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Abstract

We present a unified framework for goal-oriented estimates for elliptic and parabolic
problems that combines the dual-weighted residual method with equilibrated flux and potential
reconstruction. These frameworks allow to analyze simultaneously different approximation
schemes for the space discretization of the primal and the dual problems such as conforming
or nonconforming finite element methods, discontinuous Galerkin methods, or the finite
volume method. Our main contribution is twofold: first in a unified framework we prove
the splitting of the error into a fully computable estimator η and a remainder, second this
remainder is estimated by the product of the fully computable energy-based error estimators
of the primal and dual problems. Some illustrative numerical examples that validate our
theoretical results are finally presented.

AMS (MOS) subject classification: 65N30, 65N15, 65M15.

Key Words: goal-oriented estimates, quantity of interest, elliptic and parabolic problems.

1 Introduction

Many engineering problems require computing some quantities of interest, like the local or global
mean value of the solution. These quantities of interest are usually linear functionals on a vector
space that contains the solution of the considered boundary value problem. Error estimation on
such functionals is called goal-oriented error estimation. The main ingredient for a such error
estimation relies on the computation of the solution of the dual problem. Several approaches have
been proposed for elliptic problems, namely: goal-oriented error estimates based on energy norm
of the errors on the solutions of the primal and dual problems (combined with different a posteriori
methods to estimate these errors) [39, 36, 2, 1, 18], the dual weighted residual method, for which
the local information derived from the dual solution is used in the form of weights multiplied
by local residuals [7, 8, 3, 29, 6, 13, 35], the constitutive relation error based on Saint-Venant’s
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principle [22, 21, 40, 41], and the equilibrated flux and/or potential reconstruction method based
on higher order approximation of the dual problem and the construction of equilibrated fluxes
and/or potential reconstruction of the solutions [30, 26, 28, 37, 44]. Let us note that "potential
reconstruction" is an ad hoc denomination used in the literature, which corresponds to a given
reconstructed (more regular) field of a scalar quantity. To the best of our knowledge, there exist
few papers concerning goal-oriented error estimation for parabolic problems [31, 32, 33], where
the estimation is based on energy norm of the errors on the solutions of the primal and dual
problems. Goal-oriented a posteriori analysis of nonlinear problems (under quasi-static conditions
or not) and/or nonlinear quantities of interest are considered in [21, 14, 20, 23, 24, 25, 11, 5, 43],
and we believe that our approach can be used in such situations but it is outside the scope of
this paper.

The goal of this paper is to extend the equilibrium flux reconstruction method (combined
with the dual-weighted residual method) by proposing a unified framework for the approximation
of general reaction-diffusion problems and to parabolic problems. Indeed based on equilibrated
flux and potential reconstructions, we furnish a decomposition of the error E on the quantity of
interest in the form

E = ηQOI +R, (1)

where ηQOI =
∑J

j=1 ηj , each term ηj being fully computable, with some positive integer J
depending on the problem, is our proposed estimator on the quantity of interest, while the
remainder term R may depend on the solution of the primal and dual problems but for which
we have the bound

|R| ≤ Cηη∗, (2)

where C is a positive constant independent of the meshsize (and time step size) as explicit as
possible, and η (resp. η∗) is an estimator of the error of the solution of the primal (resp. dual)
problem using an approximation in a finite dimensional space Vh (resp. V ∗h ) not necessarily
included into the energy space. These two properties lead to the new estimate

|E| ≤ |ηQOI |+ Cηη∗, (3)

that was not obtained before in our settings. As a consequence, one can choose as error estimator
|ηQOI | + Cηη∗ to implement an adaptive algorithm, this will be investigated in a forthcoming
paper.

On the other hand, if we use a higher order approximation space V ∗h to approximate the dual
problem, one may hope to obtain an efficient error estimator (effectivity index close to unity)
[2, 30], if this is the case, the remainder term is negligible, hence it may be disregarded and the
sole term |ηQOI | can be used as error estimator. More precisely since the estimator ηQOI and
the right-hand side of (2) are fully computable, we can estimate the ratio

R
ηQOI

,

during a refinement procedure based on the use of ηQOI and check if it tends to zero or not. In
the positive case, due to the identity (1) this means that the ratio

E
ηQOI

tends to one and will validate the asymptotic exactness of the estimator |ηQOI |. Note that there
are some exceptions to this general rule as the example from subsection 4.1.2 shows. It is worth
noting that this point does not seem to have already been reported in the literature.
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For a purely diffusion problem with piecewise constant diffusion tensor and piecewise polynomial
righ-hand sides, this approach was successfully developed in [28]. We here extend their approach
to reaction-diffusion problems and to parabolic problems. For a diffusion problem, the decomposition
(1) is also obtained in [30], but with an a priori bound for the remainder, which is less interesting
for adaptive purposes.

In many cases, the use of |ηQOI | is sufficient to obtain an efficient error estimator, but it has
been observed in [21, 22, 28] that it can overestimate the error. As we can compare all ηi and ηη∗,
we can improve the approximated value of the quantity of interest by adding the dominant term
from ηQOI . For instance if η1 reveals to be a dominant term, we can add η1 to the approximated
value of the quantity of interest and use |ηQOI − η1| + Cηη∗ as error estimator, see [22, Figure
10] and [28, Remark 4.7 and Theorem 4.8].

In summary, the developed approach is flexible and may be then adapted to the different
situations to treat. Furthermore, unlike the majority of the papers mentioned above that
treat specific approximation of the (primal and dual) particular elliptic problems, our unified
framework applies to general reaction-diffusion and parabolic problems and to various finite
element methods (conforming or not) as well as finite volume methods.

Let us introduce some notation used in the paper. In the whole paper Ω ⊂ Rd, d ∈ N, d ≥ 2,
is an open, bounded and connected domain with a Lipschitz and polyhedral boundary ∂Ω. The
usual norm and semi-norm of Hs(Ω) (s ≥ 0) are denoted by ‖ · ‖s,Ω and | · |s,Ω, respectively. In
this paper we consider real valued function spaces. For s = 0 we drop the index s. Similarly, the
inner product (resp. norm) in L2(Ω) will be denoted by (·, ·) (resp. ‖ · ‖). The duality pairing
between H−1(Ω) (the dual space of H1

0 (Ω)) and H1
0 (Ω) will be denoted by 〈·, ·〉. By a . b, we

mean that there exists a constant C > 0 independent of a, b, such that a ≤ Cb.

The paper is organized as follows. Section 2 is devoted to the reaction-diffusion problem.
The problem is defined in subsection 2.1 and the goal oriented functional as well as the adjoint
problem are introduced in subsection 2.2. Then the discrete setting is defined in subsection
2.3 and the error representation given in subsection 2.4. The main results about the reaction-
diffusion problem are obtained in Theorems 2.1 and 2.4. Similarly, section 3 is devoted to the
parabolic problem and follows the same process from subsection 3.1 to subsection 3.4. The main
results about the parabolic problem are obtained in Theorems 3.1 and 3.3. Finally, section 4
presents some numerical tests in order to illustrate the previous theoretical results.

2 The reaction-diffusion problem

2.1 Problem definition

In this section we consider the following reaction-diffusion problem{
−div(D∇u) + ru = f in Ω,

u = 0 on ∂Ω,
(4)

where D ∈ L∞(Ω; Rd×d) is a diffusion tensor which is supposed to be a symmetric matrix-valued
function such that

D(x)ξ · ξ & |ξ|2, ∀ ξ ∈ Rd, and a.e. x ∈ Ω,

while r ∈ L∞(Ω) is the reaction function supposed to be nonnegative. The source term f is
supposed to be in L2(Ω).
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By setting

B(u, v) =

∫
Ω

(D∇u · ∇v + ruv) dx, ∀ u, v ∈ H1
0 (Ω), (5)

and
F (v) =

∫
Ω
fv dx, ∀ v ∈ H1

0 (Ω),

the variational formulation of problem (4) is

B(u, v) = F (v), ∀ v ∈ H1
0 (Ω), (6)

that has a unique (weak) solution u in H1
0 (Ω).

2.2 Goal-oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest [30, 28]
given by

Q(v) =

∫
Ω
qv dx, ∀ v ∈ L2(Ω), (7)

where q ∈ L2(Ω) is a given function. As we want to have

Q(u) = B(u, u∗) = F (u∗), (8)

where u∗ is solution of the dual problem, we define the adjoint problem as

B(v, u∗) = Q(v), ∀ v ∈ H1
0 (Ω), (9)

that has a unique (weak) solution u∗ in H1
0 (Ω). Accordingly its strong formulation is{

−div(D∇u∗) + ru∗ = q in Ω,
u∗ = 0 on ∂Ω.

