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Abstract 30 

The fine characterization of the substrate is a baseline to thoroughly investigate the 31 

relations between organisms and their biotopes. Cutting edge spatial technologies now 32 

provide access to accurate information on biotopes and biocenoses both in terrestrial 33 

and in marine environments. Photogrammetry is one of them and has recently been 34 

applied in submarine environments especially in shallow clear water. In this study, we 35 

investigated the potential of photogrammetry to characterize benthic habitats in turbid 36 

environments. Although more challenging, turbid environments are more frequent in 37 

temperate marine coastal areas. We selected two rocky sites in the bay of Saint-Malo 38 

(Brittany, France), differentiated by their level of turbidity, one being a marine site 39 

exposed to natural tides (Buharats), while the other (Bizeux) is subjected to both 40 

natural tides and artificial currents created by the functioning of a hydroelectric dam. 41 

The different substrates observed were classified into eight classes at a centimetre 42 

resolution using photogrammetry-based spatial and multispectral predictors. The 43 

spatial benthic terrain predictors were derived from a digital surface model (DSM) at 44 

various spatial scales, and the multispectral predictors were retrieved from the red-45 

green-blue (RGB, natural colours) orthomosaic imagery. An overall classification was 46 

computed for Buharats and Bizeux, with accuracies of 84.76 % and 79.54 % 47 

respectively, revealing a good quality of the substrate classification. The combination 48 

of RGB, DSM, and several spatial benthic terrain variables, with a pixel resolution of 5 49 

and 10 mm, and a kernel size of 30, 60 and 90 pixels leads to the best benthic substrate 50 

classification (highest overall accuracy). At the class scale, producer’s (PA) and user’s 51 

(UA) accuracy showed that big boulders and field material were correctly distinguished. 52 

Small boulders and cobbles, having similar sizes, showed the lowest classification 53 

performances. This classification methodology provides new perspectives for 54 
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mesoscale (100 m² to 1 km²) semi-automatic mapping of the fine resolution (1 cm) 55 

relationship between benthic organisms and their substrate. 56 

Key words 57 

Photogrammetry; Temperate rocky reefs; Turbid water; Classification; Terrain 58 

variables; Substrate mapping 59 
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1. Introduction 70 

 71 

Substrate characteristics are known to control marine benthic communities specific 72 

composition and abundance. Reviews have recently highlighted a range of 73 

geomorphometric variables that could influence at various scales the descriptive 74 

parameters of sub-tidal rocky habitat communities (algae, invertebrates and fishes) 75 

both in tropical and temperate sub-tidal environments (Pygas et al., 2020 ; Borland et 76 

al., 2021). More particularly, the terrain complexity (e.g. rugosity, bathymetric variance 77 

and slope of the slope), its morphology (curvature and aspect), the substrate type 78 

(nature, features and engineer species) and other information (bathymetry and slope) 79 

have an influence on the presence, abundance, cover and diversity of algae and 80 

sessile invertebrates both in tropical (Duckworth, 2016), subtropical (Holmes et al., 81 

2008; Zavalas et al., 2014, Bravo et al., 2020) and temperate environments (Castric-82 

Fey et al., 1973, Castric-Fey and Chasse, 1991; Guinan et al., 2009; Elvenes et al., 83 

2014). Studies have demonstrated that the terrain complexity is one of the key-factor 84 

strongly  structurating  the fish communities on tropical (Kuffner et al., 2007; Pittman 85 

et al., 2007; Pittman et al., 2009; Knudby et al., 2010; Pittman and Brown, 2011; 86 

Sekund and Pittman, 2017), subtropical (Moore et al., 2009; Monk et al., 2010; Moore 87 

et al., 2010; Monk et al., 2011; Coleman et al., 2016; Rees et al., 2018; Williams et al., 88 

2019), and temperate reefs (Cameron et al., 2014). Therefore, the accurate 89 

characterisation of the substrate has the potential to provide a precise understanding 90 

of the relationship between sessile organisms and their substrate. For instance, this 91 

substrate-based information can be used to predict benthic community compositions 92 

(Rattray et al., 2009; Collin et al., 2011).  93 

The development of novel mapping technologies such as satellite, LiDAR and 94 

acoustic tools now allow to fine-tune at various scales the characterisation of benthic 95 
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and demersal habitats in relation with community composition (Fig. 1). Although, these 96 

technologies are currently able to define the substrate at macroscale (>1 km²), with 97 

high spatial resolution (~10  cm through acoustic, ~1 m through LiDAR and Satellite), 98 

LIDAR and satellite technologies are limited to the first 50 m of depth in clear water 99 

Fig. 1. The different techniques for benthic substrate imagery, their scope and 

performances. For each methodology, the limits of the rectangle indicate the range of 

spatial scale (horizontal) and resolution (vertical), and illustrations of benthic substrate 

imageries are given at the top of the diagram (data Irish and Lillycrop, 1999; Diaz et 

al., 2004; Bock et al., 2005; Collin et al., 2011; Knudby et al., 2011; Galparsoro, 2012; 

Collin et al., 2013; Dierssen and Theberge, 2014; Zavalas et al., 2014; Burns et al., 

