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Abstract

We present unified frameworks for goal-oriented estimates for elliptic and parabolic
problems that combine the dual-weighted residual method with equilibrated flux reconstruction.
These frameworks allow to analyze simultaneously different approximation schemes for the
space discretization of the primal and the dual problems, as conforming or nonconforming
finite element method, discontinuous Galerkin methods, or finite volume method. Our main
contribution is the splitting of the error on the quantity of interest into a fully computable
estimator and a remainder that is bounded, up to an explicit constant, by the product of the
fully computable estimators of the primal and dual problems. Some illustrative numerical
examples that validate our theoretical results are finally presented.

AMS (MOS) subject classification: 65N30, 65N15, 65M15.
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1 Introduction

Many engineering problems require computing some quantities of interest, like the local or global
mean value of the solution. These quantities of interest are usually linear functionals on a vector
space that contains the solution of the considered boundary value problem. Error estimations
on such functionals are called goal-oriented error estimations. The main ingredient for such
estimations relies on the resolution of the dual problem. Several approaches have been proposed
for elliptic problems, let us quote: goal-oriented error estimates based on energy norm of the errors
on the solutions of the primal and dual problems [23, 22, 2, 1], the dual weighted residual method
[4, 3, 16], the constitutive relation error [13, 12, 24, 25], and the equilibrated flux reconstruction
method [17, 15, 26]. To the best of our knowledge, there exist few papers concerning goal-oriented
error estimations for parabolic problems [18, 19, 20], where the estimations are based on energy
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norm of the errors on the solutions of the primal and dual problems.

The goal of this paper is then to extend the equilibrated flux reconstruction method (combined
with the dual-weighted residual method) for general reaction-diffusion problems and to parabolic
problems. Indeed based on equilibrated flux reconstructions, we furnish a decomposition of the
error E on the quantity of interest in the form

E = ηQOI +R, (1)

where ηQOI =
∑J

j=1 ηj , each term ηj being fully computable, with some positive integer J
depending on the problem, is our proposed estimator on the quantity of interest, while the
remainder term R may depend on the solution of the primal and dual problems but for which
we have the bound

|R| ≤ Cηη∗, (2)

where C is a positive constant independent of the meshsize (and time step size) as explicit as
possible, and η (resp. η∗) is an estimator of the error of the solution of the primal (resp. dual)
problem using an approximation in a finite dimensional space Vh (resp. V ∗

h ) not necessarily
included into the energy space. These two properties lead to

|E| ≤ |ηQOI |+ Cηη∗, (3)

and therefore one can chose as error estimator |ηQOI |+Cηη∗ to implement an adaptive algorithm.

On the other hand, if we use a higher order approximation space V ∗
h to approximate the

dual problem, one may hope to obtain an efficient error estimator (effectivity index close to 1)
[2, 17]. In other words, the remainder term is negligible, hence it may be disregarded and the
sole term |ηQOI | can be used as error estimator. More precisely since the estimator ηQOI and
the right-hand side of (2) are fully computable, we can estimate the ratio

R
ηQOI

,

during a refinement procedure based on the use of ηQOI and check if it tends to zero or not. In
the positive case, due to the identity (1) this means that the ratio

E
ηQOI

tends to 1 and will validate the asymptotic exactness of the estimator |ηQOI |.
For a purely diffusion problem with piecewise constant diffusion tensor and piecewise polynomial

righ-hand sides, this approach was successfully developed in [15], we here extend their approach to
reaction-diffusion problems and to parabolic problems. For a diffusion problem, the decomposition
(1) is also obtained in [17], but with an a priori bound for the remainder, which is less interesting
for adaptive purposes.

In many cases, the use of |ηQOI | is sufficient to obtain an efficient error estimator, but it has
been observed in [12, 13, 15] that it can overestimate the error. As we can compare all ηi and ηη∗,
we can improve the approximated value of the quantity of interest by adding the dominant term
from ηQOI . For instance if η1 reveals to be a dominant term, we can add η1 to the approximated
value of the quantity of interest and use |ηQOI − η1| + Cηη∗ as error estimator, see [13, Figure
10] and [15, Remark 4.7 and Theorem 4.8].

