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Introduction

Many engineering problems require computing some quantities of interest, like the local or global mean value of the solution. These quantities of interest are usually linear functionals on a vector space that contains the solution of the considered boundary value problem. Error estimation on such functionals is called goal-oriented error estimation. The main ingredient for a such error estimation relies on the computation of the solution of the dual problem. Several approaches have been proposed for elliptic problems, namely: goal-oriented error estimates based on energy norm of the errors on the solutions of the primal and dual problems (combined with different a posteriori methods to estimate these errors) [START_REF] Prudhomme | On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors[END_REF][START_REF] Oden | Goal-oriented error estimation and adaptivity for the finite element method[END_REF][START_REF] Ainsworth | Guaranteed computable bounds on quantities of interest in finite element computations[END_REF][START_REF] Ainsworth | A Posterior Error Estimation in Finite Element Analysis[END_REF][START_REF] González-Estrada | Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery[END_REF], the dual weighted residual method, for which the local information derived from the dual solution is used in the form of weights multiplied by local residuals [START_REF] Becker | A feed-back approach to error control in finite element methods: basic analysis and examples[END_REF][START_REF] Becker | An optimal control approach to a posteriori error estimation in finite element methods[END_REF][START_REF] Bangerth | Adaptive finite element methods for differential equations[END_REF][START_REF] Mommer | A goal-oriented adaptive finite element method with convergence rates[END_REF][START_REF] Becker | Weighted marking for goal-oriented adaptive finite element methods[END_REF][START_REF] Duprez | Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study[END_REF][START_REF] Nochetto | A safeguarded dual weighted residual method[END_REF], the constitutive relation error based on Saint-Venant's principle [START_REF] Ladevèze | New bounding techniques for goal-oriented error estimation applied to linear problems[END_REF][START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF][START_REF] Rey | Strict bounding of quantities of interest in computations based on domain decomposition[END_REF][START_REF] Rey | Strict lower bounds with separation of sources of error in non-overlapping domain decomposition methods[END_REF], and the equilibrated flux and/or potential reconstruction method based on higher order approximation of the dual problem and the construction of equilibrated fluxes and/or potential reconstruction of the solutions [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF][START_REF] Licht | Flux reconstruction for goal-oriented a posteriori error estimation[END_REF][START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF][START_REF] Parés | A posteriori goal-oriented bounds for the Poisson problem using potential and equilibrated flux reconstructions: application to the hybridizable discontinuous Galerkin method[END_REF][START_REF] Tang | Guaranteed quantity of interest error estimate based on equilibrated flux reconstruction[END_REF]. Let us note that "potential reconstruction" is an ad hoc denomination used in the literature, which corresponds to a given reconstructed (more regular) field of a scalar quantity. To the best of our knowledge, there exist few papers concerning goal-oriented error estimation for parabolic problems [START_REF] Muñoz Matute | Time-domain goal-oriented adaptivity using pseudo-dual error representations[END_REF][START_REF] Muñoz Matute | Explicit-in-time goal-oriented adaptivity[END_REF][START_REF] Muñoz Matute | Forward-in-time goal-oriented adaptivity[END_REF], where the estimation is based on energy norm of the errors on the solutions of the primal and dual problems. Goal-oriented a posteriori analysis of nonlinear problems (under quasi-static conditions or not) and/or nonlinear quantities of interest are considered in [START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF][START_REF] Endtmayer | Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering[END_REF][START_REF] Ladevèze | Strict upper bounds of the error in calculated outputs of interest for plasticity problems[END_REF][START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF][START_REF] Ladevèze | Strict upper error bounds on computed outputs of interest in computational structural mechanics[END_REF][START_REF] Li | A posteriori error estimates of goal-oriented adaptive finite element methods for nonlinear reaction-diffusion problems[END_REF][START_REF] Dolejší | Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors[END_REF][START_REF] Becker | Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs[END_REF][START_REF] Rognes | Automated goal-oriented error control I: Stationary variational problems[END_REF], and we believe that our approach can be used in such situations but it is outside the scope of this paper.

The goal of this paper is to extend the equilibrium flux reconstruction method (combined with the dual-weighted residual method) by proposing a unified framework for the approximation of general reaction-diffusion problems and to parabolic problems. Indeed based on equilibrated flux and potential reconstructions, we furnish a decomposition of the error E on the quantity of interest in the form

E = η QOI + R, (1) 
where η QOI = J j=1 η j , each term η j being fully computable, with some positive integer J depending on the problem, is our proposed estimator on the quantity of interest, while the remainder term R may depend on the solution of the primal and dual problems but for which we have the bound

|R| ≤ Cηη * , (2) 
where C is a positive constant independent of the meshsize (and time step size) as explicit as possible, and η (resp. η * ) is an estimator of the error of the solution of the primal (resp. dual) problem using an approximation in a finite dimensional space V h (resp. V * h ) not necessarily included into the energy space. These two properties lead to the new estimate

|E| ≤ |η QOI | + Cηη * , (3) 
that was not obtained before in our settings. As a consequence, one can choose as error estimator |η QOI | + Cηη * to implement an adaptive algorithm, this will be investigated in a forthcoming paper.

On the other hand, if we use a higher order approximation space V * h to approximate the dual problem, one may hope to obtain an efficient error estimator (effectivity index close to unity) [START_REF] Ainsworth | Guaranteed computable bounds on quantities of interest in finite element computations[END_REF][START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF], if this is the case, the remainder term is negligible, hence it may be disregarded and the sole term |η QOI | can be used as error estimator. More precisely since the estimator η QOI and the right-hand side of (2) are fully computable, we can estimate the ratio R η QOI , during a refinement procedure based on the use of η QOI and check if it tends to zero or not. In the positive case, due to the identity [START_REF] Ainsworth | A Posterior Error Estimation in Finite Element Analysis[END_REF] this means that the ratio E η QOI tends to one and will validate the asymptotic exactness of the estimator |η QOI |. Note that there are some exceptions to this general rule as the example from subsection 4.1.2 shows. It is worth noting that this point does not seem to have already been reported in the literature.

For a purely diffusion problem with piecewise constant diffusion tensor and piecewise polynomial righ-hand sides, this approach was successfully developed in [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]. We here extend their approach to reaction-diffusion problems and to parabolic problems. For a diffusion problem, the decomposition (1) is also obtained in [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF], but with an a priori bound for the remainder, which is less interesting for adaptive purposes.

In many cases, the use of |η QOI | is sufficient to obtain an efficient error estimator, but it has been observed in [START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF][START_REF] Ladevèze | New bounding techniques for goal-oriented error estimation applied to linear problems[END_REF][START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF] that it can overestimate the error. As we can compare all η i and ηη * , we can improve the approximated value of the quantity of interest by adding the dominant term from η QOI . For instance if η 1 reveals to be a dominant term, we can add η 1 to the approximated value of the quantity of interest and use |η QOI -η 1 | + Cηη * as error estimator, see [START_REF] Ladevèze | New bounding techniques for goal-oriented error estimation applied to linear problems[END_REF]Figure 10] and [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]Remark 4.7 and Theorem 4.8].

In summary, the developed approach is flexible and may be then adapted to the different situations to treat. Furthermore, unlike the majority of the papers mentioned above that treat specific approximation of the (primal and dual) particular elliptic problems, our unified framework applies to general reaction-diffusion and parabolic problems and to various finite element methods (conforming or not) as well as finite volume methods.

Let us introduce some notation used in the paper. In the whole paper

Ω ⊂ R d , d ∈ N, d ≥ 2,
is an open, bounded and connected domain with a Lipschitz and polyhedral boundary ∂Ω. The usual norm and semi-norm of H s (Ω) (s ≥ 0) are denoted by • s,Ω and | • | s,Ω , respectively. In this paper we consider real valued function spaces. For s = 0 we drop the index s. Similarly, the inner product (resp. norm) in L 2 (Ω) will be denoted by (•, •) (resp. • ). The duality pairing between H -1 (Ω) (the dual space of H 1 0 (Ω)) and H 1 0 (Ω) will be denoted by •, • . By a b, we mean that there exists a constant C > 0 independent of a, b, such that a ≤ Cb.

The paper is organized as follows. Section 2 is devoted to the reaction-diffusion problem. The problem is defined in subsection 2.1 and the goal oriented functional as well as the adjoint problem are introduced in subsection 2.2. Then the discrete setting is defined in subsection 2.3 and the error representation given in subsection 2.4. The main results about the reactiondiffusion problem are obtained in Theorems 2.1 and 2.4. Similarly, section 3 is devoted to the parabolic problem and follows the same process from subsection 3.1 to subsection 3.4. The main results about the parabolic problem are obtained in Theorems 3.1 and 3.3. Finally, section 4 presents some numerical tests in order to illustrate the previous theoretical results.