2015; Calvert et al., 2015; Smith et al., 2015; Wahidin et al., 2015; Ierodiaconou et al., 

2018; Madricardo et al., 2019; Marre et al., 2019; Jackson et al., 2020; Marre et al., 

2020a; Marre et al., 2020b).   
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because of water absorption (Irish and Lillycrop, 1999; Diaz et al., 2004; Bock et al., 100 

2005; Collin et al., 2011; Knudby et al., 2011; Galparsoro, 2012; Collin et al. 2013; 101 

Dierssen and Theberge, 2014; Zavalas et al., 2014; Calvert et al., 2015; Smith et al., 102 

2015; Wahidin et al., 2015; Ierodiaconou et al., 2018; Madricardo et al., 2019). LiDAR 103 

and sonar surveys can provide relevant information on the terrain characteristics, 104 

essential to describe and map benthic habitats (biotopes and biocenoses) (Pickrill and 105 

Todd, 2003; Collin et al., 2008; Pittman et al., 2009; Brown et al., 2011; Collin et al., 106 

2011; Walbridge et al., 2018). Hence, this mapping constitutes an effective baseline to 107 

both target habitats of interest and evaluate the sampling effort required. More recently 108 

the photogrammetry technique has been developed and is now widely deployed in sub-109 

tidal environments. This technique allows a 3D reconstruction with a more detailed 110 

characterisation of benthic rocky substrates and at larger scale of their associated 111 

landscapes (Hatcher et al., 2020). Based on multi-view optical information (either 112 

photographic or videographic), the photogrammetry has been mainly used in clear 113 

water environments to describe coral reefs structure at various biological levels from 114 

individuals to reefs (Burns et al., 2015; Figueira et al., 2015; Leon et al., 2015; Burns 115 

et al., 2016; Ferrari et al., 2016; Anelli et al., 2017; Carlot et al., 2020; Fukunaga et al., 116 

2020). To date, this approach has been used to describe, up to a scale of 120 m² 117 

(mesoscale), the morphology of the substrate below a centimetre resolution  (Fig. 1; 118 

Burns et al., 2015; Jackson et al., 2020; Marre et al., 2019; Marre, et al., 2020b). 119 

However, the substrate typology (i.e. bed rock, boulders, pebbles, gravel, sand), 120 

determinant for the structure and organisation of biological communities, has not been 121 

derived from photogrametry in these studies. There is currently a clear need to produce 122 

fine resolution (< 1 m) characterisations (geomorphology and typology) and maps of 123 

temperate rocky reefs, to better understand and monitor processes involved in habitat 124 
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dynamics as a response to environmental changes (Keith et al., 2020; see also 125 

European Commission and  European Environment Agency). Additionally, testing the 126 

potential of photogrammetry applications in turbid water systems is lacking. 127 

In this study, we propose an innovative method to produce a mesoscale (120 128 

m²) fine resolution (1 cm) classification of benthic substrates in turbid waters combining 129 

photogrammetry and supervised classification models. We selected two rocky 130 

temperate reefs, located in the bay of Saint Malo, France, with similar topographic 131 

features but characterised by different turbidity and hydrodynamic conditions. We 132 

analysed the ability of the supervised classification to detect and quantify the relative 133 

surface of eight substrate classes commonly used in the literature. A visual description 134 

of the transect landscape (distribution patterns of the substrate types) has been 135 

conducted to rapidly evaluate if differentiation of landscape patterns could be made. 136 

The contribution of the spatial (terrain) and multispectral (red-green-blue, RGB) 137 

predictors was investigated, and the best combination of predictors was statistically 138 

examined. This research aims to develop a classification method to spatially quantify 139 

the main biotope components of benthic rocky reef habitats. 140 

2. Material and Methods 141 

 142 

2.1. Study area 143 

 144 

The sampling area is located in the English Channel in the St Malo Bay (Brittany, 145 

France). Two distinct rocky reef sites have been sampled by scuba-diving. The islet of 146 

Bizeux (48°37'40.95'' N, 2°01'34.96'' W; WGS84) is under the influence of natural tides, 147 

but also of functioning of the hydroelectric dam of the Rance, which create strong 148 

bidirectional currents and turbid episodes (Gallon et al., 2013). The second site, the 149 
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reef of Buharats (48°40'24.08'' N, 2°07'12.88'' W; WGS84) located 3 km offshore, is 150 

more subject to marine influence but less turbid than Bizeux (Fig. 2).  151 

 152 

Fig. 2. Locations of the two sampling sites (Buharats and Bizeux) inside the rocky 

substrate distribution of the Emerald Coast. The different isobaths are displayed with 

a 5 m step. 
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For each reef, a 120 m² transect (30 m long and 4 m wide ; Fig. 3) was 153 

investigated in circa-littoral habitats, under the kelp belts, at depths of 13 +/- 1 m (0 m 154 

corresponding to the lowest astronomical tide level). 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

2.2. Imagery acquisition 166 

 167 

A total of 1831 and 1995 pictures were taken for Bizeux and Buharats, 168 

respectively (Fig. 3 and Fig. 4 step 1). The transect was set-out with a 30 m tape. Six 169 

quadrats (0.25 m²) were distributed along the transect and a 2 m rule was placed for 170 

an a posteriori calibration. Special photogrammetric markers were fixed on quadrats 171 