(10)

Note finally that (9) is equivalent to

B(u∗, v) = Q(v), ∀ v ∈ H1
0 (Ω),

because B is here symmetric.

2.3 The discrete setting of the reaction-diffusion problem

To discretize problems (6) and (9), we suppose given a partition T of Ω into polygonal elements
T that covers exactly Ω. For simplicity, we assume that the mesh is simplicial and matching
(extensions to general polygonal and nonmatching meshes are possible). On such a mesh we
introduce the so-called broken Sobolev space

H1(T ) = {v ∈ L2(Ω) | v|T ∈ H1(T ), ∀ T ∈ T }.

As in [17, 28], in order to analyse simultaneously different approximation schemes, the primal
problem is approximated in a finite dimensional subspace Vh of H1(T ), while the dual problem
will be approximated in a finite dimensional subspace V ∗h ofH1(T ), that may be different from Vh.
In other words, we suppose given an approximation uh ∈ Vh of the solution u of (6) and u∗h ∈ V ∗h
of the solution u∗ of (9). We further assume that a flux reconstruction θh is available (using
uh and the datum f), belongs to H(div,Ω) and satisfies the following conservation properties
(compare with [17, identity (18)])

(div θh + ruh − f, 1)T = 0, ∀ T ∈ T . (11)
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In the same manner, we assume that a flux reconstruction θ∗h can be constructed, belongs to
H(div,Ω) and satisfies the following conservation properties

(div θ∗h + ru∗h − q, 1)T = 0, ∀ T ∈ T . (12)

Using θh and θ∗h, in the spirit of [30] (see also [28]), let us show that the error E = Q(u)−Q(uh)
on the quantity of interest can be expressed into a fully computable expression and a remainder
that will be estimated by a fully computable quantity (but is usually of higher order and can
then be disregarded). Let us note that thanks to the linearity of Q, we also have E = Q(u−uh).

2.4 The error representation of the reaction-diffusion problem

Theorem 2.1 Let sh ∈ H1
0 (Ω) be a potential reconstruction of uh, then we have

E = Q(u− uh) = ηQOI +R, (13)

where the estimator ηQOI is given by

ηQOI =

∫
Ω
q(sh − uh) dx (14)

+

∫
Ω

(f − div θh − ruh)u∗h dx

+

∫
Ω

(θh +D∇sh) ·D−1θ∗h dx

−
∫

Ω
ru∗h(sh − uh) dx,

while the remainder term R is defined by

R = R1 +R2 +R3 with

R1 =

∫
Ω

(f − div θh − ruh)(u∗ − u∗h) dx,

R2 = −
∫

Ω
(θh +D∇sh) · (D−1θ∗h +∇u∗) dx,

R3 = −
∫

Ω
r(u∗ − u∗h)(sh − uh) dx.

Proof. By the definition of the error and Green’s formula we have

E = F (u∗)−Q(uh).

Introducing artificially sh and using (9), this is equivalent to

E = F (u∗)−Q(uh − sh) (15)

−
∫

Ω
(D∇u∗ · ∇sh + ru∗sh) dx.

Adding and subtracting the term ∫
Ω
∇u∗ · θh dx
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we find

E = F (u∗)−Q(uh − sh)

−
∫

Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω

(∇u∗ · θh − ru∗sh) dx.

Using Green’s formula in the fourth term of this right-hand side we find

E = F (u∗)−Q(uh − sh)

−
∫

Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω
u∗(−div θh − rsh) dx.

Replacing sh by sh − uh + uh in this last term and recalling that F (u∗) =
∫

Ω fu
∗ dx, we obtain

E = −Q(uh − sh)

−
∫

Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω
u∗(f − div θh − ruh) dx

−
∫

Ω
ru∗(sh − uh) dx.

Writing u∗ = u∗h + u∗ − u∗h and D∇u∗ = −θ∗h +D∇u∗ + θ∗h, we arrive at (13).
Note that we do not need the conservation properties (11) and (12) to obtain the splitting

(13) from Theorem 2.1, but they are minimal assumptions to guarantee that θh (resp. θ∗h) is a
reasonable approximation of the continuous flux −D∇u (resp. −D∇u∗).

Remark 2.2 In the case where uh ∈ H1
0 (Ω), then we take sh = uh, so that the first and the

fourth terms arising in the right-hand side of (14) as well as R3 are equal to zero.

Remark 2.3 (Comparison with earlier literature)
1. In the spirit of [30, Theorem 1 and Remark 1], our estimator ηQOI admits the decomposition

ηQOI = ηO + η∇ + ηH,

where

ηO =

∫
Ω

(f − div θh − ruh)u∗h dx,

η∇ =

∫
Ω

(θh +D∇sh) ·D−1θ∗h dx

ηH =

∫
Ω
q(sh − uh) dx−

∫
Ω
ru∗h(sh − uh) dx.

Here ηO would represent the data oscillation with respect to the primal problem weighted by
the dual approximate solution if div θh + ruh would be equal to the L2(Ω)-projection of f on the
approximation space used to compute uh (it slightly differs from the one from [30] because of
our weaker assumption (11)), the flux estimator η∇ measures the deviation of −D∇sh from the
reconstructed flux θh and ηH measures the deviation of uh from H1

0 (Ω), these two last quantities
also differ from the ones from [30] due to the use of the reconstructed field sh.
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2. We recover the splitting (4.13) from [28, Remark 4.7] if r = 0, D is constant and the data f
and q are piecewise polynomials simply by replacing in the expression of η∇ from (14) the factor
θ∗h by −D∇s∗h, where s∗h ∈ H1

0 (Ω) is a potential reconstruction of u∗h and using the term∫
Ω

(θh +D∇sh) ·D−1(θ∗h +D∇s∗h) dx,

in the remainder. More generally in the expression of η∇, we may replace the factor θ∗h by

θ∗,αh = (1− α)θ∗h − αD∇s∗h,

with α ∈ R and plug the term∫
Ω

(θh +D∇sh) ·D−1(θ∗h − θ
∗,α
h ) dx = α

∫
Ω

(θh +D∇sh) ·D−1(θ∗h +D∇s∗h) dx

in the remainder. For α = 1
2 , we recover the splitting (4.17) from [28, Remark 4.7].

Let us now show that the remainder can be explicitly estimated using the error estimators
for u and u∗ obtained in [17, Theorem 7]. Namely denote by η (resp. η∗) the error estimator
mainly obtained in this reference (for D diagonal and constant but easily extended to the case
treated here) using the discrete spaces Vh (resp. V ∗h ) to approximate the solution u of the primal
problem (6) (resp. u∗ of the dual problem (9)), so that

‖u− uh‖h ≤ η, (16)
‖u∗ − u∗h‖h ≤ η∗, (17)

where the mesh-depending norm ‖ · ‖h is defined by

‖w‖2h = ‖D
1
2∇hw‖2 + ‖r

1
2w‖2, ∀ w ∈ H1

0 (Ω) ∪ Vh,

where ∇hw means the piecewise gradient of w, namely

∇hw = ∇w on T, ∀ T ∈ T ,

and
η2 =

∑
T∈T

(η2
NC,T + η2

R,T + η2
DF,T ),

with

ηNC,T = ‖uh − sh‖h,T ,
ηR,T = mT ‖f − div θh + ruh‖T ,

ηDF,T = ‖D−
1
2 (θh +D∇uh)‖T ,

recalling that

‖w‖h,T =

∫
T

(D∇w · ∇w + rw2) dx, ∀ w ∈ H1(T ),

mT := min{CP,T ‖D−
1
2 ‖∞,T , ‖r−

1
2 ‖∞,T },

and that CP,T is the Poincaré constant, namely the smallest positive constant such that

‖ϕ−MTϕ‖T ≤ CP,T ‖∇ϕ‖T , ∀ ϕ ∈ H1(T ), (18)
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whereMTϕ is the mean of ϕ in T , namely

MTϕ = |T |−1

∫
T
ϕ(x) dx.

Let us note that since T is considered being a convex bounded Lipschitz domain, we can introduce
the constant CP such that CP,T = CP hT , so that (18) is equivalent to

‖ϕ−MTϕ‖T ≤ CP hT ‖∇ϕ‖T , ∀ ϕ ∈ H1(T ),

where CP is no more dependent on T but satisfies CP ≤ π−1, see [4, Theorem 3.2] (see also [38]).
We further notice that by convention we set ‖r−

1
2 ‖∞,T =∞ if infx∈T r(x) = 0. The expression

of η∗ is similar by replacing uh by u∗h, θh by θ∗h, sh by s∗h, and f by q.