The reaction-diffusion problem

Problem definition

In this section we consider the following reaction-diffusion problem

-div(D∇u) + ru = f in Ω, u = 0 on ∂Ω, (4) 
where D ∈ L ∞ (Ω; R d×d ) is a diffusion tensor which is supposed to be a symmetric matrix-valued function such that D(x)ξ • ξ |ξ| 2 , ∀ ξ ∈ R d , and a.e. x ∈ Ω, while r ∈ L ∞ (Ω) is the reaction function supposed to be nonnegative. The source term f is supposed to be in L 2 (Ω).

By setting

B(u, v) = Ω (D∇u • ∇v + ruv) dx, ∀ u, v ∈ H 1 0 (Ω), (5) 
and

F (v) = Ω f v dx, ∀ v ∈ H 1 0 (Ω),
the variational formulation of problem ( 4) is

B(u, v) = F (v), ∀ v ∈ H 1 0 (Ω), (6) 
that has a unique (weak) solution u in H 1 0 (Ω).

Goal-oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF][START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF] given by

Q(v) = Ω qv dx, ∀ v ∈ L 2 (Ω), (7) 
where q ∈ L 2 (Ω) is a given function. As we want to have

Q(u) = B(u, u * ) = F (u * ), (8) 
where u * is solution of the dual problem, we define the adjoint problem as

B(v, u * ) = Q(v), ∀ v ∈ H 1 0 (Ω), (9) 
that has a unique (weak) solution u * in H 1 0 (Ω). Accordingly its strong formulation is

-div(D∇u * ) + ru * = q in Ω, u * = 0 on ∂Ω. ( 10 
)
Note finally that ( 9) is equivalent to

B(u * , v) = Q(v), ∀ v ∈ H 1 0 (Ω),
because B is here symmetric.

The discrete setting of the reaction-diffusion problem

To discretize problems ( 6) and ( 9), we suppose given a partition T of Ω into polygonal elements T that covers exactly Ω. For simplicity, we assume that the mesh is simplicial and matching (extensions to general polygonal and nonmatching meshes are possible). On such a mesh we introduce the so-called broken Sobolev space

H 1 (T ) = {v ∈ L 2 (Ω) | v |T ∈ H 1 (T ), ∀ T ∈ T }.
As in [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF][START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF], in order to analyse simultaneously different approximation schemes, the primal problem is approximated in a finite dimensional subspace V h of H 1 (T ), while the dual problem will be approximated in a finite dimensional subspace V * h of H 1 (T ), that may be different from V h . In other words, we suppose given an approximation u h ∈ V h of the solution u of (6) and u * h ∈ V * h of the solution u * of (9). We further assume that a flux reconstruction θ h is available (using u h and the datum f ), belongs to H(div, Ω) and satisfies the following conservation properties (compare with [17, identity (18)])

(div θ h + ru h -f, 1) T = 0, ∀ T ∈ T . (11) 
In the same manner, we assume that a flux reconstruction θ * h can be constructed, belongs to H(div, Ω) and satisfies the following conservation properties

(div θ * h + ru * h -q, 1) T = 0, ∀ T ∈ T . (12) 
Using θ h and θ * h , in the spirit of [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF] (see also [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]), let us show that the error E = Q(u)-Q(u h ) on the quantity of interest can be expressed into a fully computable expression and a remainder that will be estimated by a fully computable quantity (but is usually of higher order and can then be disregarded). Let us note that thanks to the linearity of Q, we also have E = Q(u -u h ).

The error representation of the reaction-diffusion problem

Theorem 2.1 Let s h ∈ H 1 0 (Ω) be a potential reconstruction of u h , then we have

E = Q(u -u h ) = η QOI + R, (13) 
where the estimator η QOI is given by

η QOI = Ω q(s h -u h ) dx (14) 
+

Ω (f -div θ h -ru h )u * h dx + Ω (θ h + D∇s h ) • D -1 θ * h dx - Ω ru * h (s h -u h ) dx,
while the remainder term R is defined by

R = R 1 + R 2 + R 3 with R 1 = Ω (f -div θ h -ru h )(u * -u * h ) dx, R 2 = - Ω (θ h + D∇s h ) • (D -1 θ * h + ∇u * ) dx, R 3 = - Ω r(u * -u * h )(s h -u h ) dx.
Proof. By the definition of the error and Green's formula we have

E = F (u * ) -Q(u h ).
Introducing artificially s h and using [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF], this is equivalent to

E = F (u * ) -Q(u h -s h ) (15) 
-

Ω (D∇u * • ∇s h + ru * s h ) dx.
Adding and subtracting the term

Ω ∇u * • θ h dx we find E = F (u * ) -Q(u h -s h ) - Ω ∇u * • (D∇s h + θ h ) dx + Ω (∇u * • θ h -ru * s h ) dx.
Using Green's formula in the fourth term of this right-hand side we find

E = F (u * ) -Q(u h -s h ) - Ω ∇u * • (D∇s h + θ h ) dx + Ω u * (-div θ h -rs h ) dx.
Replacing s h by s h -u h + u h in this last term and recalling that F (u * ) = Ω f u * dx, we obtain

E = -Q(u h -s h ) - Ω ∇u * • (D∇s h + θ h ) dx + Ω u * (f -div θ h -ru h ) dx - Ω ru * (s h -u h ) dx. Writing u * = u * h + u * -u * h and D∇u * = -θ * h + D∇u * + θ * h
, we arrive at [START_REF] Duprez | Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study[END_REF]. Note that we do not need the conservation properties [START_REF] Dolejší | Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors[END_REF] and [START_REF] Droniou | Intégration et Espaces de Sobolev à Valeurs Vectorielles[END_REF] to obtain the splitting (13) from Theorem 2.1, but they are minimal assumptions to guarantee that θ h (resp. θ * h ) is a reasonable approximation of the continuous flux -D∇u (resp. -D∇u * ).

Remark 2.2 In the case where u h ∈ H 1 0 (Ω), then we take s h = u h , so that the first and the fourth terms arising in the right-hand side of (14) as well as R 3 are equal to zero. Remark 2.3 (Comparison with earlier literature) 1. In the spirit of [30, Theorem 1 and Remark 1], our estimator η QOI admits the decomposition

η QOI = η O + η ∇ + η H , where η O = Ω (f -div θ h -ru h )u * h dx, η ∇ = Ω (θ h + D∇s h ) • D -1 θ * h dx η H = Ω q(s h -u h ) dx - Ω ru * h (s h -u h ) dx.
Here η O would represent the data oscillation with respect to the primal problem weighted by the dual approximate solution if div θ h + ru h would be equal to the L 2 (Ω)-projection of f on the approximation space used to compute u h (it slightly differs from the one from [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF] because of our weaker assumption [START_REF] Dolejší | Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors[END_REF]), the flux estimator η ∇ measures the deviation of -D∇s h from the reconstructed flux θ h and η H measures the deviation of u h from H 1 0 (Ω), these two last quantities also differ from the ones from [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF] due to the use of the reconstructed field s h .

2. We recover the splitting (4.13) from [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]Remark 4.7] if r = 0, D is constant and the data f and q are piecewise polynomials simply by replacing in the expression of η ∇ from [START_REF] Endtmayer | Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering[END_REF] the factor θ * h by -D∇s * h , where s * h ∈ H 1 0 (Ω) is a potential reconstruction of u * h and using the term

Ω (θ h + D∇s h ) • D -1 (θ * h + D∇s * h ) dx,
in the remainder. More generally in the expression of η ∇ , we may replace the factor θ * h by

θ * ,α h = (1 -α)θ * h -αD∇s * h ,
with α ∈ R and plug the term

Ω (θ h + D∇s h ) • D -1 (θ * h -θ * ,α h ) dx = α Ω (θ h + D∇s h ) • D -1 (θ * h + D∇s * h ) dx
in the remainder. For α = 1 2 , we recover the splitting (4.17) from [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]Remark 4.7].