(8 markers) and rules (6 markers) for the 3D model construction. The depth was 172 

controlled with a dive computer (Suunto Vyper©, 10 cm precision). Each quadrat was 173 

georeferenced (in latitude and longitude) under water using a submarine geolocation 174 

system (i.e.  175 

Fig. 3. Scheme of the 120 m² transect (30 m long and 4 m large) shooting. The dotted 

lines separate each 10 m sections. The curved lines symbolize the trajectory of divers 

in their respected lane during the sampling. The six squares indicate the position of 

quadrats (50 x 50 cm). The thick line indicates the 2 m rule. 
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UWIS© system; 1m precision). The transect was divided in 2 lanes of 2 meters wide 176 

(one for each diver) and 3 consecutive sections of 10 m long (to secure data collection; 177 

Fig. 3). Digital single-lens reflex D7500-NIKON (set to 20.1 MegaPixel, F13, 1/250 s, 178 

ISO 400-800) with a 10-24 mm NIKON lens (set to 10 mm), placed in an ISOTA 179 

underwater housing, has been used for the multispectral imagery acquisition. Two 180 

PRO160-Subtronic strobes (set to 1/4 - 1/8 of the total power) were also used. Divers 181 

swam 1 m above the substrate and took pictures modulating their swimming speed 182 

and frequency of picture acquisition to ensure an approximately 60 % overlay between 183 

each photograph. Divers also maintained the camera roughly orthogonal to the 184 

substrate fitting as well as possible the shape of the substrate. An extra crossing was 185 

also carried on, with an oblique view, to improve the quality of the final model. 186 

Fig. 4. Workflow of the photogrammetry to describe a 120 m2 transect of benthic 

temperate rocky substrates from photograph acquisition to classification. The time 

indications represent the rough duration of each process. Software used to perform 

each process are indicated on the right. DSM: Digital surface model. 
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2.3. Photogrammetric model construction 187 

 188 

All the process was performed using the Agisoft Metashape Software (version 189 

1.6.1; see Table S1 for parametrization details), as frequently used in photogrammetry 190 

investigation (Burns et al., 2015; Leon et al., 2015; Bayley et al., 2019; Marre et al.,  191 

2019; Bayley and Mogg, 2020). Each lane was separated in 3 transversal segments in 192 

which a georeferenced quadrat was placed. In each segment, the markers were 193 

automatically detected and photographs were aligned. Chunks were then assembled 194 

based on markers having a new chunk with the assembled pictures of the whole 195 

transect (Fig. 4 step 2). A dense cloud process was then applied on the latter (Fig. 4 196 

step 3). The coordinates (latitude, longitude, and depth) of each quadrat and the known 197 

distance of the 2 m rule were manually annotated (see Table S2 for details on error 198 

estimation of the 3D model). A digital surface model (hereafter DSM, free resolution) 199 

followed by an orthomosaic (fixed at a 1 mm resolution) process were then performed 200 

(Fig. 4 step 4 and 5). 201 

2.4. Topographic modelling 202 

 203 

The whole process was deployed under the ENVI Classic software (version 5.3). 204 

The DSM built from the photogrammetric model was first imported and resized to 5 205 

and 10 mm pixel resolutions (r). A topographic modelling process was applied on the 206 

DSM band selecting 6 different benthic terrain variables : the slope, as the rate of 207 

change in elevation over horizontal distance between pixels in degree; the aspect, as 208 

the horizontal direction of the slope in degree; the profile and plan convexity, 209 

respectively as the vertical and horizontal components of the curvature without unit; 210 

the maximum curvature, as the largest local curvature in any direction without unit; the 211 
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root mean square error (RMSE), as the rate of change of the bathymetry in meters 212 

(Fig. 4 step 6 and Fig. 5).  213 

These six variables were grouped under the term Terrain. Different combinations of 214 

resolution (r) and kernel size (k) were used to obtain various size of calculation 215 

windows for a multiscale approach (Table 1; Wilson et al., 2007; Porskamp et al., 216 

2018):  217 

Table 1: The different combinations of resolution (r) and kernel size (k) to obtain the different calculation windows 218 

 219 

 220 

Fig.5. Pictures of the digital surface model (DSM), using average bathymetry in meters, 

for Bizeux (calculation window: k = 30 and r = 5 mm), orthomosaic combining red, 

green and blue (RGB) multispectral bands in digital numbers and the different terrain 

variables: the slope, aspect, profile convexity, plan convexity, maximum curvature, root 

mean square error (RMSE) (See details in 2.4 section). 
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2.5. Model classification 221 

 222 

A supervised classification is commonly used for typological mapping. Machine 223 

learners have been developed and widely used for benthic biotope classification (Collin 224 

et al., 2011; Hasan et al., 2014). However, some of them can suffer from a low 225 

transferability to people without specific machine learning skills. Moreover, these are 226 

not well suited for high frequency monitoring because of their complexity and also as 227 

they are computationally time consuming. Among various algorithms gleaned from the 228 

literature, the maximum likelihood classifier, based on the probabilistic membership, is 229 

described as a fast and highly transferable one (Pal and Mather, 2003; Collin et al., 230 