Theorem 2.4 With η and η∗ as defined before, we have

|R| ≤ 4ηη∗. (19)

Proof. We estimate each term of R separetely. For the first term, using the property (11), we
have

R1 =

∫
Ω

(f−div θh−ruh)(u∗−u∗h) dx =
∑
T∈T

∫
T

(f−div θh−ruh) ((u∗ − u∗h)−MT (u∗ − u∗h)) dx.

By Cauchy-Schwarz’s inequality, we find

|R1| ≤
∑
T∈T
‖f − div θh − ruh‖T ‖(u∗ − u∗h)−MT (u∗ − u∗h)‖T . (20)

Let us now show that

‖(u∗ − u∗h)−MT (u∗ − u∗h)‖T ≤ mT ‖u∗ − u∗h‖h,T . (21)

Indeed first using the estimate (18), we find

‖(u∗ − u∗h)−MT (u∗ − u∗h)‖T ≤ CP,T ‖∇(u∗ − u∗h)‖T
≤ CP,T ‖D−

1
2 ‖∞,T ‖D

1
2∇(u∗ − u∗h)‖T

≤ CP,T ‖D−
1
2 ‖∞,T ‖u∗ − u∗h‖h,T .

This shows (21) if infx∈T r(x) = 0. On the contrary if infx∈T r(x) > 0, then we directly write

‖(u∗ − u∗h)−MT (u∗ − u∗h)‖T ≤ ‖u∗ − u∗h‖T ≤ ‖r−
1
2 ‖∞,T ‖(r

1
2 (u∗ − u∗h)‖T .

In that case, this estimate combined with the previous one yield (21).
Coming back to (20) and using (21), we get

|R1| ≤
∑
T∈T
‖f − div θh − ruh‖TmT ‖u∗ − u∗h‖h,T .

By discrete Cauchy-Schwarz’s inequality, the definition of the estimator η and the estimate (17),
we find

|R1| ≤ ηη∗. (22)

For the second term, by Cauchy-Schwarz’s inequality, we have

|R2| ≤ ‖D−
1
2 (θh +D∇sh)‖‖D−

1
2 (θ∗h +D∇u∗)‖.
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Replacing ∇u∗ by ∇h(u∗ − u∗h) +∇hu∗h and using the triangular inequality, one gets

|R2| ≤ ‖D−
1
2 (θh +D∇sh)‖(‖D−

1
2 (θ∗h +D∇hu∗h)‖+ ‖D

1
2∇h(u∗ − u∗h)‖).

Using (17) and the definition of η and η∗, we obtain

|R2| ≤ 2ηη∗. (23)

For the last term R3, again Cauchy-Schwarz’s inequality yields

|R3| =
∣∣∣∣∫

Ω
r(u∗ − u∗h)(sh − uh) dx

∣∣∣∣ ≤ ‖r
1
2 (u∗ − u∗h)‖‖r

1
2 (sh − uh)‖

≤ ηη∗,

again by (17) and the defintion of η.
This estimate and the estimates (22), (23) lead to the conclusion.

Remark 2.5 According to the observations from [22, Figure 10] (see also [28]), the flux estimator
may overestimate the error due to the previous Theorem 2.4 and point 2 of Remark 2.3, therefore,
if necessary, it may be added to the approximate quantity of interest.

Remark 2.6 Since the estimator ηQOI and the right-hand side of (19) are fully computable, we
can estimate the ratio

R
ηQOI

,

by computing
4ηη∗
ηQOI

, during a refinement procedure based on the use of ηQOI and check if it

tends to zero or not. In the positive case, due to the identity (13) this means that the ratio

E
ηQOI

tends to one and will validate the asymptotic exactness of the estimator ηQOI .
In any case, we can use the estimate

|E| ≤ |ηQOI |+ 4ηη∗, (24)

that follows from (13) and (19), and then choose as estimator |ηQOI | + 4ηη∗ to implement an
adaptive algorithm.

Remark 2.7 As mentioned in the introduction, one may hope to obtain an effectivity index close
to unity if we use a higher order approximation space V ∗h to approximate the dual problem [2, 30].
This fact is confirmed by the numerical tests from subsection 4.1. However approximating u∗ by
a higher order finite element scheme takes more CPU time, which limits the practical interest
of such techniques. To overcome this issue, we can use a local higher order approximation of
u∗h ∈ Vh as proposed in [8, p. 41], a local subproblems approach (each subproblem lives on a
small subset of elements, that can be solved efficiently and in parallel using higher order finite
elements) as proposed in [42, p. 196], or a reconstruction of uh ∈ Vh and u∗h ∈ Vh on a coarse
mesh of size 2h with a higher order approximation as proposed in [42, p. 196]. These alternative
solutions can be used as they enter in our framework, recalling that in our approach u∗h is not
necessarily a Galerkin approximation of the solution u∗ of the dual problem and since Vh and
V ∗h are not necessarily included into H1

0 (Ω).
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Remark 2.8 Our approach applies to the diffusion-reaction equation with mixed boundary
conditions 

−div(D∇u) + ru = f in Ω,
u = 0 on ΓD,

−D∇u · n = gN on ΓN ,
(25)

where ΓD and ΓN are two open parts of ∂Ω such that Γ̄D ∩ Γ̄N = ∂Ω, and gN ∈ L2(ΓN ). Its
variational formulation is (6) by replacing H1

0 (Ω), by

H1
ΓD

(Ω) = {u ∈ H1(Ω) | u = 0 on ΓD},

with B defined by (5) and

F (v) =

∫
Ω
fv dx−

∫
ΓN

gNv dσ(x), ∀ v ∈ H1
ΓD

(Ω),

while the weak formulation of the adjoint problem is still (9) by replacing H1
0 (Ω) by H1

ΓD
(Ω).

For this problem, the flux reconstruction θh ∈ H(div,Ω) has to satisfy (11) but furthermore∫
e
(θh · n− gN ) dσ(x) = 0, ∀ e ∈ Eh s.t. e ⊂ Γ̄N ,

while the potential reconstruction sh of uh has to be in H1
ΓD

(Ω)∩ Vh and to satisfy
∫

Ω sh dx = 0
if meas ΓD = 0 and r = 0 (a.e.). Similarly the flux reconstruction θ∗h ∈ H(div,Ω) has to satisfy
(12) and ∫

e
θ∗h · n dσ(x) = 0, ∀ e ∈ Eh s.t. e ⊂ Γ̄N ,

while s∗h has to be in H1
ΓD

(Ω) and
∫

Ω s
∗
h dx = 0 if meas ΓD = 0 and r = 0 (a.e.). With these

slight modifications, Theorem 2.1 remains valid with the same definition for the estimator except
for ηO which is here given by

ηO =

∫
Ω

(f − div θh − ruh)u∗h dx+

∫
ΓN

(θh · n− gN )u∗h dσ(x),

the remainder being modified accordingly. Further using the results from [15, 17], estimates like
(16)-(17) are available, allowing to prove a result like Theorem 2.4.

Remark 2.9 Even if it is beyond the scope of this paper, our approach also applies to the
convection-diffusion-reaction equation{

−div(D∇u−wu) + ru = f in Ω,
u = 0 on ∂Ω,

(26)

where w ∈ L∞(Ω)d is divergence-free. Its weak formulation is given by (6) with

B(u, v) =

∫
Ω

((D∇u−wu) · ∇v + ruv) dx, ∀ u, v ∈ H1
0 (Ω),

while the weak formulation of the adjoint problem is given by (9). In this setting, Theorem 2.1
remains valid with a slight difference in the definition of η∇ that here takes the form

η∇ =

∫
Ω

(θh +D∇sh −wsh) ·D−1(θ∗h + wu∗h) dx.

Further using the results from [15, 17], estimates like (16)-(17) are available, allowing to prove a
result like Theorem 2.4.
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Remark 2.10 As in [28], the quantity of interest could be replaced by

Q(v) =

∫
Ω
qv dx+ 〈D∇v · n, u∗D〉,

for all v ∈ H1(Ω) such that div(D∇v) ∈ L2(Ω), where n is the outward unit normal vector
along ∂Ω, u∗D is a fixed function in H1/2(∂Ω) and the bracket means the duality pair between
H−1/2(∂Ω) and H1/2(∂Ω). In such a case, Theorem 2.1 remains valid by adding to ηQOI the
term

〈(D∇uh + θh) · n, u∗D〉

Moreover assuming that sh = u∗D on the boundary, then the estimate (17) remains valid (up to
some multiplicative factors in the definition of the different terms of η∗, see Lemma 7.1 of [45]
and the proof of Theorem 2 of [17]); and consequently Thereom 2.4 remains also valid.