Let us now show that the remainder can be explicitly estimated using the error estimators for u and u * obtained in [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF]Theorem 7]. Namely denote by η (resp. η * ) the error estimator mainly obtained in this reference (for D diagonal and constant but easily extended to the case treated here) using the discrete spaces V h (resp. V * h ) to approximate the solution u of the primal problem (6) (resp. u * of the dual problem ( 9)), so that

u -u h h ≤ η, (16) 
u * -u * h h ≤ η * , (17) 
where the mesh-depending norm • h is defined by

w 2 h = D 1 2 ∇ h w 2 + r 1 2 w 2 , ∀ w ∈ H 1 0 (Ω) ∪ V h ,
where ∇ h w means the piecewise gradient of w, namely

∇ h w = ∇w on T, ∀ T ∈ T , and 
η 2 = T ∈T (η 2 N C,T + η 2 R,T + η 2 DF,T ), with η N C,T = u h -s h h,T , η R,T = m T f -div θ h + ru h T , η DF,T = D -1 2 (θ h + D∇u h ) T , recalling that w h,T = T (D∇w • ∇w + rw 2 ) dx, ∀ w ∈ H 1 (T ), m T := min{C P,T D -1 2 ∞,T , r -1 2 ∞,T },
and that C P,T is the Poincaré constant, namely the smallest positive constant such that

ϕ -M T ϕ T ≤ C P,T ∇ϕ T , ∀ ϕ ∈ H 1 (T ), (18) 
where M T ϕ is the mean of ϕ in T , namely

M T ϕ = |T | -1 T ϕ(x) dx.
Let us note that since T is considered being a convex bounded Lipschitz domain, we can introduce the constant C P such that C P,T = C P h T , so that ( 18) is equivalent to

ϕ -M T ϕ T ≤ C P h T ∇ϕ T , ∀ ϕ ∈ H 1 (T ),
where C P is no more dependent on T but satisfies C P ≤ π -1 , see [4, Theorem 3.2] (see also [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]). We further notice that by convention we set r

-1 2 ∞,T = ∞ if inf x∈T r(x) = 0.
The expression of η * is similar by replacing u h by u * h , θ h by θ * h , s h by s * h , and f by q.

Theorem 2.4 With η and η * as defined before, we have

|R| ≤ 4ηη * . ( 19 
)
Proof. We estimate each term of R separetely. For the first term, using the property (11), we have

R 1 = Ω (f -div θ h -ru h )(u * -u * h ) dx = T ∈T T (f -div θ h -ru h ) ((u * -u * h ) -M T (u * -u * h )) dx.
By Cauchy-Schwarz's inequality, we find

|R 1 | ≤ T ∈T f -div θ h -ru h T (u * -u * h ) -M T (u * -u * h ) T . (20) 
Let us now show that

(u * -u * h ) -M T (u * -u * h ) T ≤ m T u * -u * h h,T . (21) 
Indeed first using the estimate [START_REF] González-Estrada | Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery[END_REF], we find

(u * -u * h ) -M T (u * -u * h ) T ≤ C P,T ∇(u * -u * h ) T ≤ C P,T D -1 2 ∞,T D 1 2 ∇(u * -u * h ) T ≤ C P,T D -1 2 ∞,T u * -u * h h,T .
This shows [START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF] if inf x∈T r(x) = 0. On the contrary if inf x∈T r(x) > 0, then we directly write

(u * -u * h ) -M T (u * -u * h ) T ≤ u * -u * h T ≤ r -1 2 ∞,T (r 1 2 (u * -u * h ) T .
In that case, this estimate combined with the previous one yield [START_REF] Ladevèze | Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest[END_REF].

Coming back to (20) and using ( 21), we get

|R 1 | ≤ T ∈T f -div θ h -ru h T m T u * -u * h h,T .
By discrete Cauchy-Schwarz's inequality, the definition of the estimator η and the estimate (17), we find

|R 1 | ≤ ηη * . ( 22 
)
For the second term, by Cauchy-Schwarz's inequality, we have

|R 2 | ≤ D -1 2 (θ h + D∇s h ) D -1 2 (θ * h + D∇u * ) .
Replacing ∇u * by ∇ h (u * -u * h ) + ∇ h u * h and using the triangular inequality, one gets

|R 2 | ≤ D -1 2 (θ h + D∇s h ) ( D -1 2 (θ * h + D∇ h u * h ) + D 1 2 ∇ h (u * -u * h ) ).
Using [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF] and the definition of η and η * , we obtain

|R 2 | ≤ 2ηη * . ( 23 
)
For the last term R 3 , again Cauchy-Schwarz's inequality yields

|R 3 | = Ω r(u * -u * h )(s h -u h ) dx ≤ r 1 2 (u * -u * h ) r 1 2 (s h -u h ) ≤ ηη * ,
again by [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF] and the defintion of η. This estimate and the estimates ( 22), ( 23) lead to the conclusion.

Remark 2.5 According to the observations from [22, Figure 10] (see also [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF]), the flux estimator may overestimate the error due to the previous Theorem 2. [START_REF] Bebendorf | A note on the Poincaré inequality for convex domains[END_REF] , during a refinement procedure based on the use of η QOI and check if it tends to zero or not. In the positive case, due to the identity [START_REF] Duprez | Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study[END_REF] this means that the ratio E η QOI tends to one and will validate the asymptotic exactness of the estimator η QOI .

In any case, we can use the estimate

|E| ≤ |η QOI | + 4ηη * , (24) 
that follows from ( 13) and [START_REF] Hecht | New development in freefem++[END_REF], and then choose as estimator |η QOI | + 4ηη * to implement an adaptive algorithm.

Remark 2.7 As mentioned in the introduction, one may hope to obtain an effectivity index close to unity if we use a higher order approximation space V * h to approximate the dual problem [START_REF] Ainsworth | Guaranteed computable bounds on quantities of interest in finite element computations[END_REF][START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF]. This fact is confirmed by the numerical tests from subsection 4.1. However approximating u * by a higher order finite element scheme takes more CPU time, which limits the practical interest of such techniques. To overcome this issue, we can use a local higher order approximation of u * h ∈ V h as proposed in [8, p. 41], a local subproblems approach (each subproblem lives on a small subset of elements, that can be solved efficiently and in parallel using higher order finite elements) as proposed in [42, p. 196], or a reconstruction of u h ∈ V h and u * h ∈ V h on a coarse mesh of size 2h with a higher order approximation as proposed in [42, p. 196]. These alternative solutions can be used as they enter in our framework, recalling that in our approach u * h is not necessarily a Galerkin approximation of the solution u * of the dual problem and since V h and V * h are not necessarily included into H 1 0 (Ω).

Remark 2.8 Our approach applies to the diffusion-reaction equation with mixed boundary conditions

   -div(D∇u) + ru = f in Ω, u = 0 on Γ D , -D∇u • n = g N on Γ N , (25) 
where Γ D and Γ N are two open parts of ∂Ω such that ΓD ∩ ΓN = ∂Ω, and g N ∈ L 2 (Γ N ). Its variational formulation is (6) by replacing H 1 0 (Ω), by

H 1 Γ D (Ω) = {u ∈ H 1 (Ω) | u = 0 on Γ D },
with B defined by [START_REF] Becker | Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs[END_REF] and

F (v) = Ω f v dx - Γ N g N v dσ(x), ∀ v ∈ H 1 Γ D (Ω),
while the weak formulation of the adjoint problem is still ( 9) by replacing H 1 0 (Ω) by H 1 Γ D (Ω). For this problem, the flux reconstruction θ h ∈ H(div, Ω) has to satisfy [START_REF] Dolejší | Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors[END_REF] but furthermore

e (θ h • n -g N ) dσ(x) = 0, ∀ e ∈ E h s.t. e ⊂ ΓN ,
while the potential reconstruction s h of u h has to be in H 1 Γ D (Ω) ∩ V h and to satisfy Ω s h dx = 0 if meas Γ D = 0 and r = 0 (a.e.). Similarly the flux reconstruction θ * h ∈ H(div, Ω) has to satisfy ( 12) and

e θ * h • n dσ(x) = 0, ∀ e ∈ E h s.t. e ⊂ ΓN , while s * h has to be in H 1 Γ D (Ω)
and Ω s * h dx = 0 if meas Γ D = 0 and r = 0 (a.e.). With these slight modifications, Theorem 2.1 remains valid with the same definition for the estimator except for η O which is here given by

η O = Ω (f -div θ h -ru h )u * h dx + Γ N (θ h • n -g N )u * h dσ(x),
the remainder being modified accordingly. Further using the results from [START_REF] Ern | Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems[END_REF][START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF], estimates like ( 16)-( 17) are available, allowing to prove a result like Theorem 2.4.