2019; James et al., 2020a; James et al., 2020b). This algorithm is a pixel-wise method 231 

based on a Gaussian distribution of classes of interest. Pal and Mather (2003) defined 232 

it as the association of a pixel to a specific class if the probability of belonging to this 233 

class is higher than those of the other classes. 234 

The orthomosaic based on multispectral information (RGB) was built from the 235 

photogrammetric model, and then imported and staked with the DSM and Terrain 236 

variables (all calculation windows). From the orthomosaic, different typological classes 237 

of the substrate (bed rock, big/medium/small boulder, cobble, pebble, sand and field 238 

material; Fig. 6) were visually identified (visual size estimation) and manually 239 

vectorized (Fig. 4 step 7). A threshold of a minimum of 1 000 000 pixels was reached 240 

for each class (500 000 for the field material class). Vectorized pixels were randomly 241 

subsampled in two sets of 500 000 pixels (250 000 for field material) respectively for 242 

the calibration and validation of the classification. A supervised classification process 243 

was applied using the maximum likelihood algorithm and the calibration pixel set (Fig. 244 

4 step 8 and 6). 245 
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 246 

Each combination of variables (hereafter called processing) using the association 247 

of RGB and DSM as a reference and adding Terrain for the different calculation 248 

windows (1.5, 3, 6 and 9 cm) has been calculated and compared. For each classified 249 

transect, a confusion matrix was generated to compare the resulting classes to the 250 

validation pixel set. The matrix provided information on the accuracy of both, the 251 

producer (PA; eq. 1) and the user (UA; eq. 2). The PA reflects the probability that a 252 

pixel in a given class was correctly classified, while the UA expresses the probability 253 

that a pixel predicted in a given class is really in that class (Congalton, 1991). 254 

Consequently, the PA and UA provides information about the omission error (false 255 

negative), and the commission error (false positive) respectively. 256 

Fig.6. Classified models of transects at Bizeux and Buharats, based on multispectral 

(RGB), bathymetry (DSM) and all Terrain variables computed with various calculation 

windows. An example of each typology is given with the corresponding colour in the 

classification. Bed rock (homogeneous cover of rock), big (x > 1 m), medium (1 m > x 

> 50 cm) and small (50 cm > x > 25 cm) boulder, cobble (25 cm > x > 6 cm), pebble (6 

cm > x > 4 mm), sand (4 mm > x) and field material (2 m rule, 0.25 m² quadrats and 

transect tape) based on Blair and McPherson (1999). 
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𝑃𝐴 = 𝐶𝑙𝑎𝑠𝑠𝑖(𝑉𝑎𝑙𝑖) / 𝑉𝑎𝑙𝑖 × 100        (1) 257 

With PA (in percent), Classi(Vali) the number of classified pixels for the class (i) among 258 

the pixel of the validation set for the class (i), and Vali the number of pixels of the 259 

validation set for the class (i). 260 

𝑈𝐴 = 𝑉𝑎𝑙𝑖(𝐶𝑙𝑎𝑠𝑠𝑖) / 𝐶𝑙𝑎𝑠𝑠𝑖 × 100        (2) 261 

With UA (in percent), Vali(Classi) the number of pixels of the validation set for the class 262 

(i) among the classified pixel of the class (i), and Classi the number of pixels classified 263 

for the class (i). The overall accuracy (OA), reflecting the mean quality of the 264 

classification, can then be calculated (eq. 3).  265 

𝑂𝐴 = ∑ 𝑃𝐴𝑛
𝑖=1 𝑖

 / 𝑛          (3) 266 

With OA (in percent), n the total number of class and PAi the producer’s accuracy of 267 

the class (i). 268 

2.6. Statistical analysis 269 

 270 

The PA and UA of each processing were compared to the reference (i.e. the 271 

processing combining RGB and DSM). All statistical processes were performed using 272 

the RStudio software (version 1.4.1103; R version 4.0.4). Significance was set at a 273 

0.05 threshold using a non-parametric Kruskal-Wallis test. A Dunn test (non-parametric 274 

pairwise comparison) was applied to detect significant variables responsible for the 275 

difference. In an exploratory way, a redundancy analysis (RDA) was conducted 276 

separately on PA and UA to show the contribution of the different variables, resolutions 277 

and kernel sizes used for the classification. A total of 27 combinations of variables was 278 

used for each site. In order to obtain these combinations, the DSM and RGB 279 

information was used as a baseline, progressively incremented with the different 280 
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Terrain variables, obtained with the different calculation windows. For each 281 

combination, the use of the different variables and calculation windows was indicated 282 