3 The parabolic problem

3.1 Problem definition

We here consider the following heat type equation:
∂u

∂t
− div(D∇u) = f in C := Ω× I,
u(., t) = 0 on ∂Ω× I,
u(., 0) = u0 in Ω,

(27)

where the time interval I = (0, T ), with a fixed time T , D ∈ L∞(Ω; Rd×d) is a diffusion tensor
satisfying the same assumptions than in section 2. The datum f is supposed to satisfy f ∈ L2(C)
and the initial value u0 ∈ L2(Ω). Under these assumptions, problem (27) or equivalently

〈∂tu(·, t), v〉+ (D∇u(·, t),∇v) = (f(·, t), v), ∀ v ∈ H1
0 (Ω), ∀ a.e. t ∈ I, (28)

has a unique (weak) solution in Y := {y ∈ X := L2(I;H1
0 (Ω)) | ∂tu ∈ X ′ = L2(I;H−1(Ω))}.

Note that Y is a Hilbert space with the norm

‖y‖Y = ‖y‖X + ‖∂ty‖X′ ,

where the space-time energy norm is given by

‖y‖2X :=

∫ T

0
‖D

1
2∇y‖2 dt, ∀ y ∈ X.

Let us further notice that by [27, Theorem 3.4.1], Y is continuously embedded into C(Ī;L2(Ω)),
which gives a meaning to the initial condition in (27). For further purposes, we denote by CY
the smallest positive constant such that

‖y‖C([0,T ];L2(Ω)) ≤ CY ‖y‖Y , ∀ y ∈ Y. (29)

Note that an explicit upper bound on CY can be obtained, namely if we denote by CΩ the
smallest positive constant such that

‖u‖Ω ≤ CΩ‖D
1
2∇u‖, ∀ u ∈ H1

0 (Ω),

then one can show that
CY ≤

CΩ√
T

+
√

2,

see [12, p. 55]. Let us finally remark that CΩ ≤ ‖D
1
2 ‖∞,Ω

√
dπ
dΩ

, where dΩ is the diameter of Ω,
see [10, Theorem VI-3 and p. 301]
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3.2 The goal oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest given by
(see [32, 33] for a similar choice)

Q(v) =

∫
I
(g(·, t), v) dt+ (u∗T , v(·, T )), ∀ v ∈ C(Ī , L2(Ω)), (30)

where g ∈ L2(C) and u∗T ∈ L2(Ω) are given functions. As before the formulation of the adjoint
problem is based on the fact that we want to have the identity (8), where u∗ is solution of the
dual problem. We therefore reformulate problem (28) in the space-time variables, by taking a
test-function v ∈ Y and integrating in I to find

B(u, v) = F (v), ∀v ∈ Y,

where

B(u, v) =

∫
I

(〈∂tu(·, t), v〉+ (D∇u(·, t),∇v)) dt+

∫
Ω
u(x, 0)v(x, 0) dx,

F (v) =

∫
I

∫
Ω
f(x, t)v(x, t) dxdt+

∫
Ω
u0(x)v(x, 0) dx.

Hence the adjoint problem consists in finding u∗ ∈ Y solution of

B(v, u∗) = Q(v), ∀v ∈ Y. (31)

Indeed from the definition of B and Q, this problem is equivalent to∫
I

(〈∂tv(·, t), u∗〉+ (D∇v(·, t),∇u∗)) dt+

∫
Ω
u(x, 0)u∗(x, 0) dx =

∫
I
(g(·, t), v) dt+ (u∗T , v(·, T )).

Due to the regularities of v and u∗, the following integration by parts formula is valid∫
I
〈∂tv(·, t), u∗(·, t)〉 dt = −

∫
I
〈∂tu∗(·, t), v(·, t)〉 dt+ (v(·, T ), u∗(·, T ))− (v(·, 0), u∗(·, 0)).

Inserting this identity into the previous one, we obtain∫
I

(−〈∂tu∗(·, t), v(·, t)〉+ (D∇u∗(·, t),∇v)− (g, v)) dt+

∫
Ω

(v(x, T )(u∗(x, T )−u∗T (x)) dx = 0, ∀v ∈ Y.

Taking appropriate test-functions v and using Green’s formula, we find that u∗ is solution of
the backward heat type equation

−∂u
∗

∂t
− div(D∇u∗) = g in C := Ω× I,
u∗(., t) = 0 on ∂Ω× I,
u∗(., T ) = u∗T in Ω.

(32)

As before, its weak formulation is

−〈∂tu∗(·, t), v〉+ (D∇u∗(·, t),∇v) = (g(·, t), v), ∀ v ∈ H1
0 (Ω), ∀ a.e. t ∈ I, (33)

whose unique (weak) solution u∗ has the same regularity than before, namely u∗ ∈ L2(I;H1
0 (Ω))∩

C(Ī;L2(Ω)) with ∂tu∗ ∈ L2(I;H−1(Ω)). Integrating (33) in time and using the arguments above,
we see that this solution satisfies (31) and directly deduce that the identity (8) holds, which in
particular yields

Q(u) =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0)). (34)

12



3.3 The discrete setting of the parabolic problem

To discretize problem (27), we suppose given a sequence of discrete times {tn}Nn=0, with N ∈ N∗

such that t0 = 0, tN = T and tn < tn+1, for all n = 0, · · · , N −1. For all n = 1, · · · , N , we define
In = [tn−1, tn[ and let τn = tn− tn−1 be its length. For all n = 0, · · · , N , we also suppose given a
partition T n of polygonal elements T that covers exactly Ω. As before for simplicity, we assume
that the meshes are simplicial and matching. For all n = 0, · · · , N , we set hn = maxT∈T n hT .

In a standard a posteriori error analysis of the primal problem (27), the initial mesh T 0 is
used to approximate the initial data u0, while for n ≥ 1, T n corresponds to a refinement or a
coarsening of T n−1 as time evolves. Here the situation is more involved since our estimator is
also based on the solution of the dual problem. Anyway, since we use an implicit scheme in time
(for the primal and the dual problems), we suppose that for all n = 1, · · · , N , T n−1 and T n has
a common refinement mesh T n−1,n.

For all n = 0, · · · , N , we finally suppose given two finite-dimensional spaces V n
h and V ∗,nh of

H1(T n).
For a vector space W (of functions defined on Ω), and k = 0 or 1, we denote by

P kτ (W ) := {v ∈ L2(0, T,W ) | v|In ∈ Pk(In,W ), ∀ n = 1, · · · , N},

where P0(In,W ) (resp. P1(In,W )) denotes the space of functions from In to W constant (resp.
affine) in time. Note that any function v ∈ P 1

τ (W ) is uniquely determined by its values vn :=
v(·, tn) at tn, n = 0, · · · , N . On the contrary, any function v ∈ P 0

τ (W ) is uniquely determined
by its values vn = v(·, t)|In , n = 1, · · · , N . Let us finally observe that the time derivative ∂tv of
v ∈ P 1

τ (W ) belongs to P 0
τ (W ) and that

(∂tv)n = ∂tv|In =
vn − vn−1

τn
, ∀ n = 1, · · · , N. (35)

For shortness we set ∂tvn = (∂tv)n.
Let us also introduce an approximation f̃ ∈ P 0

τ (L2(Ω)) of f defined by

f̃n =
1

τn

∫
In

f(·, t) dt, ∀ n = 0, · · · , N.

As in [16], we suppose given an approximation uhτ ∈ P 1
τ (L2(Ω)) of the solution u of (28) such

that unhτ = uhτ (tn) ∈ V n
h , for all n = 0, · · · , N . Similarly, we suppose given an approximation

u∗hτ ∈ P 1
τ (L2(Ω)) of the solution u∗ of (33) such that u∗,nhτ = u∗hτ (tn) ∈ V ∗,nh , for all n = 0, · · · , N .

We also assume that a flux reconstruction θhτ and a potential reconstruction shτ are available
and satisfy the following conservation properties. θhτ ∈ P 0

τ (H(div,Ω)) and satisfies (compare
with [16, identity (4.5)])

(∂tu
n
hτ + div θnhτ − f̃n, 1)T = 0, ∀ T ∈ T n, n = 1, · · · , N. (36)

On the other hand, shτ ∈ P 1
τ (H1

0 (Ω)) and satisfies

(snhτ , 1)T ′ = (unhτ , 1)T ′ , ∀ T ′ ∈ T n,n+1, n = 0, · · · , N. (37)

A direct consequence of this property is that (see [16, Lemma 3.1])

(∂ts
n
hτ , 1)T = (∂tu

n
hτ , 1)T , ∀ T ∈ T n, n = 1, · · · , N, (38)

holds.
Note further that (38) and (36) lead to

(∂ts
n
hτ + div θnhτ − f̃n, 1)T = 0, ∀ T ∈ T n, n = 1, · · · , N. (39)
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In the same manner, we assume that a flux reconstruction θ∗hτ and a potential reconstruction
s∗hτ are available and satisfy the following conservation properties: θ∗hτ ∈ P 0

τ (H(div,Ω)) and
satisfies

(−∂tu∗,nhτ + div θ∗,nhτ − g̃
n, 1)T = 0, ∀ T ∈ T n, n = 0, · · · , N − 1. (40)

As before, s∗hτ ∈ P 1
τ (H1

0 (Ω) is such that

(s∗,nhτ , 1)T ′ = (u∗,nhτ , 1)T ′ , ∀ T ′ ∈ T n−1,n, n = 0, · · · , N, (41)

which yields
(∂ts

∗,n
hτ , 1)T = (∂tu

∗,n
hτ , 1)T , ∀ T ∈ T n, n = 0, · · · , N − 1. (42)

3.4 The error representation of the parabolic problem

The error on the quantity of interest is defined by

E = Q(u)−Q(uhτ ). (43)

Inspired by section 2.3, we show that it can be decomposed into a fully computable expression
and a remainder that will be estimated by a fully computable quantity.