Remark 2.9 Even if it is beyond the scope of this paper, our approach also applies to the convection-diffusion-reaction equation

-div(D∇u -wu) + ru = f in Ω, u = 0 on ∂Ω, (26) 
where w ∈ L ∞ (Ω) d is divergence-free. Its weak formulation is given by ( 6) with

B(u, v) = Ω ((D∇u -wu) • ∇v + ruv) dx, ∀ u, v ∈ H 1 0 (Ω),
while the weak formulation of the adjoint problem is given by [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF]. In this setting, Theorem 2.1 remains valid with a slight difference in the definition of η ∇ that here takes the form

η ∇ = Ω (θ h + D∇s h -ws h ) • D -1 (θ * h + wu * h ) dx.
Further using the results from [START_REF] Ern | Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems[END_REF][START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF], estimates like ( 16)-( 17) are available, allowing to prove a result like Theorem 2.4.

Remark 2.10

As in [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF], the quantity of interest could be replaced by

Q(v) = Ω qv dx + D∇v • n, u * D , for all v ∈ H 1 (Ω) such that div(D∇v) ∈ L 2 (Ω),
where n is the outward unit normal vector along ∂Ω, u * D is a fixed function in H1/2 (∂Ω) and the bracket means the duality pair between H -1/2 (∂Ω) and H 1/2 (∂Ω). In such a case, Theorem 2.1 remains valid by adding to η QOI the term

(D∇u h + θ h ) • n, u * D
Moreover assuming that s h = u * D on the boundary, then the estimate [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF] remains valid (up to some multiplicative factors in the definition of the different terms of η * , see Lemma 7.1 of [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF] and the proof of Theorem 2 of [START_REF] Ern | A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes[END_REF]); and consequently Thereom 2.4 remains also valid.

The parabolic problem

Problem definition

We here consider the following heat type equation:

     ∂u ∂t -div(D∇u) = f in C := Ω × I, u(., t) = 0 on ∂Ω × I, u(., 0) = u 0 in Ω, (27) 
where the time interval I = (0, T ), with a fixed time T , D ∈ L ∞ (Ω; R d×d ) is a diffusion tensor satisfying the same assumptions than in section 2. The datum f is supposed to satisfy f ∈ L 2 (C) and the initial value u 0 ∈ L 2 (Ω). Under these assumptions, problem [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] or equivalently

∂ t u(•, t), v + (D∇u(•, t), ∇v) = (f (•, t), v), ∀ v ∈ H 1 0 (Ω), ∀ a.e. t ∈ I, (28) 
has a unique (weak) solution in Y := {y ∈ X := L 2 (I;

H 1 0 (Ω)) | ∂ t u ∈ X = L 2 (I; H -1 (Ω))}.
Note that Y is a Hilbert space with the norm

y Y = y X + ∂ t y X ,
where the space-time energy norm is given by

y 2 X := T 0 D 1 2 ∇y 2 dt, ∀ y ∈ X.
Let us further notice that by [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]Theorem 3.4.1], Y is continuously embedded into C( Ī; L 2 (Ω)), which gives a meaning to the initial condition in [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]. For further purposes, we denote by C Y the smallest positive constant such that

y C([0,T ];L 2 (Ω)) ≤ C Y y Y , ∀ y ∈ Y. ( 29 
)
Note that an explicit upper bound on C Y can be obtained, namely if we denote by C Ω the smallest positive constant such that

u Ω ≤ C Ω D 1 2 ∇u , ∀ u ∈ H 1 0 (Ω), then one can show that C Y ≤ C Ω √ T + √ 2,
see [12, p. 55]. Let us finally remark that C Ω ≤ D

The goal oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest given by (see [START_REF] Muñoz Matute | Explicit-in-time goal-oriented adaptivity[END_REF][START_REF] Muñoz Matute | Forward-in-time goal-oriented adaptivity[END_REF] for a similar choice)

Q(v) = I (g(•, t), v) dt + (u * T , v(•, T )), ∀ v ∈ C( Ī, L 2 (Ω)), (30) 
where g ∈ L 2 (C) and u * T ∈ L 2 (Ω) are given functions. As before the formulation of the adjoint problem is based on the fact that we want to have the identity [START_REF] Becker | An optimal control approach to a posteriori error estimation in finite element methods[END_REF], where u * is solution of the dual problem. We therefore reformulate problem [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF] in the space-time variables, by taking a test-function v ∈ Y and integrating in I to find

B(u, v) = F (v), ∀v ∈ Y, where B(u, v) = I ( ∂ t u(•, t), v + (D∇u(•, t), ∇v)) dt + Ω u(x, 0)v(x, 0) dx, F (v) = I Ω f (x, t)v(x, t) dxdt + Ω u 0 (x)v(x, 0) dx.
Hence the adjoint problem consists in finding u * ∈ Y solution of

B(v, u * ) = Q(v), ∀v ∈ Y. (31) 
Indeed from the definition of B and Q, this problem is equivalent to

I ( ∂ t v(•, t), u * + (D∇v(•, t), ∇u * )) dt + Ω u(x, 0)u * (x, 0) dx = I (g(•, t), v) dt + (u * T , v(•, T )).
Due to the regularities of v and u * , the following integration by parts formula is valid

I ∂ t v(•, t), u * (•, t) dt = - I ∂ t u * (•, t), v(•, t) dt + (v(•, T ), u * (•, T )) -(v(•, 0), u * (•, 0)).
Inserting this identity into the previous one, we obtain

I (-∂ t u * (•, t), v(•, t) + (D∇u * (•, t), ∇v) -(g, v)) dt+ Ω (v(x, T )(u * (x, T )-u * T (x)) dx = 0, ∀v ∈ Y.
Taking appropriate test-functions v and using Green's formula, we find that u * is solution of the backward heat type equation

     - ∂u * ∂t -div(D∇u * ) = g in C := Ω × I, u * (., t) = 0 on ∂Ω × I, u * (., T ) = u * T in Ω. ( 32 
)
As before, its weak formulation is

-∂ t u * (•, t), v + (D∇u * (•, t), ∇v) = (g(•, t), v), ∀ v ∈ H 1 0 (Ω), ∀ a.e. t ∈ I, (33) 
whose unique (weak) solution u * has the same regularity than before, namely u * ∈ L 2 (I; [START_REF] Muñoz Matute | Forward-in-time goal-oriented adaptivity[END_REF] in time and using the arguments above, we see that this solution satisfies [START_REF] Muñoz Matute | Time-domain goal-oriented adaptivity using pseudo-dual error representations[END_REF] and directly deduce that the identity (8) holds, which in particular yields

H 1 0 (Ω))∩ C( Ī; L 2 (Ω)) with ∂ t u * ∈ L 2 (I; H -1 (Ω)). Integrating
Q(u) = I (f (•, t), u * (•, t)) dt + (u 0 , u * (0)). ( 34 
)

The discrete setting of the parabolic problem

To discretize problem [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], we suppose given a sequence of discrete times {t n } N n=0 , with N ∈ N * such that t 0 = 0, t N = T and t n < t n+1 , for all n = 0, • • • , N -1. For all n = 1, • • • , N , we define I n = [t n-1 , t n [ and let τ n = t n -t n-1 be its length. For all n = 0, • • • , N , we also suppose given a partition T n of polygonal elements T that covers exactly Ω. As before for simplicity, we assume that the meshes are simplicial and matching. For all n = 0, • • • , N , we set h n = max T ∈T n h T .

In a standard a posteriori error analysis of the primal problem [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], the initial mesh T 0 is used to approximate the initial data u 0 , while for n ≥ 1, T n corresponds to a refinement or a coarsening of T n-1 as time evolves. Here the situation is more involved since our estimator is also based on the solution of the dual problem. Anyway, since we use an implicit scheme in time (for the primal and the dual problems), we suppose that for all n = 1, • • • , N , T n-1 and T n has a common refinement mesh T n-1,n .

