first interesting
result is that, given the incursion of the experimen-
tal points, the monotonicity of the frequency intervals
as a function of the tuba type is consistent between
the recordings and the generic brass model. Secondly,
the experimental frequency interval between the pedal
note and the second regime (subfigure 13c) tends to be
always close to an octave (12 semitones). This could
reflect the fact that, even told to chose the more slot-
ted and easiest-to-play notes regardless of the pitch,
the tuba players may have a tendency to instinctively
play the pedal note in tune. On the contrary, the
generic brass model exhibits a frequency interval be-
tween the pedal note and the second regime ranging
from 10.6 semitones in the case of the C-contrabass
tuba to almost 13 semitones in the case of the E♭-bass
tuba. Eventually, subfigure 13a highlights the fact
that the frequency interval computed using the linear

http://perso.univ-lemans.fr/~rmatte/bb-contrabass_tuba_exercise.mp4
http://perso.univ-lemans.fr/~rmatte/bb-contrabass_tuba_exercise.mp4
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stability analysis (red dots) is less than a quarter tone
away from the frequency interval computed using the
continuation method as a whole, meaning that the lin-
ear stability analysis is actually sufficient to describe
the ghost note. As a matter of fact, the difference
comes from the fact that the U-shaped pattern drawn
by the locus of the saddle-node bifurcation points Si′
in the plane (fℓ, pm) has a lowest minimum than the
one of the Hopf point, which is not predicted by the
linear stability analysis. It is for instance the case for
the ghost note of the B♭ contrabass tuba, as shown in
figure 7. The case of the B♭-baritone saxhorn is sin-
gular, as the frequency intervals involving the ghost
note (figure 13a and 13b) are not consistent between
the two players. However, it is worth noticing that
one of them seems to be consistent with the numer-
ical model. This discrepancy could reflect the fact
that a baritone saxhorn being close to a trombone –
for which the ghost note does not exist – as regards its
bore profile (see top plot of figure 8), the ghost note
is not very well-defined. This is confirmed by the feel-
ing, shared by both tuba players, that the ghost note
on this instrument is not very slotted compared to the
other tubas. Numerically, this could be illustrated by
the fact that the ghost note and the pedal note both
belongs to a W-shaped pattern whose minima are not
very steep nor deep, making it easier to switch from
the ghost note to the pedal note and vice-versa. In the
case of the other tubas, each note was characterised
by a distinct U-shaped pattern, thus making it more
difficult to switch continually from the ghost note to
the pedal note and vice-versa.

5 Conclusion

Most results in this paper highlight the usefulness of
bifurcation diagrams analysis to understand the be-
haviours of the complete nonlinear model of brass
instrument, both near and arbitrarily far from the
oscillation threshold. Here, this in-depth analysis is
applied to seven type of tubas. In contrast to the
trombone, tubas have an extra natural note – referred
to as “ghost note” – between their pedal note (first
playable note) and their second regime (one octave
above). One special aspect of the ghost note is to be
lying at a different interval with respect to the other
natural notes, depending on the instrument’s bore ge-
ometry. Nevertheless, not only does bifurcation anal-
ysis prove that the considered elementary model of
brass instrument is able to reproduce the whole range
of natural notes of a tuba, but also accurately de-
scribes the diversity of ghost notes among seven tubas
featuring different bore geometries. Our results show
that this is in excellent agreement with recordings of
two professional tuba players.

The study especially focuses on the first three nat-
ural notes of the tubas, namely the pedal note, the

ghost note and the second regime. The ease of playing
of a tuba is chosen to be assessed based on the mini-
mal pressure thresholds, namely the minimal value of
mouth pressure at which an oscillating solution exists.
Because the pedal note requires to determine oscillat-
ing regimes far from the equilibrium state, a linear
stability analysis is not sufficient to characterise this
note. Instead, the minimal pressure thresholds are es-
timated thanks to a bifurcation analysis. At the same
time, the associated threshold oscillation frequency is
inferred, which is directly related to the pitch of the
note. For the considered elementary model of brass
instrument, this method provides information on all
the periodic regimes accessible to a tuba player for a
given fingering. From the experimental point of view,
the playing frequency of a note is estimated based on
the recording of two professional tuba players.

The intervals between the pedal note and the ghost
note, the ghost note and the second regime, and the
pedal note and the second regime appear consistent
between recordings and numerical bifurcation analysis
for six tubas out of seven. The last tuba, the baritone
saxhorn (which is one of the highest-pitched), actu-
ally has an intermediate bore profile between a tuba
and a trombone, the latter featuring no ghost note. In
this case, the two professional tuba players felt that
the ghost note was not as “slotted” (meaning that the
player does not have the sensation of a stable, well-
defined pitch) as on the other tubas, resulting in a
discrepancy between the two tuba players for this in-
strument. Nonetheless, this fact is consistent with the
bifurcation diagrams analysis, which points out that
the ghost note is more easily accessible by bending
the pedal note up (that is to say by physically raising
the lips’ resonance frequency) than it is on the other
tubas. The ghost note is thus numerically less well-
defined on the baritone saxhorn, as confirmed by the
sensation of both professional tuba players.