Theorem 3.1 With the previous notation, we have

E = ηQOI +R, (44)

where the estimator ηQOI is given by

ηQOI = (u0 − shτ (0), u∗hτ (0)) + (u∗,Nhτ , shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt (45)

+

∫
I
(f(·, t)− f̃ , u∗hτ (·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u∗hτ (·, t)) dt

+

∫
I

∫
Ω

(θhτ +D∇shτ ) ·D−1θ∗hτ dxdt,

while the remainder term R is defined by

R = (u0 − shτ (0), (u∗ − u∗hτ )(0)) + (u∗T − u
∗,N
hτ , shτ (T )− uNhτ ) (46)

+

∫
I
(f(·, t)− f̃ , (u∗ − u∗hτ )(·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , (u∗ − u∗hτ )(·, t)) dt

−
∫
I

∫
Ω

(θhτ +D∇shτ ) ·D−1(D∇u∗ + θ∗hτ ) dxdt.

Proof. Using the definition (43) of the error and the identity (34), we have

E =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0))−
∫
I
(g(·, t), uhτ ) dt− (u∗T , uhτ (·, T )).

Introducing artificially shτ , we get

E =

∫
I
(f(·, t), u∗(·, t)) dt+(u0, u

∗(0))−
∫
I
(g(·, t), uhτ−shτ ) dt−

∫
I
(g(·, t), shτ ) dt−(u∗T , uhτ (·, T )).

14



Using (32), this is equivalent to

E =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0))−
∫
I
(g(·, t), uhτ − shτ ) dt (47)

+

∫
I
(∂tu

∗ + div(D∇u∗), shτ ) dt− (u∗T , uhτ (·, T )).

As shτ is in H1(I,H1
0 (Ω)) an integration by parts in space and in time leads to∫

I
(div(D∇u∗), shτ ) dt = −

∫
I

∫
Ω
D∇u∗ · ∇shτ dxdt,∫

I
(∂tu

∗, shτ ) dt = −
∫
I
(u∗, ∂tshτ ) dt+ (u∗(T ), shτ (T ))− (u∗(0), shτ (0)).

Inserting these identities in (47) we find

E = (u0 − shτ (0), u∗(0)) + (u∗(T ), shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I

((f(·, t), u∗(·, t))− (u∗, ∂tshτ )) dt

−
∫
I

∫
Ω
D∇u∗ · ∇shτ dxdt.

Adding and subtracting the term ∫
I

∫
Ω
∇u∗ · θhτ dxdt,

we find

E = (u0 − shτ (0), u∗(0)) + (u∗(T ), shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− ∂tshτ , u∗(·, t)) dt

+

∫
I

∫
Ω
∇u∗ · θhτ dxdt

−
∫
I

∫
Ω

(θhτ +D∇shτ ) · ∇u∗ dxdt.

Using Green’s formula in the fourth term of this right-hand side we find

E = (u0 − shτ (0), u∗(0)) + (u∗(T ), shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− div θhτ (·, t)− ∂tshτ , u∗(·, t)) dt

−
∫
I

∫
Ω

(θhτ +D∇shτ ) · ∇u∗ dxdt.

Replacing f by f − f̃ + f̃ , we find

E = (u0 − shτ (0), u∗(0)) + (u∗(T ), shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− f̃ , u∗(·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u∗(·, t)) dt

−
∫
I

∫
Ω

(θhτ +D∇shτ ) · ∇u∗ dxdt

Writing u∗ = u∗hτ + u∗ − u∗hτ and D∇u∗ = −θ∗hτ +D∇u∗ + θ∗hτ , we arrive at (44).
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Remark 3.2 As in Remark 2.3, our estimator ηQOI admits the decomposition

ηQOI = ηO + η∇ + ηH,

where

ηO =

∫
I
(f(·, t)− f̃n, u∗hτ (·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u∗hτ (·, t)) dt,

η∇ =

∫
I

∫
Ω

(θhτ +D∇shτ ) ·D−1θ∗hτ dxdt,

ηH = (u0 − shτ (0), u∗hτ (0)) + (u∗,Nhτ , shτ (T )− uNhτ )−
∫
I
(g(·, t), uhτ − shτ ) dt.

As before ηO represents the data oscillation with respect to the primal problem weighted by the
dual approximate solution, the flux estimator η∇ that measures the deviation of −D∇shτ from
the reconstructed flux θhτ and ηH that measures the deviation of uhτ from H1

0 (Ω).

Let us now show that the remainder can be explicitly estimated using the error estimators for
u and u∗ obtained in [16, Theorem 3.2]. Namely denote by η (resp. η∗) the estimator obtained
in this reference using the discrete spaces V n

h (resp. V ∗,nh ) to approximate the solution u of the
primal problem (28) (resp. u∗ of the dual problem (33)), so that

‖u− uhτ‖Y ≤ η + 3‖f − f̃‖X′ , (48)
‖u∗ − u∗hτ‖Y ≤ η∗ + 3‖g − g̃‖X′ , (49)

where

η = 3

{
N∑
n=1

∫
In

∑
T∈T n

(ηnR,T (t) + ηnDF,T (t))2 dt

} 1
2

+ ηIC

+

{
N∑
n=1

∫
In

∑
T∈T n

(ηnNC1,T (t))2 dt

} 1
2

+

{
N∑
n=1

τn
∫
In

∑
T∈T n

(ηnNC2,T (t))2 dt

} 1
2

,

with
ηIC =

√
2‖s0

hτ − u0‖,

and for all n = 1, ·, N , t ∈ In and T ∈ T n,

ηnR,T (t) = π−1‖D−
1
2 ‖∞,ThT ‖f̃ − ∂tshτ − div θnhτ‖T ,

ηnDF,T (t) = ‖D−
1
2 (θhτ +D∇shτ )‖T ,

ηnNC1,T (t) = ‖D
1
2∇(shτ − uhτ )‖T ,

ηnNC2,T (t) = π−1‖D−
1
2 ‖∞,ThT ‖∂t(shτ − uhτ )n‖T .

The estimator η∗ of the dual problem is defined similarly by replacing uhτ by u∗hτ , θhτ by
θ∗hτ , shτ by s∗hτ , s

0
hτ by s∗,0hτ , u0 by u∗T , f by q, and ∂t by −∂t.

Theorem 3.3 With η and η∗ as defined before, we have

|R| ≤ DY

(
η + ‖(shτ − uhτ )(T )‖+ ‖f − f̃‖X′

)(
η∗ + ‖(s∗hτ − u∗hτ )(0)‖+ ‖g − g̃‖X′

)
(50)

+ π−1hn‖D−
1
2 ‖∞,Ω‖f(·, t)− f̃‖Cη∗,

with DY =
√

2 max{1, 3CY }+ 11.
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Proof. We estimate each term of R separetely. For the first term, by Cauchy-Schwarz’s
inequality we have

|(u0 − shτ (0), (u∗ − u∗hτ )(0))| ≤ ‖u0 − shτ (0)‖‖(u∗ − u∗hτ )(0)‖. (51)

Note that
‖u0 − shτ (0)‖ ≤ 2−1/2η, (52)

therefore it remains to estimate the second factor of the right-hand side of (51). But since u∗hτ
does not belong to Y , we write (u∗ − u∗hτ )(0) = (u∗ − s∗hτ )(0) + (s∗hτ − u∗hτ )(0), and use the
triangular inequality to find

‖(u∗ − u∗hτ )(0)‖ ≤ ‖(u∗ − s∗hτ )(0)‖+ ‖(s∗hτ − u∗hτ )(0)‖. (53)

For the first term of this right-hand side we use the continuous embedding Y ↪→ C([0, T ];L2(Ω))
to find (see (29))

‖(u∗ − s∗hτ )(0)‖ ≤ CY ‖u∗ − s∗hτ‖Y . (54)

Then using the identity

‖u∗ − s∗hτ‖Y = ‖∂t(u∗ − s∗hτ )‖L2(0,T,H−1(Ω) +
( N∑
n=1

∫
In

∑
T∈T n−1,n

‖D
1
2∇(u∗ − s∗hτ )(t)‖2T dt

) 1
2
,

inserting artificially u∗hτ and using the triangular inequality, we find

‖u∗ − s∗hτ‖Y ≤ ‖∂t(u∗ − u∗hτ )‖L2(0,T,H−1(Ω) + ‖∂t(u∗hτ − s∗hτ )‖L2(0,T,H−1(Ω)

+
(N−1∑
n=0

∫
In

∑
T∈T n−1,n

‖D
1
2∇(u∗ − u∗hτ )(t)‖2T dt

) 1
2

+
(N−1∑
n=0

∫
In

∑
T∈T n−1,n

‖D
1
2∇(u∗hτ − s∗hτ )(t)‖2T dt

) 1
2
.