For all n = 0, • • • , N , we finally suppose given two finite-dimensional spaces

V n h and V * ,n h of H 1 (T n ).
For a vector space W (of functions defined on Ω), and k = 0 or 1, we denote by

P k τ (W ) := {v ∈ L 2 (0, T, W ) | v |In ∈ P k (I n , W ), ∀ n = 1, • • • , N },
where P 0 (I n , W ) (resp. P 1 (I n , W )) denotes the space of functions from I n to W constant (resp. affine) in time. Note that any function v ∈ P 1 τ (W ) is uniquely determined by its values

v n := v(•, t n ) at t n , n = 0, • • • , N . On the contrary, any function v ∈ P 0 τ (W ) is uniquely determined by its values v n = v(•, t) |In , n = 1, • • • , N . Let us finally observe that the time derivative ∂ t v of v ∈ P 1
τ (W ) belongs to P 0 τ (W ) and that

(∂ t v) n = ∂ t v |In = v n -v n-1 τ n , ∀ n = 1, • • • , N. (35) 
For shortness we set

∂ t v n = (∂ t v) n .
Let us also introduce an approximation f ∈ P 0 τ (L 2 (Ω)) of f defined by

f n = 1 τ n In f (•, t) dt, ∀ n = 0, • • • , N.
As in [START_REF] Ern | A posteriori error estimation based on potential and flux reconstruction for the heat equation[END_REF], we suppose given an approximation u hτ ∈ P 1 τ (L 2 (Ω)) of the solution u of ( 28) such that u n hτ = u hτ (t n ) ∈ V n h , for all n = 0, • • • , N . Similarly, we suppose given an approximation u * hτ ∈ P 1 τ (L 2 (Ω)) of the solution u * of (33) such that u * ,n hτ = u * hτ (t n ) ∈ V * ,n h , for all n = 0, • • • , N . We also assume that a flux reconstruction θ hτ and a potential reconstruction s hτ are available and satisfy the following conservation properties. θ hτ ∈ P 0 τ (H(div, Ω)) and satisfies (compare with [16, identity (4.5)])

(∂ t u n hτ + div θ n hτ -f n , 1) T = 0, ∀ T ∈ T n , n = 1, • • • , N. (36) 
On the other hand, s hτ ∈ P 1 τ (H 1 0 (Ω)) and satisfies

(s n hτ , 1) T = (u n hτ , 1) T , ∀ T ∈ T n,n+1 , n = 0, • • • , N. (37) 
A direct consequence of this property is that (see [START_REF] Ern | A posteriori error estimation based on potential and flux reconstruction for the heat equation[END_REF]Lemma 3.1])

(∂ t s n hτ , 1) T = (∂ t u n hτ , 1) T , ∀ T ∈ T n , n = 1, • • • , N, (38) 
holds. Note further that ( 38) and (36) lead to

(∂ t s n hτ + div θ n hτ -f n , 1) T = 0, ∀ T ∈ T n , n = 1, • • • , N. (39) 
In the same manner, we assume that a flux reconstruction θ * hτ and a potential reconstruction s * hτ are available and satisfy the following conservation properties: θ * hτ ∈ P 0 τ (H(div, Ω)) and satisfies (-∂ t u * ,n hτ + div θ * ,n hτ -gn , 1)

T = 0, ∀ T ∈ T n , n = 0, • • • , N -1. (40) 
As before, s * hτ ∈ P 1 τ (H 1 0 (Ω) is such that

(s * ,n hτ , 1) T = (u * ,n hτ , 1) T , ∀ T ∈ T n-1,n , n = 0, • • • , N, (41) 
which yields

(∂ t s * ,n hτ , 1) T = (∂ t u * ,n hτ , 1) T , ∀ T ∈ T n , n = 0, • • • , N -1. (42) 

The error representation of the parabolic problem

The error on the quantity of interest is defined by

E = Q(u) -Q(u hτ ). (43) 
Inspired by section 2.3, we show that it can be decomposed into a fully computable expression and a remainder that will be estimated by a fully computable quantity.

Theorem 3.1 With the previous notation, we have

E = η QOI + R, (44) 
where the estimator η QOI is given by

η QOI = (u 0 -s hτ (0), u * hτ (0)) + (u * ,N hτ , s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt (45) 
+ I (f (•, t) -f , u * hτ (•, t)) dt + I ( f (•, t) -div θ hτ (•, t) -∂ t s hτ , u * hτ (•, t)) dt + I Ω (θ hτ + D∇s hτ ) • D -1 θ * hτ dxdt,
while the remainder term R is defined by

R = (u 0 -s hτ (0), (u * -u * hτ )(0)) + (u * T -u * ,N hτ , s hτ (T ) -u N hτ ) (46) 
+ I (f (•, t) -f , (u * -u * hτ )(•, t)) dt + I ( f (•, t) -div θ hτ (•, t) -∂ t s hτ , (u * -u * hτ )(•, t)) dt - I Ω (θ hτ + D∇s hτ ) • D -1 (D∇u * + θ * hτ ) dxdt.
Proof. Using the definition (43) of the error and the identity (34), we have

E = I (f (•, t), u * (•, t)) dt + (u 0 , u * (0)) - I (g(•, t), u hτ ) dt -(u * T , u hτ (•, T )).
Introducing artificially s hτ , we get

E = I (f (•, t), u * (•, t)) dt+(u 0 , u * (0))- I (g(•, t), u hτ -s hτ ) dt- I (g(•, t), s hτ ) dt-(u * T , u hτ (•, T )).
Using [START_REF] Muñoz Matute | Explicit-in-time goal-oriented adaptivity[END_REF], this is equivalent to

E = I (f (•, t), u * (•, t)) dt + (u 0 , u * (0)) - I (g(•, t), u hτ -s hτ ) dt (47) + I (∂ t u * + div(D∇u * ), s hτ ) dt -(u * T , u hτ (•, T )).
As s hτ is in H 1 (I, H 1 0 (Ω)) an integration by parts in space and in time leads to

I (div(D∇u * ), s hτ ) dt = - I Ω D∇u * • ∇s hτ dxdt, I (∂ t u * , s hτ ) dt = - I (u * , ∂ t s hτ ) dt + (u * (T ), s hτ (T )) -(u * (0), s hτ (0)).
Inserting these identities in (47) we find

E = (u 0 -s hτ (0), u * (0)) + (u * (T ), s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt + I ((f (•, t), u * (•, t)) -(u * , ∂ t s hτ )) dt - I Ω D∇u * • ∇s hτ dxdt.
Adding and subtracting the term

I Ω ∇u * • θ hτ dxdt,
we find

E = (u 0 -s hτ (0), u * (0)) + (u * (T ), s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt + I (f (•, t) -∂ t s hτ , u * (•, t)) dt + I Ω ∇u * • θ hτ dxdt - I Ω (θ hτ + D∇s hτ ) • ∇u * dxdt.
Using Green's formula in the fourth term of this right-hand side we find

E = (u 0 -s hτ (0), u * (0)) + (u * (T ), s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt + I (f (•, t) -div θ hτ (•, t) -∂ t s hτ , u * (•, t)) dt - I Ω (θ hτ + D∇s hτ ) • ∇u * dxdt.
Replacing f by f -f + f , we find 

E = (u 0 -s hτ (0), u * (0)) + (u * (T ), s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt + I (f (•, t) -f , u * (•, t)) dt + I ( f (•, t) -div θ hτ (•, t) -∂ t s hτ , u * (•, t)) dt - I Ω (θ hτ + D∇s hτ ) • ∇u * dxdt Writing u * = u * hτ + u * -u *
η QOI = η O + η ∇ + η H ,
where

η O = I (f (•, t) -f n , u * hτ (•, t)) dt + I ( f (•, t) -div θ hτ (•, t) -∂ t s hτ , u * hτ (•, t)) dt, η ∇ = I Ω (θ hτ + D∇s hτ ) • D -1 θ * hτ dxdt, η H = (u 0 -s hτ (0), u * hτ (0)) + (u * ,N hτ , s hτ (T ) -u N hτ ) - I (g(•, t), u hτ -s hτ ) dt.
As before η O represents the data oscillation with respect to the primal problem weighted by the dual approximate solution, the flux estimator η ∇ that measures the deviation of -D∇s hτ from the reconstructed flux θ hτ and η H that measures the deviation of u hτ from H 1 0 (Ω).