One important limitation of the present study lies
in the difficulty to estimate the lips’ parameters used
in the model. Indeed, it would be reasonable to think
that lips’ parameters – such as Qℓ, which is known
to have a strong impact on the shape of the bifurca-
tion diagrams – would vary from playing a low note
to playing a high note, not to mention from playing a
contrabass tuba to playing a baritone saxhorn. Yet,
these lips’ parameters being difficult to measure both
on an artificial mouth or directly on a player, they
were kept constant regardless the instrument or the
note played. Even though the obtained results look
reasonable, that is to say consistent with the musi-
cians’ experience, in vivo measurements of lips pa-
rameters during musical performance would be very
valuable. Furthermore, the harsh modelling of the
contact between the lips is known to artificially add
harmonics to the time signals generated. This could
be avoided by considering a more realistic contact
model between the lips, even though regarding the
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(a) Ghost note/second regime. (b) Pedal note/ghost note.

(c) Pedal note/second regime.

Figure 13: Frequency intervals with respect to type of tuba. Blue points: frequency interval inferred from the
recording of the first tuba player, orange points: frequency interval inferred from the recording of the second
tuba player, green points: frequency interval inferred from the bifurcation diagrams, red points: frequency
interval inferred from the linear stability analysis (when relevant). The instantaneous frequency (respectively
the “error” bar) of a note is computed taking the average (respectively the standard deviation) of the frequency
over the notes occurrences in the exercise – usually from 4 to 8 identical notes – of the average frequencies
individually computed by Yin [de Cheveigné and Kawahara, 2002] in a permanent regime.

frequency intervals, the model presented in this pa-
per yields satisfying results as it is. Eventually, it
is worth noting that the low number of tuba players
(two) and the note occurrences (four to eight) per ex-
ercise performed by each tuba player may affect the
quality of the statistics yielded. Thus, the recording
process described in this paper would also highly ben-
efit from being undertaken with a higher number of
players in order to assess its repeatability and to re-
fine the results obtained regarding the comparison of
the frequency intervals between the elementary brass
model and the recordings.
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A Minimum blowing pressures
of the seven tubas

In this appendix are displayed the same plots as in
figure 7 (namely the threshold pressure and thresh-
old frequency as functions of the lips’ resonance fre-
quency) for all the tubas that have not been treated
in detail in this paper.

These figures illustrate well the fact that for a given
note, the easiest note playable correspond to the min-
imum of either the Hopf points’ locus (blue curve),
or the saddle-node bifurcation points’ locus (orange
curve). For instance, both the easiest ghost note and
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(a) C-contrabass tuba. (b) E♭-bass tuba. (c) F-bass tuba.

(d) B♭-euphonium. (e) B♭-bass saxhorn.

Figure 14: Top and bottom plots represent respectively the threshold pressures and threshold frequencies given
by the locus of the Hopf points (blue) and the locus of the saddle-node bifurcation points (orange and green)
with respect to the lips’ resonance frequency in the case of the C-contrabass tuba, E♭-bass tuba, F-bass tuba,
B♭-euphonium and B♭-bass saxhorn. The circles identify the local minimum of blowing pressure for each note,
namely the pedal note (PN), the ghost note (GN), and the second regime (R2). The dashed portions at the
ends of each U-shaped patterns in the case of the C-contrabass tuba mean that these curves still exist above
pm = 2 kPa, but the computation was simply not performed above this value of mouth pressure.

second regime playable correspond to the minima of
the blue U-shaped patterns in the case of the B♭-
euphonium (subfigure 14d), whereas they both corre-
spond to the minima of the orange U-shaped patterns
in the case of the B♭-bass saxhorn (subfigure 14e).

It is also worth noticing that, in the case of the
C-contrabass tuba (subfigure 14a), the pedal note’s
U-shaped pattern appears very narrow and have a
very high optimal threshold mouth pressure (more
than 3 kPa) compared to the U-shaped patterns of the
ghost note and the second regime. This would mean
that the pedal note is very slotted, namely very sta-
ble and well-defined, but also hard to obtain consid-
ering the high mouth pressure the player would have
to exert in the instrument, and the narrow span in
the values of lips’ resonance frequency at which this

note exists. However, as discussed in subsection 4.2
and section 5, several key-lips’ parameters such as Qℓ

were held constant regardless of the tuba in the bi-
furcation analysis, which is very unlikely to be the
case in practice. Therefore, it could result in such a
discrepancy.

Secondly, several regions exhibit a singular be-
haviour in figure 14. For instance, F-tuba’s and E♭-
bass tuba’s orange U-shaped patterns (subfigures 14c
and 14b) show what are referred to as “cusps” in
[Seydel, 2010] on their right side. Also, several swal-
lowtails [Seydel, 2010] are seen, a noticeable one being
on the left orange U-shaped pattern in the case of the
B♭-bass saxhorn for instance (subfigure 14e). Since no
physical interpretation of these areas could be made,
we chose not to discuss them in this study.
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