According to the definition of the norm Y for u∗ − u∗hτ and to the definition of η∗, we find

‖u∗ − s∗hτ‖Y ≤ ‖u∗ − u∗hτ‖Y + η∗ (55)
+ ‖∂t(u∗hτ − s∗hτ )‖L2(0,T,H−1(Ω).

For this last term, for all t ∈ (0, T ), we define the H−1(Ω)-norm by1

‖∂t(u∗hτ − s∗hτ )(t)‖H−1(Ω) = sup
ϕ∈H1

0 (Ω),ϕ6=0

∣∣∫
Ω ∂t(u

∗
hτ − s∗hτ )(t)ϕdx

∣∣
‖D

1
2∇ϕ‖

. (56)

Hence using (42), we may write∫
Ω
∂t(u

∗
hτ − s∗hτ )(t)ϕdx =

∑
T∈T n

∫
T
∂t(u

∗
hτ − s∗hτ )(t)(ϕ−MTϕ) dx,

whereMTϕ is the mean of ϕ on T . Therefore by the Poincaré inequality stating that

‖ϕ−MTϕ‖T ≤ π−1hT |ϕ|1,T ,

we find
‖ϕ−MTϕ‖T ≤ π−1hT ‖D−

1
2 ‖∞,T ‖D

1
2∇ϕ‖T ,

1as D is bounded and positive definite this norm is equivalent to the usual one.
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and hence∣∣∣∣∫
Ω
∂t(u

∗
hτ − s∗hτ )(t)ϕdx

∣∣∣∣ ≤ π−1
∑
T∈T n

hT ‖D−
1
2 ‖∞,T ‖∂t(u∗hτ − s∗hτ )(t)‖T ‖D

1
2∇ϕ‖T .

Using the discrete Cauchy-Schwarz’s inequality and inserting this estimate in (56), we obtain

‖∂t(u∗hτ − s∗hτ )(t)‖H−1(Ω) ≤ π−1
( ∑
T∈T n

h2
T ‖D−

1
2 ‖2∞,T ‖∂t(u∗hτ − s∗hτ )(t)‖2T

) 1
2
.

Integrating the square of this estimate in 0, T ) and using the definition of η∗, we arrive at

‖∂t(u∗hτ − s∗hτ )(t)‖L2(0,T,H−1(Ω)) ≤ η∗,

and using it into (55) yields

‖u∗ − s∗hτ‖Y ≤ ‖u∗ − u∗hτ‖2Y + 2η∗.

The estimate (49) then leads to

‖u∗ − s∗hτ‖Y ≤ 3(η∗ + ‖g − g̃‖X′). (57)

Combining this estimate with (54) leads to

‖(u∗ − s∗hτ )(0)‖ ≤ 3CY (η∗ + ‖g − g̃‖X′),

that can be used in (53) to find

‖(u∗ − u∗hτ )(0)‖ ≤ max{1, 3CY }(η∗ + ‖(s∗hτ − u∗hτ )(0)‖+ ‖g − g̃‖X′). (58)

Coming back to (51) and using this last estimate and (52), we finally find

|(u0 − shτ (0), (u∗ − u∗hτ )(0))| ≤ 2−
1
2 max{1, 3CY }η(η∗ + ‖(s∗hτ − u∗hτ )(0)‖+ ‖g − g̃‖X′). (59)

The second term is the symmetric of the first one by exchanging the rule of u and u∗, hence

|(u∗T − u
∗,N
hτ , shτ (T )− uNhτ )| ≤ 2−

1
2 max{1, 3CY }(η + ‖(shτ − uhτ )(T )‖+ ‖f − f̃‖X′)η∗. (60)

Concerning the third term, we again introduce artificially s∗hτ to get

R3 :=

∫
I
(f(·, t)− f̃ , (u∗ − u∗hτ )(·, t)) dt =

∫
I
(f(·, t)− f̃ , (u∗ − s∗hτ )(·, t)) dt

+

N∑
n=1

∫
In

(f(·, t)− f̃n, (s∗hτ − u∗hτ )(·, t)) dt,

and by using a duality argument for the first term and Cauchy-Schwarz’s inequality for the
second one, we obtain

|R3| ≤ ‖f(·, t)− f̃‖X′‖u∗ − s∗hτ‖X

+
N∑
n=1

∫
In

∑
T∈T n,n−1

‖f(·, t)− f̃n‖T ‖(s∗hτ − u∗hτ )(·, t)‖T dt.

Due to the property (41) and the Poincaré inequality, we find

|R3| ≤ ‖f(·, t)− f̃‖X′‖u∗ − s∗hτ‖X

+ π−1
N∑
n=1

∫
In

∑
T∈T n,n−1

‖f(·, t)− f̃n‖ThT ‖∇(s∗hτ − u∗hτ ))(·, t)‖T dt.
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Using the definition of the broken gradient of u∗hτ and the fact that hT ≤ hn for all T ∈ T n−1,n,
we get

|R3| ≤ ‖f(·, t)− f̃‖X′‖u∗ − s∗hτ‖X

+ π−1hn‖D−
1
2 ‖∞,Ω

N∑
n=1

∫
In

∑
T∈T n

‖f(·, t)− f̃n‖T ‖D
1
2∇n−1,n(s∗hτ − u∗hτ ))(·, t)‖T dt.

Hence using Cauchy-Schwarz’s inequality, we find

|R3| ≤ ‖f(·, t)− f̃‖X′‖u∗ − s∗hτ‖X + π−1hn‖D−
1
2 ‖∞,Ω‖f(·, t)− f̃‖Cη∗.

Finally as by definition ‖u∗ − s∗hτ‖X ≤ ‖u∗ − s∗hτ‖Y , the estimate (57) yields

|R3| ≤ 3‖f(·, t)− f̃‖X′(η∗ + ‖g − g̃‖X′) + π−1hn‖D−
1
2 ‖∞,Ω‖f(·, t)− f̃‖Cη∗. (61)

For the fourth term again inserting artificially s∗hτ we get

R4 :=

N∑
n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u∗ − u∗hτ )(·, t))T dt

=
N∑
n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u∗ − s∗hτ )(·, t))T dt

+
N∑
n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (s∗hτ − u∗hτ )(·, t))T dt.

For the first term using (39), we can replace u∗ − s∗hτ by u∗ − s∗hτ −MT (u∗ − s∗hτ ) on T ∈ T n,
while for the second term we reorganize the summation on the triangulation T n−1,n and then
find

R4 =
N∑
n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u∗ − s∗hτ )(·, t)−MT (u∗ − s∗hτ ))T dt

+
N∑
n=1

∫
In

∑
T ′∈T n−1,n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (s∗hτ − u∗hτ )(·, t))T ′ dt.

Using Poincaré inequality for each term of this right-hand side (recalling the property (41)), we
find

|R4| ≤ π−1
N∑
n=1

∫
In

∑
T∈T n

hT ‖D−
1
2 ‖∞,T ‖f̃n(·, t)− div θhτ (·, t)− ∂tshτ‖T ‖D

1
2∇(u∗ − s∗hτ )(·, t)‖T dt

+π−1
N∑
n=1

∫
In

∑
T ′∈T n−1,n

hT ′‖D−
1
2 ‖∞,T ′‖f̃n(·, t)− div θhτ (·, t)− ∂tshτ‖T ′‖D

1
2∇(s∗hτ − u∗hτ )‖T ′ dt.

Using Cauchy-Schwarz’s inequality and reorganizing the summation in the second term (using
the fact that hT ′ ≤ hT , for all T ′ ∈ T n−1,n such that T ′ ⊂ T ∈ T n), we get

|R4| ≤ η(‖u∗ − s∗hτ‖Y + η∗).