Let us now show that the remainder can be explicitly estimated using the error estimators for u and u * obtained in [START_REF] Ern | A posteriori error estimation based on potential and flux reconstruction for the heat equation[END_REF]Theorem 3.2]. Namely denote by η (resp. η * ) the estimator obtained in this reference using the discrete spaces V n h (resp. V * ,n h ) to approximate the solution u of the primal problem (28) (resp. u * of the dual problem ( 33)), so that

u -u hτ Y ≤ η + 3 f -f X , (48) 
u * -u * hτ Y ≤ η * + 3 g -g X , (49) 
where

η = 3 N n=1 In T ∈T n (η n R,T (t) + η n DF,T (t)) 2 dt 1 2 + η IC + N n=1 In T ∈T n (η n N C1,T (t)) 2 dt 1 2 + N n=1 τ n In T ∈T n (η n N C2,T (t)) 2 dt 1 2
, with η IC = √ 2 s 0 hτ -u 0 , and for all n = 1, •, N , t ∈ I n and T ∈ T n ,

η n R,T (t) = π -1 D -1 2 ∞,T h T f -∂ t s hτ -div θ n hτ T , η n DF,T (t) = D -1 2 (θ hτ + D∇s hτ ) T , η n N C1,T (t) = D 1 2 ∇(s hτ -u hτ ) T , η n N C2,T (t) = π -1 D -1 2 ∞,T h T ∂ t (s hτ -u hτ ) n T .
The estimator η * of the dual problem is defined similarly by replacing u hτ by u * hτ , θ hτ by θ * hτ , s hτ by s * hτ , s 0 hτ by s * ,0 hτ , u 0 by u * T , f by q, and ∂ t by -∂ t .

Theorem 3.3 With η and η * as defined before, we have

|R| ≤ D Y η + (s hτ -u hτ )(T ) + f -f X η * + (s * hτ -u * hτ )(0) + g -g X (50) + π -1 h n D -1 2 ∞,Ω f (•, t) -f C η * , with D Y = √ 2 max{1, 3C Y } + 11.
Proof. We estimate each term of R separetely. For the first term, by Cauchy-Schwarz's inequality we have

|(u 0 -s hτ (0), (u * -u * hτ )(0))| ≤ u 0 -s hτ (0) (u * -u * hτ )(0) . (51) Note that u 0 -s hτ (0) ≤ 2 -1/2 η, (52) 
therefore it remains to estimate the second factor of the right-hand side of (51). But since u * hτ does not belong to Y , we write (u * -u * hτ )(0) = (u * -s * hτ )(0) + (s * hτ -u * hτ )(0), and use the triangular inequality to find

(u * -u * hτ )(0) ≤ (u * -s * hτ )(0) + (s * hτ -u * hτ )(0) . ( 53 
)
For the first term of this right-hand side we use the continuous embedding Y → C([0, T ]; L2 (Ω)) to find (see ( 29))

(u * -s * hτ )(0) ≤ C Y u * -s * hτ Y . ( 54 
)
Then using the identity

u * -s * hτ Y = ∂ t (u * -s * hτ ) L 2 (0,T,H -1 (Ω) + N n=1 In T ∈T n-1,n D 1 2 ∇(u * -s * hτ )(t) 2 T dt 1 2 ,
inserting artificially u * hτ and using the triangular inequality, we find

u * -s * hτ Y ≤ ∂ t (u * -u * hτ ) L 2 (0,T,H -1 (Ω) + ∂ t (u * hτ -s * hτ ) L 2 (0,T,H -1 (Ω) + N -1 n=0 In T ∈T n-1,n D 1 2 ∇(u * -u * hτ )(t) 2 T dt 1 2 + N -1 n=0 In T ∈T n-1,n D 1 2 ∇(u * hτ -s * hτ )(t) 2 T dt 1 2 .
According to the definition of the norm Y for u * -u * hτ and to the definition of η * , we find

u * -s * hτ Y ≤ u * -u * hτ Y + η * (55) + ∂ t (u * hτ -s * hτ ) L 2 (0,T,H -1 (Ω) .
For this last term, for all t ∈ (0, T ), we define the

H -1 (Ω)-norm by 1 ∂ t (u * hτ -s * hτ )(t) H -1 (Ω) = sup ϕ∈H 1 0 (Ω),ϕ =0 Ω ∂ t (u * hτ -s * hτ )(t)ϕ dx D 1 2 ∇ϕ . ( 56 
)
Hence using [START_REF] Richter | Variational localizations of the dual weighted residual estimator[END_REF], we may write

Ω ∂ t (u * hτ -s * hτ )(t)ϕ dx = T ∈T n T ∂ t (u * hτ -s * hτ )(t)(ϕ -M T ϕ) dx,
where M T ϕ is the mean of ϕ on T . Therefore by the Poincaré inequality stating that

ϕ -M T ϕ T ≤ π -1 h T |ϕ| 1,T , we find ϕ -M T ϕ T ≤ π -1 h T D -1 2 ∞,T D
and hence

Ω ∂ t (u * hτ -s * hτ )(t)ϕ dx ≤ π -1 T ∈T n h T D -1 2 ∞,T ∂ t (u * hτ -s * hτ )(t) T D 1 2 ∇ϕ T .
Using the discrete Cauchy-Schwarz's inequality and inserting this estimate in (56), we obtain

∂ t (u * hτ -s * hτ )(t) H -1 (Ω) ≤ π -1 T ∈T n h 2 T D -1 2 2 ∞,T ∂ t (u * hτ -s * hτ )(t) 2 T 1 2 .
Integrating the square of this estimate in 0, T ) and using the definition of η * , we arrive at

∂ t (u * hτ -s * hτ )(t) L 2 (0,T,H -1 (Ω)) ≤ η * ,
and using it into (55) yields

u * -s * hτ Y ≤ u * -u * hτ 2 Y + 2η * .
The estimate (49) then leads to

u * -s * hτ Y ≤ 3(η * + g -g X ). (57) 
Combining this estimate with (54) leads to

(u * -s * hτ )(0) ≤ 3C Y (η * + g -g X ),
that can be used in (53) to find

(u * -u * hτ )(0) ≤ max{1, 3C Y }(η * + (s * hτ -u * hτ )(0) + g -g X ). (58) 
Coming back to (51) and using this last estimate and (52), we finally find

|(u 0 -s hτ (0), (u * -u * hτ )(0))| ≤ 2 -1 2 max{1, 3C Y }η(η * + (s * hτ -u * hτ )(0) + g -g X ). ( 59 
)
The second term is the symmetric of the first one by exchanging the rule of u and u * , hence

|(u * T -u * ,N hτ , s hτ (T ) -u N hτ )| ≤ 2 -1 2 max{1, 3C Y }(η + (s hτ -u hτ )(T ) + f -f X )η * . ( 60 
)
Concerning the third term, we again introduce artificially s * hτ to get

R 3 := I (f (•, t) -f , (u * -u * hτ )(•, t)) dt = I (f (•, t) -f , (u * -s * hτ )(•, t)) dt + N n=1 In (f (•, t) -f n , (s * hτ -u * hτ )(•, t)) dt,
and by using a duality argument for the first term and Cauchy-Schwarz's inequality for the second one, we obtain

|R 3 | ≤ f (•, t) -f X u * -s * hτ X + N n=1 In T ∈T n,n-1 f (•, t) -f n T (s * hτ -u * hτ )(•, t) T dt.
Due to the property [START_REF] Rey | Strict lower bounds with separation of sources of error in non-overlapping domain decomposition methods[END_REF] and the Poincaré inequality, we find

|R 3 | ≤ f (•, t) -f X u * -s * hτ X + π -1 N n=1 In T ∈T n,n-1 f (•, t) -f n T h T ∇(s * hτ -u * hτ ))(•, t) T dt.
Using the definition of the broken gradient of u * hτ and the fact that h T ≤ h n for all T ∈ T n-1,n , we get

|R 3 | ≤ f (•, t) -f X u * -s * hτ X + π -1 h n D -1 2 ∞,Ω N n=1 In T ∈T n f (•, t) -f n T D 1 2 ∇ n-1,n (s * hτ -u * hτ ))(•, t) T dt.
Hence using Cauchy-Schwarz's inequality, we find

|R 3 | ≤ f (•, t) -f X u * -s * hτ X + π -1 h n D -1 2 ∞,Ω f (•, t) -f C η * .
Finally as by definition u * -s * hτ X ≤ u * -s * hτ Y , the estimate (57) yields

|R 3 | ≤ 3 f (•, t) -f X (η * + g -g X ) + π -1 h n D -1 2 ∞,Ω f (•, t) -f C η * . (61) 
For the fourth term again inserting artificially s * hτ we get

R 4 := N n=1 In T ∈T n ( f n (•, t) -div θ hτ (•, t) -∂ t s hτ , (u * -u * hτ )(•, t)) T dt = N n=1 In T ∈T n ( f n (•, t) -div θ hτ (•, t) -∂ t s hτ , (u * -s * hτ )(•, t)) T dt + N n=1 In T ∈T n ( f n (•, t) -div θ hτ (•, t) -∂ t s hτ , (s * hτ -u * hτ )(•, t)) T dt.
For the first term using (39), we can replace u * -s * hτ by u * -s * hτ -M T (u * -s * hτ ) on T ∈ T n , while for the second term we reorganize the summation on the triangulation T n-1,n and then find