In summary, the developed approach is flexible and may be then adapted to the different
situations to treat.
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Let us introduce some notation used in the paper. In the whole paper Ω ⊂ Rd, d ∈ N, d ≥ 2,
is an open, bounded and connected set with a Lipschitz and polyhedral boundary ∂Ω. The usual
norm and semi-norm of Hs(Ω) (s ≥ 0) are denoted by ∥ · ∥s,Ω and | · |s,Ω, respectively. In this
paper we consider real valued function spaces. For s = 0 we drop the index s. Similarly the inner
product of L2(Ω) will be denoted by (·, ·) (resp. ∥ · ∥). The duality pairing between H−1(Ω) (the
dual space of H1

0 (Ω)) and H1
0 (Ω) will be denoted by ⟨·, ·⟩. By a ≲ b, we mean that there exists

a constant C > 0 independent of a, b, such that a ≤ Cb.

The paper is organized as follows. Section 2 is devoted to the reaction-diffusion problem.
The problem is defined in subsection 2.1 and the goal oriented functional as well as the adjoint
problem are introduced in subsection 2.2. Then the discrete setting is defined in subsection
2.3 and the error representation given in subsection 2.4. The main results about the reaction-
diffusion problem are obtained in Theorems 2.1 and 2.3. Similarly, section 3 is devoted to the
parabolic problem and follows the same process from subsection 3.1 to subsection 3.4. The main
results about the parabolic problem are obtained in Theorems 3.2 and 3.4. Finally, section 4
presents some numerical tests in order to illustrate the previous theoretical results.

2 The reaction-diffusion problem

2.1 Problem definition

In this section we consider the following reaction-diffusion problem{
−div(D∇u) + ru = f in Ω,

u = 0 on ∂Ω,
(4)

where D ∈ L∞(Ω;Rd×d) is a diffusion tensor which is supposed to be a symmetric matrix valued
functions that is uniformly bounded from below, namely

D(x)ξ · ξ ≳ |ξ|2,∀ξ ∈ Rd, and a.a. x ∈ Ω,

while r ∈ L∞(Ω) is the reaction function supposed to be nonnegative. The source term f is
supposed to be in L2(Ω).

By setting

B(u, v) =

∫
Ω
(D∇u · ∇v + ruv) dx,∀u, v ∈ H1

0 (Ω), (5)

and
F (v) =

∫
Ω
fv dx, ∀v ∈ H1

0 (Ω),

the variational formulation of problem (4) is

B(u, v) = F (v), ∀v ∈ H1
0 (Ω), (6)

that has a unique (weak) solution u in H1
0 (Ω).

2.2 The goal oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest [17, 15]
given by

Q(v) =

∫
Ω
qv dx, ∀v ∈ L2(Ω), (7)

where q ∈ L2(Ω) is a given function.
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Accordingly the associated dual problem consists in looking for u∗ solution of the adjoint
equation {

−div(D∇u∗) + ru∗ = q in Ω,
u∗ = 0 on ∂Ω.

(8)

As before, its weak formulation is

B(u∗, v) = Q(v), ∀v ∈ H1
0 (Ω), (9)

that has a unique (weak) solution u∗ in H1
0 (Ω).

2.3 The discrete setting of the reaction-diffusion problem

To discretize problems (6) and (9), we suppose given a partition T of Ω into polygonal elements
T that covers exactly Ω. For simplicity, we assume that the mesh is simplicial and matching
(extensions to general polygonal and nonmatching meshes are possible). On such a mesh we
introduce the so-called broken Sobolev space

H1(T ) = {v ∈ L2(Ω) | v|T ∈ H1(T ),∀T ∈ T }.