As before the estimate (57) yields

|R4| ≤ 3η(η∗ + ‖g − g̃‖X′) + ηη∗. (62)
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It remains the last term that can be transformed as

R5 :=

∫
I

∫
Ω

(θhτ +D∇shτ ) ·D−1(D∇u∗ + θ∗hτ ) dxdt

=

∫
I

∫
Ω

(θhτ +D∇shτ ) · ∇(u∗ − s∗hτ ) dxdt

+

∫
I

∫
Ω

(θhτ +D∇shτ ) ·D−1(D∇shτ + θ∗hτ ) dxdt.

Hence Cauchy-Schwarz’s inequality directly yields

|R5| ≤ η(‖u∗ − s∗hτ‖Y + η∗).

With the help of the estimate (57) we again obtain

|R5| ≤ 3η(η∗ + ‖g − g̃‖X′) + ηη∗. (63)

The conclusion follows from the estimates (59), (60), (61) (62), and (63).
Note that Remark 2.6 remains valid for our parabolic problem (27). ,

4 Numerical examples

In this section, we present some illustrative numerical examples that validate our theoretical
results. Before going on, let us notice that all numerical simulations are realized by the free
scientific computing software FreeFem++ [19].

4.1 Diffusion-reaction problems

In this subsection, we aim to illustrate the theoretical results obtained for diffusion problems,
and specifically Theorems 2.1 and 2.4. These tests are performed in the case uh ∈ H1

0 (Ω), so
that we always take sh = uh.

4.1.1 Diffusion problem : regular solution

We first consider the same benchmark as the one proposed in [30], section 8 and [28], section
6.1. The primal problem (4) is defined with d = 2, Ω =]0, 1[2, D = IR2

2 and r = 0. The
exact solution is chosen equal to u(x, y) = 104x(1 − x)y(1 − y)e−100(ρ(x,y))2 with ρ(x, y) =
((x−0.752)+(y−0.75)2)1/2 (see Figure 1(a)), and the right-hand side f is computed accordingly.
The dual problem is defined by (10) with q = 1ω and ω = {(x, y) ∈ Ω : 1.5 ≤ x+ y ≤ 1.75} (see
Figure 1(b)).

The approximation uh of u solution of the primal problem is made using standard conforming
P1 finite elements on regular meshes made of triangles (see Figure 2 for the first three refinements),
and the corresponding flux reconstruction θh is approximated using some standard RT1 finite
elements (Raviart-Thomas finite elements of degree 2 on each triangle). The approximation u∗h
of u∗ solution of the dual problem is made using standard conforming P2 finite elements on the
same meshes, and the corresponding flux reconstruction θ∗h is approximated using some standard
RT2 finite elements (Raviart-Thomas finite elements of degree 3 on each triangle).

For each mesh, the value of E = Q(u− uh) defined by (7) is computed, as well as the one of
ηQOI defined by (14). We plot on Figure 3(a) the values of E as well as the ones of ηQOI and
4ηη∗ as a function of h in a log-log scale. Using (13), we also plot the value of |R| which can be

2here and below, IR2 means the 2× 2 identity matrix

20



IsoValue
0
13.966
27.932
41.8979
55.8639
69.8299
83.7959
97.7618
111.728
125.694
139.66
153.626
167.592
181.558
195.524
209.49
223.456
237.422
251.388
265.354
279.32
293.285
307.251
321.217
335.183
349.149
363.115

(a) (b)

Figure 1: Diffusion problem with regular solution: (a) exact solution; (b) loading term q in dual
problem.

Mesh 1 - h = 1/4 Mesh 2- h = 1/8 Mesh 3 - h = 1/16

Figure 2: Unstructured regular meshes, first three refinements.
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computed by R = Q(u− uh)− ηQOI .

First of all, we remark that E goes towards zero at the order O(h2), which is the expected
behaviour since u ∈ H2(Ω) and uh is approximated by P1 finite elements. Moreover, the estimator
ηQOI converges towards zero also in O(h2), while the remainder R superconverges. Figure 3(b)
displays the effectivity index Ieff defined by

Ieff = |E/ηQOI |. (64)

Whatever the value of h, the effectivity index Ieff is always nearly equal to one, what illustrates
on this benchmark the asymptotically exactness of the estimator ηQOI . Coming back to Figure
3(a), we observe that the value of 4ηη∗ goes towards zero faster than E and ηQOI , while remaining
quite larger for coarse meshes. Let us now introduce the total effectivity index Itoteff defined by

Itoteff = |E|/(|ηQOI |+ 4ηη∗). (65)

We see in Figure 3(c) that Itoteff is smaller than one as theoretically expected (see (24)). But
thanks to the superconvergence of 4ηη∗, it is also expected to converge towards one when h goes
towards zero.

(a) (b) (c)

Figure 3: Diffusion problem, D = IR2 , regular solution: (a) rates of convergence; (b) effectivity
index Ieff ; (c) total effectivity index Itoteff .

Remark 4.1 If we solve the same problem, but this time using conforming P1 finite elements
for the computation of u∗h and RT1 finite elements for the computation of θ∗h (in other words, the
same finite element spaces for the dual problem than for the primal one), then the results are not
the same. Figure 4 displays the same quantities as the ones in Figure 3. As previoulsy, it can
be observed in Figure 4(a) that the error E and the estimator ηQOI both converge towards zero
at the order O(h2). Nevertheless, the remainder R does not superconverge anymore, even if it
remains here very small compared to E and ηQOI . It explains the fact that Ieff is slightly worse
(around 0.93 instead of 1 for the smallest values of h, see Figure 4(b)). Moreover, it can also be
seen in Figure 4(a) that 4ηη∗ is no more superconvergent. It remains larger than E and ηQOI ,
converging towards zero at the same order. That is why the value of Itoteff converges towards a
constant significantly smaller than one. This test illustrates the fact that for a regular solution,
if the dual problem is approximated by the same spaces than the ones used for the resolution of
the primal problem, then the remainder term R (or its bound 4ηη∗) is not necessarily negligible,
and that the asymptotic exactness can be lost. Nevertheless, it is clear that Itoteff always remains
bounded by one, and that the estimator |ηQOI |+ 4ηη∗ is always an upper bound for the error |E|,
as theoretically expected from (24).
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(a) (b) (c)

Figure 4: Diffusion problem, D = IR2 , regular solution with same finite element spaces for primal
and dual problems: (a) rates of convergence; (b) effectivity index Ieff ; (c) total effectivity index
Itoteff .

4.1.2 Diffusion problem : singular solution

This time we consider a singular case. The primal problem (4) is defined with d = 2,
Ω =] − 1, 1[2 and r = 0. The diffusion coefficient D is piecewise constant in Ω and defined by
D = di IR2 in Ωi, 1 ≤ i ≤ 4, with Ω1 = (0, 1)×(0, 1), Ω2 = (−1, 0)×(0, 1), Ω3 = (−1, 0)×(−1, 0)
and Ω4 = (0, 1)× (−1, 0), 0 < d1 = d3 = a < 1 and d2 = d4 = 1. Defining the singular exponent

α =
4

π
arctan(

√
a), the exact solution as shown in Figure 5(a) is given by

u(x, y) = p(x, y)S(x, y),

where p(x, y) = (1− x4)(1− y4) is a truncation function and S(x, y) = ραv(θ) with

ρ =
√
x2 + y2 , θ =

{
arctan(y/x) in Ω1 ∪ Ω4,

π + arctan(y/x) in Ω2 ∪ Ω3,

and

v(θ) =



sin
(
α
(
θ − π

4

))
in Ω1,

√
a cos

(
α
(3π

4
− θ
))

in Ω2,

sin
(
α
(5π

4
− θ
))

in Ω3,

−
√
a cos

(
α
(π

4
+ θ
))

in Ω4.

The right-hand side f is computed accordingly. Let us note that in such a configuration, for
any ε > 0 we have u ∈ H1+α−ε(Ω) (see e.g. the appendix of [9] for a similar configuration).

The dual problem is defined by (10) with q = 1ω and ω = (0, 0.5) × (−0.25, 0.25) (see
Figure 5(b)). All the spatial discretizations are done similarly to the regular case of section 4.1.1.