(0: not used, 1: used) as well as the accuracy (PA and UA) of each class. The 283 

significant predicted classes were selected progressively with the ordiR2step function 284 

of the package ‘vegan’. The RDA was conducted conserving angles between variables 285 

and classes, and the significance of both the RDA and the different axes was verified 286 

using the anova.cca function of the package ‘vegan’. 287 

3. Results 288 

 289 

3.1. Overview and visual description 290 

 291 

Two DSMs were successfully produced to map the biotope on surfaces of 120 292 

m² at a fine spatial resolution of 1 cm. The topological metrics, calculated on these 293 

areas, all indicated a high heterogeneity of the biotope in terms of morphology and 294 

substrate typology. Geomorphologically, big boulders at Bizeux (Fig. 5) are visually 295 

accompanied by high slopes, reduced maximum curvature and RMSE, and a smooth 296 

convexity. Contrastingly, small boulders, cobbles, and pebbles at Bizeux are 297 

associated with noisy slopes and convexity. The final classification, mapping the 298 

different substrate typologies, showed that the whole surface sampled area at Bizeux 299 

is covered by a mixture of boulders (bid, medium and small), cobble and pebble (Fig. 300 

6). The final classification at Buharats showed that this site can be visually divided into 301 

4 distinct zones, with cobbles and small boulders on the left, followed by a bed rock 302 

section, then by a pebble and sand basin, and with medium and big boulders to the 303 

right (Fig. 6). 304 

3.2. Performances of the whole classification 305 

 306 
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The OA of the classification increased respectively for Bizeux and Buharats from 307 

43.05 and 59.04 % when RGB and DSM are combined, to 79.54 and 84.76 % when 308 

all Terrain variables (calculated with all calculation windows) are added to the 309 

combination (Fig. 7). 310 

The same was observed for PA (omission error, false negative) and UA (commission 311 

error, false positive). The highest PA (mean(PABizeux) = 81.1 %, mean(PABuharats) = 85.6 312 

%) and UA (mean(UABizeux) = 80.8 %, mean(UABuharats) = 85.8 %) are observed when 313 

all variables are combined (RGB, DSM, and Terrain calculated with all calculation 314 

windows). Although the increase observed in UA is significant (p.valueBizeux = 0.024; 315 

Fig.7. Boxplots (median, 25 and 75% quartiles, and outliers (dot)) showing the 

evolution of the accuracy of the producer (PA, left) and user (UA, right)  through 

different processing at the sites of Bizeux (top, red) and Buharats (bottom, green). On 

top of each graph, the number of class used in the comparison and the p.value of the 

Kruskal-Wallis test are indicated. The overall accuracy (OA) is indicated for each 

processing. Asterisks indicate a significant difference (Dunn test, p.value < 0.05) 

between processing and the reference (i.e. Combination of RGB and DSM). 
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p.valueBuharats = 0.001), this is not the case for PA (p.valueBizeux = 0.301; p.valueBuharats 316 

= 0.056). 317 

3.3. Model performance to detect substrate classes 318 

 319 

3.3.1. Producer’s accuracy (PA) 320 

 321 

The diagonal of the confusion matrix produced highlights the concordance of 322 

the classified pixel to the ground truth class. The PA showed the highest values along 323 

the diagonal of the matrix for both sites when all variables are combined (RGB, DSM, 324 

and Terrain calculated with all calculation windows) (Table 2). At Bizeux, most of the 325 

error (wrong classified pixels) was retrieved in small boulder and cobble classes (49.64 326 

and 56.34 % of well classified pixels respectively), which are both confounded with 327 

medium boulder, cobble, and pebble, plus field material for cobble (grey percentages; 328 

> 5.0 %) (Table 2). At Buharats, most of the error was retrieved in small boulder and 329 

pebble classes (76.49 and 73.56 % of well classified pixels respectively), which are 330 

confounded with medium boulder, cobble for small boulder, and cobble and sand for 331 

pebble (Table 2). 332 

3.3.2. User’s accuracy (UA) 333 

 334 

 The UA also showed the highest values along the diagonal of the matrix for 335 

both sites when all variables are combined (RGB, DSM, and Terrain calculated with all 336 

calculation windows; Table 3). At Bizeux, most of the error was retrieved for pebble, 337 

medium boulder and cobble (70.09, 73.65 and 75.02 % of well classified pixels 338 

respectively), which are confounded with small boulder and cobble (Table 3). At 339 

Buharats, most of the error was observed for big boulder (76.93 % of well classified 340 

pixels), which are confounded with bed rock and medium boulder (Table 3). 341 
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Table 2. Producer’s accuracy (PA) for the different classes when all variables are combined (RGB, DSM, and Terrain calculated with 342 

all calculation windows) at Bizeux (top) and Buharats (down) sites. Green and red cases highlight respectively the highest (>80 %) 343 

and lowest (<80 %) percentages observed in the diagonal (classified class over ground truth class). Grey cases indicate values over 344 

5.0 % (out of the diagonal). 345 

 346 

 347 

  348 

Jo
urn

al 
Pre-

pro
of



20 
 

Table 3. User’s accuracy (UA) for the different classes when all variables are combined (RGB, DSM, and Terrain calculated with all 349 

calculation windows) at Bizeux (top) and Buharats (down) sites. Green and red cases highlight respectively the highest (>80 %) and 350 

lowest (<80 %) percentages observed in the diagonal (classified class over ground truth class). Grey cases indicate values over 5.0 351 

% (out of the diagonal). 352 

353 
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3.4. Selecting relevant variables to build relevant classifications 354 