As in [10, 15], in order to analyse simultaneously different approximation schemes, the primal
problem is approximated in a finite dimensional subspace Vh of H1(T ), while the dual problem
will be approximated in a finite dimensional subspace V ∗

h of H1(T ), that may be different from Vh.
In other words, we suppose given an approximation uh ∈ Vh of the solution u of (6) and u∗h ∈ V h

h

of the solution u∗ of (9). We further assume that a flux reconstruction θh is available (using
uh and the datum f), belongs to H(div,Ω) and satisfies the following conservation properties
(compare with [10, identity (18)])

(div θh + ruh − f, 1)T = 0,∀T ∈ T . (10)

In the same manner, we assume that a flux reconstruction θ∗h can be constructed, belongs to
H(div,Ω) and satisfies the following conservation properties

(div θ∗h + ru∗h − q, 1)T = 0,∀T ∈ T . (11)

With the help of these objects, in the spirit of [17] (see also [15]), let us show that the error
E = Q(u − uh) on the quantity of interest can be expressed into a fully computable expression
and a remainder that will be estimated by a fully computable quantity (but is usually of higher
order and can then be disregarded).

2.4 The error representation of the reaction-diffusion problem

Theorem 2.1 Let sh ∈ H1
0 (Ω) be a potential reconstruction of uh, then we have

E = Q(u− uh) = ηQOI +R, (12)

where the estimator ηQOI is given by

ηQOI =

∫
Ω
q(sh − uh) dx (13)

+

∫
Ω
(f − div θh − ruh)u

∗
h dx

+

∫
Ω
(θh +D∇sh) ·D−1θ∗h dx

−
∫
Ω
ru∗h(sh − uh) dx,
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while the remainder term R is defined by

R =

∫
Ω
(f − div θh − ruh)(u

∗ − u∗h) dx

−
∫
Ω
(θh +D∇sh) · (D−1θ∗h +∇u∗) dx

−
∫
Ω
r(u∗ − u∗h)(sh − uh) dx.

Proof. By the definition of the error and Green’s formula we have

E = F (u∗)−Q(uh).

Introducing artificially sh and using (9), this is equivalent to

E = F (u∗)−Q(uh − sh) (14)

−
∫
Ω
(D∇u∗ · ∇sh + ru∗sh) dx.

Adding and subtracting the term ∫
Ω
∇u∗ · θh dx

we find

E = F (u∗)−Q(uh − sh)

−
∫
Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω
(∇u∗ · θh − ru∗sh) dx.

Using Green’s formula in the fourth term of this right-hand side we find

E = F (u∗)−Q(uh − sh)

−
∫
Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω
u∗(−div θh − rsh) dx.

Replacing sh by sh − uh + uh in this last term and recalling that F (u∗) =
∫
Ω fu∗ dx, we obtain

E = −Q(uh − sh)

−
∫
Ω
∇u∗ · (D∇sh + θh) dx

+

∫
Ω
u∗(f − div θh − ruh) dx

−
∫
Ω
ru∗(sh − uh) dx.

Writing u∗ = u∗h + u∗ − u∗h and D∇u∗ = −θ∗h +D∇u∗ + θ∗h, we arrive at (12).
Note that we do not need the conservation properties (10) and (11) to obtain the splitting

(12) from Theorem 2.1, but they are minimal assumptions to guarantee that θh (resp. θ∗h) is a
correct approximation of the continuous flux −D∇u (resp. −D∇u∗).
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Remark 2.2 (Comparison with earlier literature)
1. In the spirit of [17, Theorem 1 and Remark 1], our estimator ηQOI admits the decomposition

ηQOI = ηO + η∇ + ηH,

where

ηO =

∫
Ω
(f − div θh − ruh)u

∗
h dx,

η∇ =

∫
Ω
(θh +D∇sh) ·D−1θ∗h dx

ηH =

∫
Ω
q(sh − uh) dx−

∫
Ω
ru∗h(sh − uh) dx.

Here ηO represents the data oscillation with respect to the primal problem weighted by the
dual approximate solution (that slightly differs from the one from [17] because of our weaker
assumption (10)), the flux estimator η∇ that measures the deviation of −D∇sh from the recon-
structed flux θh and ηH that measures the deviation of uh from H1

0 (Ω), these two last quantities
also differ from the ones from [17] due to the use of the potential reconstruction sh.
2. We recover the splitting (4.13) from [15, Remark 4.7] if r = 0, D is constant and the data f
and q are piecewise polynomials simply by replacing in the expression of η∇ from (13) the factor
θ∗h by −D∇s∗h, where s∗h ∈ H1

0 (Ω) is a potential reconstruction of u∗h and pluging the term∫
Ω
(θh +D∇sh) ·D−1(θ∗h +D∇s∗h) dx,

in the remainder. More generally in the expression of η∇, we may replace the factor θ∗h by

θ∗,αh = (1− α)θ∗h − αD∇s∗h,

with α ∈ R and plug the term∫
Ω
(θh +D∇sh) ·D−1(θ∗h − θ∗,αh ) dx = α

∫
Ω
(θh +D∇sh) ·D−1(θ∗h +D∇s∗h) dx

in the remainder. For α = 1
2 , we recover the splitting (4.17) from [15, Remark 4.7].