R 4 = N n=1 In T ∈T n ( f n (•, t) -div θ hτ (•, t) -∂ t s hτ , (u * -s * hτ )(•, t) -M T (u * -s * hτ )) T dt + N n=1 In T ∈T n-1,n ( f n (•, t) -div θ hτ (•, t) -∂ t s hτ , (s * hτ -u * hτ )(•, t)) T dt.
Using Poincaré inequality for each term of this right-hand side (recalling the property ( 41)), we find

|R 4 | ≤ π -1 N n=1 In T ∈T n h T D -1 2 ∞,T f n (•, t) -div θ hτ (•, t) -∂ t s hτ T D 1 2 ∇(u * -s * hτ )(•, t) T dt +π -1 N n=1 In T ∈T n-1,n h T D -1 2 ∞,T f n (•, t) -div θ hτ (•, t) -∂ t s hτ T D 1 2 ∇(s * hτ -u * hτ ) T dt.
Using Cauchy-Schwarz's inequality and reorganizing the summation in the second term (using the fact that h T ≤ h T , for all T ∈ T n-1,n such that T ⊂ T ∈ T n ), we get

|R 4 | ≤ η( u * -s * hτ Y + η * ).
As before the estimate (57) yields

|R 4 | ≤ 3η(η * + g -g X ) + ηη * . ( 62 
)
It remains the last term that can be transformed as

R 5 := I Ω (θ hτ + D∇s hτ ) • D -1 (D∇u * + θ * hτ ) dxdt = I Ω (θ hτ + D∇s hτ ) • ∇(u * -s * hτ ) dxdt + I Ω (θ hτ + D∇s hτ ) • D -1 (D∇s hτ + θ * hτ ) dxdt.
Hence Cauchy-Schwarz's inequality directly yields

|R 5 | ≤ η( u * -s * hτ Y + η * ).
With the help of the estimate (57) we again obtain

|R 5 | ≤ 3η(η * + g -g X ) + ηη * . ( 63 
)
The conclusion follows from the estimates (59), ( 60), (61) (62), and (63). Note that Remark 2.6 remains valid for our parabolic problem [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]. ,

Numerical examples

In this section, we present some illustrative numerical examples that validate our theoretical results. Before going on, let us notice that all numerical simulations are realized by the free scientific computing software FreeFem++ [START_REF] Hecht | New development in freefem++[END_REF].

Diffusion-reaction problems

In this subsection, we aim to illustrate the theoretical results obtained for diffusion problems, and specifically Theorems 2.1 and 2.4. These tests are performed in the case u h ∈ H 1 0 (Ω), so that we always take s h = u h .

Diffusion problem : regular solution

We first consider the same benchmark as the one proposed in [START_REF] Mozolevski | Goal-oriented error estimation based on equilibratedflux reconstruction for finite element approximations of elliptic problems[END_REF], section 8 and [START_REF] Mallik | Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers[END_REF], section 6.1. The primal problem (4) is defined with d = 2, Ω =]0, 1[2 , D = I R 2 2 and r = 0. The exact solution is chosen equal to u(x, y) = 10 4 x(1 -x)y(1 -y)e -100(ρ(x,y)) 2 with ρ(x, y) = ((x-0.75 2 )+(y -0.75) 2 ) 1/2 (see Figure 1(a)), and the right-hand side f is computed accordingly. The dual problem is defined by [START_REF] Courant | Methods of mathematical physics[END_REF] with q = 1 ω and ω = {(x, y) ∈ Ω : 1.5 ≤ x + y ≤ 1.75} (see Figure 1(b)).

The approximation u h of u solution of the primal problem is made using standard conforming P 1 finite elements on regular meshes made of triangles (see Figure 2 for the first three refinements), and the corresponding flux reconstruction θ h is approximated using some standard RT 1 finite elements (Raviart-Thomas finite elements of degree 2 on each triangle). The approximation u * h of u * solution of the dual problem is made using standard conforming P 2 finite elements on the same meshes, and the corresponding flux reconstruction θ * h is approximated using some standard RT 2 finite elements (Raviart-Thomas finite elements of degree 3 on each triangle).

For each mesh, the value of E = Q(u -u h ) defined by ( 7) is computed, as well as the one of η QOI defined by [START_REF] Endtmayer | Reliability and efficiency of DWR-type a posteriori error estimates with smart sensitivity weight recovering[END_REF]. We plot on Figure 3(a) the values of E as well as the ones of η QOI and 4ηη * as a function of h in a log-log scale. Using [START_REF] Duprez | Quantifying discretization errors for soft tissue simulation in computer assisted surgery: a preliminary study[END_REF], we also plot the value of |R| which can be First of all, we remark that E goes towards zero at the order O(h 2 ), which is the expected behaviour since u ∈ H 2 (Ω) and u h is approximated by P 1 finite elements. Moreover, the estimator η QOI converges towards zero also in O(h 2 ), while the remainder R superconverges. Figure 3(b) displays the effectivity index I ef f defined by

I ef f = |E/η QOI |. ( 64 
)
Whatever the value of h, the effectivity index I ef f is always nearly equal to one, what illustrates on this benchmark the asymptotically exactness of the estimator η QOI . Coming back to Figure 3(a), we observe that the value of 4ηη * goes towards zero faster than E and η QOI , while remaining quite larger for coarse meshes. Let us now introduce the total effectivity index I tot ef f defined by

I tot ef f = |E|/(|η QOI | + 4ηη * ). ( 65 
)
We see in Figure 3(c) that I tot ef f is smaller than one as theoretically expected (see [START_REF] Ladevèze | Strict upper error bounds on computed outputs of interest in computational structural mechanics[END_REF]). But thanks to the superconvergence of 4ηη * , it is also expected to converge towards one when h goes towards zero. Remark 4.1 If we solve the same problem, but this time using conforming P 1 finite elements for the computation of u * h and RT 1 finite elements for the computation of θ * h (in other words, the same finite element spaces for the dual problem than for the primal one), then the results are not the same. Figure 4 displays the same quantities as the ones in Figure 3. As previoulsy, it can be observed in Figure 4(a) that the error E and the estimator η QOI both converge towards zero at the order O(h 2 ). Nevertheless, the remainder R does not superconverge anymore, even if it remains here very small compared to E and η QOI . It explains the fact that I ef f is slightly worse (around 0.93 instead of 1 for the smallest values of h, see Figure 4(b)). Moreover, it can also be seen in Figure 4(a) that 4ηη * is no more superconvergent. It remains larger than E and η QOI , converging towards zero at the same order. That is why the value of I tot ef f converges towards a constant significantly smaller than one. This test illustrates the fact that for a regular solution, if the dual problem is approximated by the same spaces than the ones used for the resolution of the primal problem, then the remainder term R (or its bound 4ηη * ) is not necessarily negligible, and that the asymptotic exactness can be lost. Nevertheless, it is clear that I tot ef f always remains bounded by one, and that the estimator |η QOI | + 4ηη * is always an upper bound for the error |E|, as theoretically expected from [START_REF] Ladevèze | Strict upper error bounds on computed outputs of interest in computational structural mechanics[END_REF]. 

= d i I R 2 in Ω i , 1 ≤ i ≤ 4, with Ω 1 = (0, 1) × (0, 1), Ω 2 = (-1, 0) × (0, 1), Ω 3 = (-1, 0) × (-1, 0) and Ω 4 = (0, 1) × (-1, 0), 0 < d 1 = d 3 = a <
(θ) =                              sin α θ - π 4 in Ω 1 , √ a cos α 3π 4 -θ in Ω 2 , sin α 5π 4 -θ in Ω 3 , - √ a cos α π 4 + θ in Ω 4 .
The right-hand side f is computed accordingly. Let us note that in such a configuration, for any ε > 0 we have u ∈ H 1+α-ε (Ω) (see e.g. the appendix of [START_REF] Costabel | Singularities of Maxwell interface problems[END_REF] for a similar configuration).

The dual problem is defined by [START_REF] Courant | Methods of mathematical physics[END_REF] with q = 1 ω and ω = (0, 0.5) × (-0.25, 0.25) (see Figure 5(b)). All the spatial discretizations are done similarly to the regular case of section 4.1.1.