For both producer’s (Fig. 8.1) and user’s (Fig. 8.2) accuracy values, the relationship 355 

between predictors (the different Terrain variables and calculation windows) and the 356 

resulting typology was analysed by redundancy analyses (RDA). 357 

 358 

Fig. 8. Redundancy analysis (RDA) of the accuracy values of the producer (PA, graph 359 

1) and user (UA, graph 2), showing the relationship between relevant classes (i.e. 360 

predicted typology, progressive selection; black arrows) and predictors. Predictors 361 

encompass the Terrain variables (blue) (DSM, slope (S), aspect (A), profile convexity 362 

(Pr), plan convexity (PI), maximum curvature (MC), root mean square error (RMS)) 363 

and the used calculation windows (dark yellow ) (1.5 (cw_1.5cm), 3 (cw_3cm), 6 364 

(cw_6cm), and 9 cm (cw_9cm)). Similar direction of the arrows indicates positive 365 

correlation. The total variance explained by the two significant axes (ANOVA, p > 366 

0.001) is detailed in brackets for each axe. The total and adjusted variances of the 367 

RDA are indicated in brackets at the upper part of each graph. 368 

The RDA models explained 29.56 and 32.90 % of the adjusted variance for PA and 369 

UA, respectively (Fig. 8). The progressive selection process of the PA and UA RDA 370 

models retained cobble, big and small boulder classes. The field material class was 371 

only conserved in the PA RDA model, while medium boulder was only retained in the 372 
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UA RDA model. Global model (integrating both axes), and the two first axes are 373 

significant for PA (ANOVA; Global model: F = 6.56, p.value < 0.001; Axis 1: F = 17.29, 374 

p.value < 0.001; Axis 2: F = 6.41, p.value < 0.001), and UA (ANOVA;  Global model: F 375 

= 7.51, p.value < 0.001; Axis 1: F = 22.23, p.value < 0.001; Axis 2: F =5.47, p.value < 376 

0.001). The axis 1 highlights correlations between the Terrain variables (i.e. slope, 377 

aspect, profile convexity, plan convexity, maximum curvature, RMSE, and DSM) and 378 

substrate classes (i.e. big, medium, small boulder, cobble and field material) for PA 379 

and UA RDA models (Fig. 8). For both of them, the axis 2 highlights positive correlation 380 

between big and medium boulders for calculation windows of 6 and 9 cm, whereas  381 

negative correlation is observed for calculation windows of 1.5 and 3 cm (Fig. 8). 382 

4. Discussion 383 

 384 

In this study, we produced a fine resolution (1 cm) classification of benthic sub-385 

tidal substrates over surfaces of 120 m² (mesoscale) of temperate reefs under 386 

hydrodynamic and turbid waters using photogrammetry-based methods. 387 

4.1. Performance overview 388 

 389 

Our results demonstrate that the photogrammetry approach can be used to 390 

describe the substrate characteristics at scales of 120 m² with a high spatial resolution 391 

of 1cm. The visual overview of the two mapping transects further highlights substrate 392 

landscape differences. The Terrain variables such as slope, aspect, convexity (plan 393 

and profile), maximum curvature and rugosity (RMSE) can be derived from DSM at 394 

various scales. The combination of these variables with the multispectral (RGB bands) 395 

information enabled a realistic and accurate (OA > 79 %) classification of the different 396 

substrate typologies for both sites. Interestingly in our models, high OA were coupled 397 

with high and balanced values of PA and UA, showing that substrate typological 398 

Jo
urn

al 
Pre-

pro
of



23 
 

classes are on average well identified (PA) and correctly predicted (UA) (Congalton, 399 

1991). The highest PA and UA values were obtained when all variables were combined 400 

(RGB, DSM, and Terrain calculated with all calculation windows), comforting the 401 

importance of applying a multiscale approach to characterise typological classifications 402 

relevant for the description of sub-tidal habitats (Wilson et al., 2007; Lecours et al., 403 

2015; Porskamp et al., 2018). In our study, variable redundancy can have added 404 

statistical noise as no cross-correlation of variables was carried on. Further research 405 

is thus needed to decipher the impacts of redundancy and turbidity on statistical noise. 406 

Bizeux is probably one of the most turbid sites of the Emerald Coast, where 407 

natural tidal currents are exacerbated by strong currents generated by the functioning 408 

of the hydroelectric dam of the Rance (Gallon et al., 2013). Although, the potential high 409 

turbidity observed at Bizeux does not seem to alter the quality of the DSM and 410 

orthomosaic, a lower classification accuracy was obtained for Bizeux than for 411 