Let us now show that the remainder can be explicitly estimated using the error estimators
for u and u∗ obtained in [10, Theorem 7]. Namely denote by η (resp. η∗) the error estimator
mainly obtained in this reference (for D diagonal and constant but easily extended to the case
treated here) using the discrete spaces Vh (resp. V ∗

h ) to approximate the solution u of the primal
problem (6) (resp. u∗ of the dual problem (9)), so that

∥u− uh∥h ≤ η, (15)
∥u∗ − u∗h∥h ≤ η∗, (16)

where the mesh-depending norm ∥ · ∥h is defined by

∥w∥2h = ∥D
1
2∇hw∥2 + ∥r

1
2w∥2,∀w ∈ H1

0 (Ω) ∪ Vh,

where ∇hw means the piecewise gradient of w, namely

∇hw = ∇w on T, ∀T ∈ T ,

and
η2 = (η2NC,T + η2R,T + η2DF,T ),
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with

ηNC,T = ∥uh − sh∥h,T ,
ηR,T = mT ∥f − div θh + ruh∥T ,

ηDF,T = ∥D− 1
2 (θh +D∇uh)∥T ,

recalling that

∥w∥h,T =

∫
T
(D∇w · ∇w + rw2) dx, ∀w ∈ H1(T ),

mT := min{C
1
2
P,T ∥D

− 1
2 ∥∞,ThT , ∥r−

1
2 |∥∞,T },

and that CP,T is the Poincaré constant, namely the smallest positive constant such that

∥φ−MTφ∥2T ≤ CP,Th
2
T ∥∇φ∥2T ,∀φ ∈ H1(T ), (17)

where MTφ is the mean of φ in T , namely

MTφ = |T |−1

∫
T
φ(x) dx.

We further notice that by convention we set ∥r−
1
2 |∥∞,T = ∞ if infx∈T r(x) = 0.

The expression of η∗ is similar by replacing uh by u∗h, θh by θ∗h, sh by s∗h, and f by q.

Theorem 2.3 With η (resp. η∗) defined before, we have

|R| ≤ 4ηη∗. (18)

Proof. We estimate each term of R separetely. For the first term, using the property (10), we
have

R1 =

∫
Ω
(f − div θh − ruh)(u

∗ − u∗h) dx =

∫
T
(f − div θh − ruh) ((u

∗ − u∗h)−MT (u
∗ − u∗h)) dx.

By Cauchy-Schwarz’s inequality, we find

|R1| ≤ ∥f − div θh − ruh∥T ∥(u∗ − u∗h)−MT (u
∗ − u∗h)∥T . (19)

Let us now show that

∥(u∗ − u∗h)−MT (u
∗ − u∗h)∥T ≤ mT ∥u∗ − u∗h∥h,T . (20)

Indeed first using the estimate (17), we find

∥(u∗ − u∗h)−MT (u
∗ − u∗h)∥T ≤ C

1
2
P,ThT ∥∇(u∗ − u∗h)∥T

≤ C
1
2
P,ThT ∥D

− 1
2 ∥∞,T |∥D

1
2∇(u∗ − u∗h)∥T

≤ C
1
2
P,ThT ∥D

− 1
2 ∥∞,T |∥u∗ − u∗h∥h,T .

This shows (20) if infx∈T r(x) = 0. On the contrary if infx∈T r(x) > 0, then we directly write

∥(u∗ − u∗h)−MT (u
∗ − u∗h)∥T ≤ ∥u∗ − u∗h∥T ≤ ∥r−

1
2 ∥∞,T ∥(r

1
2 (u∗ − u∗h)∥T .