The obtained results are respectively displayed in Figures 6 and 7 for a = 1/5 and a = 1/20,
respectively leading to the values of α ≈ 0.53 and α ≈ 0.28. From these figures, we may notice
that the error, the estimator ηQOI and 4ηη∗ all converge towards zero with order O(h2α). In both
cases, Ieff remains in the order of unity but is no more close to one. The remainder R seems to
be no more superconvergent. Moreover, 4ηη∗ significantly overestimates the value of |R|, leading
to the convergence of Itoteff towards values less than one. This means that for such problems with
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IsoValue
-0.179041
-0.165269
-0.151497
-0.137724
-0.123952
-0.110179
-0.0964069
-0.0826345
-0.0688621
-0.0550897
-0.0413172
-0.0275448
-0.0137724
4.13558e-15
0.0137724
0.0275448
0.0413172
0.0550897
0.0688621
0.0826345
0.0964069
0.110179
0.123952
0.137724
0.151497
0.165269
0.179041

(a) (b)

Figure 5: Diffusion problem with singular solution: (a) exact solution; (b) loading term q in dual
problem.

singular solutions, an adaptive algorithm should be based on the sum of the estimator |ηQOI |
and of the product 4ηη∗, since they have the same rate of convergence, even with a higher order
approximation of the dual problem.

(a) (b) (c)

Figure 6: Diffusion problem, singular solution, a = 1/5: (a) rates of convergence; (b) effectivity
index Ieff ; (c) total effectivity index Itoteff .

4.1.3 A boundary layer problem

Now, we investigate the behaviour of the estimator in the case of a solution with a boundary
layer, in order to test the robustness of the estimator in this configuration. For an arbitrary
ε ∈ R+, we consider the problem (4) with d = 2, Ω =]0, 1[2, D = ε2IR2 and r = 1. We choose

f(x, y) = 2ε2vε(x) + y(1− y), ∀(x, y) ∈ Ω,

with

vε(x) = 1 + αεe
−x
ε − (1 + αε)e

x
ε , ∀x) ∈ (0, 1), and αε =

1− e
1
ε

2 sinh 1
ε

,

so that the exact solution uε is given by uε(x, y) = vε(x)y(1− y). Clearly we have uε = 0 on ∂Ω,
and a boundary layer appears in the vicinity of the boundaries x = 0 and x = 1 when ε tends
towards zero (see Figure 8).

Like in section 4.1.1, the dual problem is defined by (10) with q = 1ω and ω = {(x, y) ∈ Ω :
1.5 ≤ x+ y ≤ 1.75} (see Figure 1(b)). Figures 9, 10 and 11 display the rates of convergence and
the effectivity index, similarly to Figure 3, respectively for ε = 1, ε = 10−1 and ε = 10−2.
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(a) (b) (c)

Figure 7: Diffusion problem, singular solution, a = 1/20: (a) rates of convergence; (b) effectivity
index Ieff ; (c) total effectivity index Itoteff .

ε = 1 ε = 10−1 ε = 10−2

Figure 8: Reaction-diffusion problem with a boundary layer solution: isovalues of uε.

(a) (b)

Figure 9: A boundary layer problem, ε = 1: (a) rates of convergence; (b) effectivity index Ieff .
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(a) (b)

Figure 10: A boundary layer problem, ε = 10−1: (a) rates of convergence; (b) effectivity index
Ieff .

(a) (b)

Figure 11: A boundary layer problem, ε = 10−2: (a) rates of convergence; (b) effectivity index
Ieff .

26



Whatever the value of ε, the conclusions are the same as the ones of section 4.1.1 devoted to
the pure diffusion regular problem : E as well as ηQOI go towards zero at the order O(h2). Ieff
tends towards one when h goes towards zero. Finally, the value of 4ηη∗ goes towards zero faster
than E . Consequently, in accordance with the theory, the estimation is robust in ε.

4.2 Parabolic problems

In this subsection, we aim to illustrate the theoretical results obtained for parabolic problems,
and specifically Theorems 3.1 and 3.3. These tests are performed in the case unhτ ∈ H1

0 (Ω), so
that we always take shτ = uhτ .

4.2.1 The heat equation

We start to propose a simple problem, defining the primal problem by (27) with d = 2, Ω =]0, 1[2,
T = 1.0 and D = IR2 . We choose the exact solution being equal to u(x, y, t) = x2y2(x− 1)2(y −
1)2 sin(t) and compute the right-hand side f accordingly. The dual problem is defined by (32),

where we choose g = 0 and u∗T = e−
ρ(x,y)2

32 ln 10 with ρ(x, y) = ((x− 0.5)2 + (y − 0.5)2)1/2.

Concerning the time approximation, we use the definition of (∂tu)n given in (35) to compute
an implicit-Euler time integration for the computation of the approximated solution of the primal
problem, where un is the approximation of u(tn, ·) and solution of the elliptic problem:

un − un−1

τ
− div(D∇un) = f̃n in Ω,

un = 0 on ∂Ω,
u0 = u0 in Ω.

(66)

Since the scheme is fully implicit in time, there is no need to impose any stability condition
linking h and τ . For accuracy reasons, we choose τ = h. Similarly to the stationary tests, the
spatial approximation unh of un is made using standard P1 finite elements and the corresponding
flux reconstruction θh is approximated using some standard RT1 finite elements. The time
integration of the dual problem is also done using an implicit-Euler scheme (with τ = h), where
u∗,n is the approximation of u∗(tn, ·) and solution of:

−u
∗,n − u∗,n−1

τ
− div(D∇u∗,n−1) = g in Ω,

u∗,n−1 = 0 on ∂Ω,
u∗,N = u∗T in Ω.

(67)

The spatial approximation u∗,nh of u∗,n is made using standard P2 finite elements on the same
meshes, and the corresponding flux reconstruction θ∗h is approximated using some standard RT2

finite elements.

For each mesh, we compute the value of E = Q(u− uh) defined by (43) as well as the one of
ηQOI defined by (45). We plot on Figure 12(a) the values of E as well as the ones of ηQOI and
ηη∗ as functions of h in a log-log scale. First of all, we remark that the error E goes towards
zero at the order O(h), which is the expected behaviour since even if u is regular enough and
uh is approximated by P1 finite elements, the time integration is of order one and the choice
of τ = h leads to a global rate of convergence equal to one. Moreover, the estimator ηQOI
converges towards zero at the same rate of convergence. Figure 12(b) displays the effectivity
index Ieff = E/ηQOI as a function of h. As for the stationary tests with regular solutions, it
is always nearly equal to one and converges towards one. Consequently the estimator ηQOI is
asymptotically exact. Finally, coming back to Figure 12(a), we see that the value of ηη∗ goes
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towards zero faster than E (here around the order O(h1.75)), what illustrates the fact that R is
clearly superconvergent (see (50)).
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Figure 12: Heat equation: (a) rates of convergence; (b) asymptotical exactness.

4.2.2 A moving Gaussian

Finally we consider a more difficult test coming from [34]. This time, the primal problem is
defined by (27) with d = 2, Ω =]0, 1[2, T = 1.0 and D = IR2 . We choose the exact solution being
equal to u(x, y, t) = β(t) e−50(r(x,y,t))2 with r(x, y, t) = ((x − 0.4t − 0.3)2 + (y − 0.4t − 0.3)2)1/2

and β(t) defined by:

β(t) =

{
1− e−50(0.98t+0.01)2 if t ≤ 0.5,

1− e−50(1−0.98t+0.01)2 else.

It consists in a moving Gaussian from the position (0.3, 0.3) to the position (0.7, 0.7) at a non
constant speed. As usual, the right-hand side f is computed accordingly. The dual problem is

defined by (32), where we choose g = 0 and u∗T = e−
ρ(x,y)2

32 ln 10 with ρ(x, y) = ((x − 0.7)2 + (y −
0.7)2)1/2.

For the numerical simulation, we set τ = h/10, all the other numerical parameters are the
same as the ones of section 4.2.1. We can see in Figure 13(a) that once again, the estimator ηQOI
converges towards zero at the order O(h) as theoretically expected, whereas the product η η∗ goes
faster towards zero (in the order O(h1.75)). As expected by Theorems 3.1 and 3.3, Figure 13(b)
illustrates the asymptotic exactness of the estimator since the effectivity index Ieff = E/ηQOI
goes towards 1 when h goes towards zero.

5 Conclusion

In this paper, we have performed goal-oriented a posteriori error estimations for conforming
and nonconforming discretizations of elliptic and parabolic problems. It is based on H(div)-
conforming flux reconstructions and H1-conforming potential reconstructions. Our main novelty
is a decomposition of the error into a fully computable error estimator and a remainder, this
remainder being bounded by the product of the estimators of the direct and dual problems, up
to an explicit multiplicative factor (see Theorems 2.1 and 2.4 for reaction-diffusion problems
and Theorems 3.1 and 3.3 for parabolic problems). Various numerical results illustrate that the
error in the quantity of interest is estimated precisely by the error estimator, with an effectivity
index of order 1. Nevertheless, in some particular cases, we have observed that this asymptotic
exactness does not hold and that the use of the additional term, namely the product of the
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Figure 13: Moving Gaussian: (a) rates of convergence; (b) asymptotical exactness.

estimators of the direct and dual problems (that we prove that it bounds the remainder), should
be required in adaptive algorithms.
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