Buharats. Despite this result, the final classification, we obtained for both sites, is 412 

similar to the ones described in previous aerial imagery studies of habitat mapping of 413 

land cover (James et al., 2020b), biogenic reefs (Collin et al., 2019), seagrass 414 

meadows (James et al., 2020a), and macroalgae (Oppelt, 2012).  415 

The multiscale approach described in this study is particularly cost/effective, as 416 

the whole process from field work to the production of a high-resolution benthic 417 

classification can be performed in 2 weeks. Most of the process is automatized, as the 418 

computer controls for the 3D model building, Terrain variable calculations and 419 

classifications, but for data acquisition and benthic classes vectorization. 420 

Computational time can be saved by simplifying the classification, through grouping 421 

different classes for example (e.g. big/medium/small boulder classes grouped in 422 

boulders class). Subsequently, the substrate classes need careful definition regarding 423 
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the final objectives of the research, because they have a strong implication on the 424 

duration of the analysis.  425 

4.2. Model performance to detect substrate classes 426 

 427 

The confusion matrices indicated that field material, big and medium boulder 428 

classes appeared as the most accurately classified typologies for the two sampling 429 

sites at least for PA values. However, the worst classified typologies (low PA values) 430 

were small boulders (confused with medium boulder and cobble classes at both sites), 431 

cobble (confused with pebble at Bizeux), and pebble (confused with sand at Buharats). 432 

The UA values above 70 % reveal the concordance of the classified pixel to the ground 433 

truth class. Low UA values were observed for pebble, medium boulder and cobble at 434 

Bizeux, underlining the confusion shown for PA. Most of the confusion between classes 435 

occurred between neighbouring granulometry, which is difficult to visually distinguish 436 

during the vectorization step of the supervised classification process. A way to 437 

circumvent this could be to group the neighbouring classes, while keeping ecological 438 

relevance in terms of habitat for organisms. 439 

4.3. Relevant variables for classification 440 

The RDA analyses showed that the total and adjusted variances explained are 441 

quite low and are thus discussed as exploratory results needing further research. All 442 

the Terrain variables seemed to contribute to the classification of the different substrate 443 

typologies, and the larger entities (i.e. big and medium boulders) were correlated with 444 

the larger calculation windows (i.e. 6 and 9 cm). This highlights the key role of the 445 

large-scale information for the detection of large objects. Nevertheless, this scale 446 

depends on high kernel size and low resolution, having the effect to crop the borders 447 

of the sampling area and in turn reduce the classified area. 448 
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4.4. Further calculation methodologies 449 

 450 

In this study, the maximum likelihood classifier was investigated, as it is 451 

currently used for rapid and efficient habitat descriptions (Collin et al., 2019; James et 452 

al., 2020a; James et al., 2020b). However, other machine learner classifiers can be 453 

used for supervised classification, such as random forest, support vector machine, 454 

artificial neural network (including convolutional, Collin et al., 2011) (e.g. QUEST), as 455 

well as fuzzy or unsupervised classifiers (e.g. ISODATA and k-means) (Irvin et al., 456 

1997; Pal and Mather, 2003; Schmidt and Hewitt, 2004; Rattray et al., 2009). Testing 457 

and comparing different classifiers could be a way to choose the most appropriate 458 

process for a given site/study, refine the classification and improve its accuracy. For 459 

instance, an object based classification approach could be a relevant option, 460 

particularly for marine habitats (Wahidin et al., 2015; Ierodiaconou et al., 2018). 461 

4.5. Access to reliefs difficult to sample 462 

 463 

One of the perspectives of this study would be to extend this approach to other 464 

habitats, like cliffs and caves, technically difficult to characterise using LiDAR and all 465 

acoustic tools operating vertically from the surface. Studying these habitats is highly 466 

relevant since they shelter specifically adapted species, such as poriferans, ascidians 467 

and cnidarians. This is thus not surprising that these habitats are entitled “particular 468 

habitat” in the EUNIS A3.71 and A4.71 typologies (Gayet et al., 2018). Species 469 

communities, found in cliff and cave walls, are similar to the ones found at deep depths, 470 

characterised by adaptions to sciaphilic and specific oceanographic conditions and 471 

nutrient supplies (Castric-Fey et al., 1973; Bibiloni and Gili, 1989; Barnes, 1999; Meroz-472 

Fine et al, 2005; Goffredo and Dubinsky, 2014; Sitjá and Maldonado, 2014; Quattrini 473 

et al., 2015). 474 

Jo
urn

al 
Pre-

pro
of



26 
 

4.6. Toward the characterisation of benthic communities 475 

 476 

The photogrammetry provides pictures, that can be analysed to identify sessile 477 

organisms by photoidentification and thus further describe the benthic community 478 

associated with the different substrate types. Photoidentification is less accurate than 479 

traditional techniques, such as in situ identification or sampling and determination at 480 

the laboratory but could nevertheless be useful for a fast and widespread 481 

characterisation of benthic communities. In addition, photoidentification offers the 482 

possibility to test a posteriori the responses of communities to habitat variability, and 483 

potentially detect disturbances and their origin (human or natural). 484 

5. Conclusion 485 

 486 

The photogrammetry is clearly a powerful tool for a fine resolution (1cm) of the 487 

substrate characterisation at mesoscale (100 m² to 1 km²). The semi-automatic 488 

classification process developed here allows now a complete description of the terrain 489 

characteristics. The georeferenced orthoprojection of the transect implemented in this 490 

study enabled to link mesoscale fine resolution information (obtained through the 491 

photogrammetric model) with a macroscale (> 1 km²) environmental context (obtained 492 

by acoustic, LiDAR and satellite surveys). Jackson et al. (2020) and Rossi et al. (2021) 493 

also emphasized the potential of multiscale approaches to study the responses of 494 

biodiversity to environmental factors from individual to ecosystem levels using a set of 495 

complementary tools (e.g. satellites, drones, LiDAR, Sonar, AUV, ROV, Camera). This 496 

represents an innovative method for studying the relation between biological 497 

communities and their micro/macrohabitat through scales. As demonstrated in this 498 

study, the photogrammetry can be efficient even in turbid temperate water system, and 499 

is thus expected to work in a large part of sub-tidal environments. A challenge could 500 
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be now to develop photogrammetry for benthic community description per classes 501 

based on (ortho)images that are collected to build up the classification.  502 
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Table 1: The different combinations of resolution (r) and kernel size (k) to obtain the 

different calculation windows 

 