In that case, this estimate combined with the previous one yield (20).
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Coming back to (19) and using (20), we get

|R1| ≤ ∥f − div θh − ruh∥TmT ∥u∗ − u∗h∥h,T .

By discrete Cauchy-Schwarz’s inequality, the definition of the estimator η and the estimate (16),
we find

|R1| ≤ ηη∗. (21)

For the second term, by Cauchy-Schwarz’s inequality, we have

|R2| ≤ ∥D− 1
2 (θh +D∇sh)∥∥D− 1

2 (θ∗h +D∇u∗)∥.

Replacing ∇u∗ by ∇h(u
∗ − u∗h) +∇hu

∗
h and using the triangular inequality, one gets

|R2| ≤ ∥D− 1
2 (θh +D∇sh)∥(∥D− 1

2 (θ∗h +D∇hu
∗
h)∥+ ∥D

1
2∇h(u

∗ − u∗h)∥).

Using (16) and the definition of η and η∗, we obtain

|R2| ≤ 2ηη∗. (22)

For the last term, again Cauchy-Schwarz’s inequality yields∣∣∣∣∫
Ω
r(u∗ − u∗h)(sh − uh) dx

∣∣∣∣ ≤ ∥r
1
2 (u∗ − u∗h)∥∥r

1
2 (sh − uh)∥

≤ ηη∗,

again by (16) and the defintion of η.
This estimate and the estimates (21), (22) lead to the conclusion.

Remark 2.4 According to the observations from [13, Figure 10] (see also [15]), the flux estimator
may overestimate the error due the previous Theorem 2.3 and point 2 of Remark 2.2, therefore,
if necessary, it may be added to the approximate quantity of interest.

Remark 2.5 Since the estimator ηQOI and the right-hand side of (18) are fully computable, we
can estimate the ratio

R
ηQOI

,

by computing
4ηη∗
ηQOI

, during a refinement procedure based on the use of ηQOI and check if it

tends to zero or not. In the positive case, due to the identity (12) this means that the ratio

E
ηQOI

tends to 1 and will validate the asymptotic exactness of the estimator ηQOI .
In any case, we can use the estimate

|E| ≤ |ηQOI |+ 4ηη∗, (23)

that follows from (12) and (18), and then chose as estimator |ηQOI | + 4ηη∗ to implement an
adaptive algorithm.

Remark 2.6 Our approach applies to the diffusion-reaction equation with mixed boundary
conditions 

−div(D∇u) + ru = f in Ω,
u = 0 on ΓD,

−D∇u · n = gN on ΓN ,
(24)
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where ΓD and ΓN are two open parts of ∂Ω such that Γ̄D ∩ Γ̄N = ∂Ω, and gN ∈ L2(ΓN ). Its
variational formulation is (6) by replacing H1

0 (Ω), by

H1
ΓD

(Ω) = {u ∈ H1(Ω) | u = 0 on ΓN},

with B defined by (5) and

F (v) =

∫
Ω
fv dx−

∫
ΓN

gNv dσ(x), ∀v ∈ H1
ΓD

(Ω),

while the weak formulation of the adjoint problem is still (9) by replacing H1
0 (Ω) by H1

ΓD
(Ω).

For this problem, the flux reconstruction θh ∈ H(div,Ω) has to satisfy (10) but furthermore∫
e
(θh · n− gN ) dσ(x) = 0,∀e ∈ Eh s.t. e ⊂ Γ̄N ,

while the potential reconstruction sh of uh has to be in H1
ΓD

(Ω)∩ Vh and to satisfy
∫
Ω sh dx = 0

if meas ΓD = 0 and r = 0 (a.e.). Similarly the flux reconstruction θ∗h ∈ H(div,Ω) has to satisfy
(11) and ∫

e
θ∗h · n dσ(x) = 0,∀e ∈ Eh s.t. e ⊂ Γ̄N ,

while s∗h has to be in H1
ΓD

(Ω) and
∫
Ω s∗h dx = 0 if meas ΓD = 0 and r = 0 (a.e.). With these

slight modifications, Theorem 2.1 remains valid with the same definition for the estimator except
for ηO which is here given by

ηO =

∫
Ω
(f − div θh − ruh)u

∗
h dx+

∫
ΓN

(θh · n− gN )u∗h dσ(x),

the remainder being modified accordingly. Further using the results from [8, 10], estimates like
(15)-(16) are available, allowing to prove a result like Theorem 2.3.