The obtained results are respectively displayed in Figures 6 and7 for a = 1/5 and a = 1/20, respectively leading to the values of α ≈ 0.53 and α ≈ 0.28. From these figures, we may notice that the error, the estimator η QOI and 4ηη * all converge towards zero with order O(h 2α ). In both cases, I ef f remains in the order of unity but is no more close to one. The remainder R seems to be no more superconvergent. Moreover, 4ηη * significantly overestimates the value of |R|, leading to the convergence of I tot ef f towards values less than one. This means that for such problems with , so that the exact solution u ε is given by u ε (x, y) = v ε (x)y(1 -y). Clearly we have u ε = 0 on ∂Ω, and a boundary layer appears in the vicinity of the boundaries x = 0 and x = 1 when ε tends towards zero (see Figure 8). Like in section 4.1.1, the dual problem is defined by [START_REF] Courant | Methods of mathematical physics[END_REF] with q = 1 ω and ω = {(x, y) ∈ Ω : 1.5 ≤ x + y ≤ 1.75} (see Figure 1 

A moving Gaussian

Finally we consider a more difficult test coming from [START_REF] Nicaise | A posteriori error estimates for a nonconforming finite element discretization of the heat equation[END_REF]. This time, the primal problem is defined by ( 27) with d = 2, Ω =]0, 1[ 2 , T = 1.0 and D = I R 2 . We choose the exact solution being equal to u(x, y, t) = β(t) e -50(r(x,y,t)) 2 with r(x, y, t) = ((x -0.4t -0.3) 2 + (y -0.4t -0.3) 2 ) 1/2 and β(t) defined by:

β(t) =
1 -e -50(0.98t+0.01) 2 if t ≤ 0.5, 1 -e -50(1-0.98t+0.01) 2 else.

It consists in a moving Gaussian from the position (0.3, 0.3) to the position (0.7, 0.7) at a non constant speed. As usual, the right-hand side f is computed accordingly. The dual problem is defined by [START_REF] Muñoz Matute | Explicit-in-time goal-oriented adaptivity[END_REF], where we choose g = 0 and u * T = e -ρ(x,y) 2 32 ln 10 with ρ(x, y) = ((x -0.7) 2 + (y -0.7) 2 ) 1/2 .

For the numerical simulation, we set τ = h/10, all the other numerical parameters are the same as the ones of section 4.2.1. We can see in Figure 13(a) that once again, the estimator η QOI converges towards zero at the order O(h) as theoretically expected, whereas the product η η * goes faster towards zero (in the order O(h 1.75 )). As expected by Theorems 3.1 and 3.3, Figure 13(b) illustrates the asymptotic exactness of the estimator since the effectivity index I ef f = E/η QOI goes towards 1 when h goes towards zero.

Conclusion

In this paper, we have performed goal-oriented a posteriori error estimations for conforming and nonconforming discretizations of elliptic and parabolic problems. It is based on H(div)conforming flux reconstructions and H 1 -conforming potential reconstructions. Our main novelty is a decomposition of the error into a fully computable error estimator and a remainder, this remainder being bounded by the product of the estimators of the direct and dual problems, up to an explicit multiplicative factor (see Theorems 2.1 and 2.4 for reaction-diffusion problems and Theorems 3.1 and 3.3 for parabolic problems). Various numerical results illustrate that the error in the quantity of interest is estimated precisely by the error estimator, with an effectivity index of order 1. Nevertheless, in some particular cases, we have observed that this asymptotic exactness does not hold and that the use of the additional term, namely the product of the estimators of the direct and dual problems (that we prove that it bounds the remainder), should be required in adaptive algorithms.
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 1162 Figure 1: Diffusion problem with regular solution: (a) exact solution; (b) loading term q in dual problem.
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 3 Figure 3: Diffusion problem, D = I R 2 , regular solution: (a) rates of convergence; (b) effectivity index I ef f ; (c) total effectivity index I tot ef f .
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 4 Figure 4: Diffusion problem, D = I R 2 , regular solution with same finite element spaces for primal and dual problems: (a) rates of convergence; (b) effectivity index I ef f ; (c) total effectivity index I tot ef f .
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 241 Defining the singular exponent the exact solution as shown in Figure 5(a) is given by u(x, y) = p(x, y) S(x, y), where p(x, y) = (1 -x 4 )(1 -y 4 ) is a truncation function and S(x, y) = ρ α v(θ) with ρ = x 2 + y 2 , θ = arctan(y/x) in Ω 1 ∪ Ω 4 , π + arctan(y/x) in Ω 2 ∪ Ω 3 , and v
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 561 Figure 5: Diffusion problem with singular solution: (a) exact solution; (b) loading term q in dual problem.
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 7 Figure 7: Diffusion problem, singular solution, a = 1/20: (a) rates of convergence; (b) effectivity index I ef f ; (c) total effectivity index I tot ef f .
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 891011 Figure 8: Reaction-diffusion problem with a boundary layer solution: isovalues of u ε .
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 12 Figure 12: Heat equation: (a) rates of convergence; (b) asymptotical exactness.
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 13 Figure 13: Moving Gaussian: (a) rates of convergence; (b) asymptotical exactness.

  As in Remark 2.3, our estimator η QOI admits the decomposition

	Remark 3.2

hτ and D∇u * = -θ * hτ + D∇u * + θ * hτ , we arrive at

[START_REF] Tang | Guaranteed quantity of interest error estimate based on equilibrated flux reconstruction[END_REF]

.

∞,Ω √ dπ d Ω , where d Ω is the diameter of Ω, see [10, Theorem VI-3 and p.

301]

∇ϕ T , 1 as D is bounded and positive definite this norm is equivalent to the usual one.

here and below, I R 2 means the 2 × 2 identity matrix

Whatever the value of ε, the conclusions are the same as the ones of section 4.1.1 devoted to the pure diffusion regular problem : E as well as η QOI go towards zero at the order O(h 2 ). I ef f tends towards one when h goes towards zero. Finally, the value of 4ηη * goes towards zero faster than E. Consequently, in accordance with the theory, the estimation is robust in ε.

Parabolic problems

In this subsection, we aim to illustrate the theoretical results obtained for parabolic problems, and specifically Theorems 3.1 and 3.3. These tests are performed in the case u n hτ ∈ H 1 0 (Ω), so that we always take s hτ = u hτ .

The heat equation

We start to propose a simple problem, defining the primal problem by [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF] 

We choose the exact solution being equal to u(x, y, t) = x 2 y 2 (x -1) 2 (y -1) 2 sin(t) and compute the right-hand side f accordingly. The dual problem is defined by [START_REF] Muñoz Matute | Explicit-in-time goal-oriented adaptivity[END_REF], where we choose g = 0 and u * T = e -ρ(x,y) 2 32 ln 10 with ρ(x, y) = ((x -0.5

Concerning the time approximation, we use the definition of (∂ t u) n given in [START_REF] Nochetto | A safeguarded dual weighted residual method[END_REF] to compute an implicit-Euler time integration for the computation of the approximated solution of the primal problem, where u n is the approximation of u(t n , •) and solution of the elliptic problem:

Since the scheme is fully implicit in time, there is no need to impose any stability condition linking h and τ . For accuracy reasons, we choose τ = h. Similarly to the stationary tests, the spatial approximation u n h of u n is made using standard P 1 finite elements and the corresponding flux reconstruction θ h is approximated using some standard RT 1 finite elements. The time integration of the dual problem is also done using an implicit-Euler scheme (with τ = h), where u * ,n is the approximation of u * (t n , •) and solution of:

The spatial approximation u * ,n h of u * ,n is made using standard P 2 finite elements on the same meshes, and the corresponding flux reconstruction θ * h is approximated using some standard RT 2 finite elements.

For each mesh, we compute the value of E = Q(u -u h ) defined by [START_REF] Rognes | Automated goal-oriented error control I: Stationary variational problems[END_REF] as well as the one of η QOI defined by [START_REF] Vohralík | A posteriori error estimates for lowest-order mixed finite element discretizations of convection-diffusion-reaction equations[END_REF]. We plot on Figure 12(a) the values of E as well as the ones of η QOI and ηη * as functions of h in a log-log scale. First of all, we remark that the error E goes towards zero at the order O(h), which is the expected behaviour since even if u is regular enough and u h is approximated by P 1 finite elements, the time integration is of order one and the choice of τ = h leads to a global rate of convergence equal to one. Moreover, the estimator η QOI converges towards zero at the same rate of convergence. Figure 12(b) displays the effectivity index I ef f = E/η QOI as a function of h. As for the stationary tests with regular solutions, it is always nearly equal to one and converges towards one. Consequently the estimator η QOI is asymptotically exact. Finally, coming back to Figure 12(a), we see that the value of ηη * goes