 
Calculation 

window (in cm) 
Kernel size 
(k, in pixel) 

Resolution 
(r, in mm) 

1.5 30 5 

3 30 10 

6 60 10 

9 90 10 
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Table 2. Producer’s accuracy (PA) for the different classes when all variables are combined (RGB, DSM, and Terrain calculated with 

all calculation windows) at Bizeux (top) and Buharats (down) sites. Green and red cases highlight respectively the highest (>80 %) 

and lowest (<80 %) percentages observed in the diagonal (classified class over ground truth class). Grey cases indicate values over 

5.0 % (out of the diagonal). 

 

 

Classified class       
Ground truth 

class         

Site of Bizeux Bed Rock Big boulder 
Medium 
boulder Small boulder Cobble Pebble Sand field Material 

Big boulder / 98.13 0.45 2.4 0 0.35 / 0 

Medium boulder / 1.56 89.5 23.84 5.77 0.83 / 0.05 

Small boulder / 0.17 4.58 49.64 5 0.56 / 0.02 

Cobble / 0 1.49 13.66 56.34 3.26 / 0.7 

Pebble / 0.14 3.79 8.48 27.69 94.51 / 0.47 

field Material / 0 0.19 1.97 5.21 0.49 / 98.76 

Site of Buharats Bed Rock Big boulder 
Medium 
boulder Small boulder Cobble Pebble Sand field Material 

Bed Rock 82.97 0.32 0.09 0.28 0.77 1.8 0.89 0.03 

Big boulder 15.04 98.22 7.76 1.57 2 1.26 1.74 0.16 

Medium boulder 0.69 0.7 89.16 10.11 2.5 1.52 2.99 0.21 

Small boulder 0.31 0.41 0.9 76.49 6.78 1.39 0.07 0.25 

Cobble 0.44 0.06 0.52 8.13 82.2 6.29 2.07 0.22 

Pebble 0.34 0.05 1.02 3.03 4.88 73.56 6.07 1.15 

Sand 0.16 0 0.14 0.07 0.82 13.64 84.35 0.39 

field Material 0.07 0.25 0.41 0.32 0.05 0.54 1.82 97.59 
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Table 3. User’s accuracy (UA) for the different classes when all variables are combined (RGB, DSM, and Terrain calculated with all 

calculation windows) at Bizeux (top) and Buharats (down) sites. Green and red cases highlight respectively the highest (>80 %) and 

lowest (<80 %) percentages observed in the diagonal (classified class over ground truth class). Grey cases indicate values over 5.0 

% (out of the diagonal). 

Classified class       
Ground truth 

class         

Site of Bizeux Bed Rock Big boulder 
Medium 
boulder Small boulder Cobble Pebble Sand field Material 

Big boulder / 96.84 0.44 2.37 0 0.35 / 0 

Medium boulder / 1.28 73.65 19.62 4.75 0.68 / 0.02 

Small boulder / 0.28 7.64 82.79 8.34 0.93 / 0.02 

Cobble / 0 1.98 18.19 75.02 4.34 / 0.47 

Pebble / 0.1 2.81 6.29 20.53 70.09 / 0.17 

field Material / 0 0.33 3.44 9.1 0.86 / 86.27 

Site of Buharats Bed Rock Big boulder 
Medium 
boulder Small boulder Cobble Pebble Sand field Material 

Bed Rock 95.22 0.37 0.1 0.32 0.88 2.07 1.02 0.02 

Big boulder 11.78 76.93 6.08 1.23 1.57 0.99 1.36 0.06 

Medium boulder 0.64 0.65 82.73 9.38 2.32 1.41 2.77 0.1 

Small boulder 0.36 0.47 1.04 88.45 7.84 1.61 0.08 0.14 

Cobble 0.44 0.06 0.52 8.14 82.35 6.3 2.07 0.11 

Pebble 0.38 0.06 1.14 3.38 5.45 82.17 6.78 0.64 

Sand 0.16 0 0.14 0.07 0.83 13.73 84.88 0.2 

field Material 0.13 0.48 0.78 0.61 0.1 1.03 3.48 93.38 
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Graphical Abstract 
 

 

Highlights 

• Photogrammetric technique is applicable for high resolution (~1cm) mesoscale 

(~100m²) benthic temperate reef characterization in turbid coastal waters. 

• Supervised classification provides good performance for benthic substrate mapping 

at a centimetre resolution. 

• Resulting maps enable detection of landscape variability within and between sites. 
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