Remark 2.7 Our approach also applies to the convection-diffusion-reaction equation{
−div(D∇u−wu) + ru = f in Ω,

u = 0 on ∂Ω,
(25)

where w ∈ L∞(Ω)d is divergence-free. Its variational formulation is (6) with

B(u, v) =

∫
Ω
((D∇u−wu) · ∇v + ruv) dx,∀u, v ∈ H1

0 (Ω),

while the weak formulation of the adjoint problem is

B∗(u∗, v) = Q(v), ∀v ∈ H1
0 (Ω), ∀v ∈ H1

0 (Ω),

where
B∗(u, v) =

∫
Ω
((D∇u+wu) · ∇v + ruv) dx,∀u, v ∈ H1

0 (Ω).

In this setting, Theorem 2.1 remains valid with a slight difference in the definition of η∇ that
here takes the form

η∇ =

∫
Ω
(θh +D∇sh −wsh) ·D−1(θ∗h +wu∗h) dx.

Further using the results from [8, 10], estimates like (15)-(16) are available, allowing to prove a
result like Theorem 2.3.
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3 The parabolic problem

3.1 Problem definition

We here consider the following heat type equation:
∂u

∂t
− div(D∇u) = f in C := Ω× I,

u(., t) = 0 on ∂Ω× I,
u(., 0) = u0 in Ω,

(26)

where the time interval I = (0, T ), with a fixed time T , D ∈ L∞(Ω;Rd×d) is a diffusion tensor
satisfying the same assumptions than in section 2. The datum f is supposed to satisfy f ∈ L2(C)
and the initial value u0 ∈ L2(Ω). Under these assumptions, problem (26) or equivalently

⟨∂tu(·, t), v⟩+ (D∇u(·, t),∇v) = (f(·, t), v), ∀v ∈ H1
0 (Ω), ∀ a.e. t ∈ I, (27)

has a unique (weak) solution in Y := {y ∈ X := L2(I;H1
0 (Ω)) | ∂tu ∈ X ′ = L2(I;H−1(Ω)). Note

that Y is a Hilbert space with the norm

∥y∥Y = ∥y∥X + ∥∂ty∥X′ ,

where the space-time energy norm is given by

∥y∥2X :=

∫ T

0
∥D

1
2∇y∥ dt,∀y ∈ X.

Let us further notice that by [14, Théorème 3.4.1], Y is continuously embedded into C(Ī;L2(Ω)),
which gives a meaning to the initial condition in (26). For further purposes, denote by CY the
smallest positive constant such that

∥y∥C([0,T ];L2(Ω)) ≤ CY ∥y∥Y ,∀y ∈ Y. (28)

Note that an explicit upper bound of CY can be obtained, namely if we denote by CΩ the
smallest positive constant such that

∥u∥Ω ≤ CΩ∥D
1
2∇u∥, ∀u ∈ H1

0 (Ω),

then one can show that
CY ≤ CΩ√

T
+
√
2,

see [7, p. 55]. Let us finally remark that CΩ ≤ ∥D
1
2 ∥∞,Ω

√
dπ
dΩ

, where dΩ is the diameter of Ω, see
[6, Theorem VI-3 and p. 301]

3.2 The goal oriented functional and the adjoint problem

We here consider the output functional that represents the physical quantity of interest given by
(see [19, 20] for a similar choice)

Q(v) =

∫
I
(g(·, t), v) dt+ (u∗T , v(·, T )), ∀v ∈ C(Ī , L2(Ω)), (29)

where g ∈ L2(C) and u∗T ∈ L2(Ω) are given functions.
Accordingly the associated dual problem consists in looking for u∗ solution of the backward

heat type equation 
−∂u∗

∂t
− div(D∇u∗) = g in C,

u∗(., t) = 0 on ∂Ω× I,
u∗(., T ) = u∗T in Ω.

(30)
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As before, its weak formulation is

−⟨∂tu∗(·, t), v⟩+ (D∇u∗(·, t),∇v) = (g(·, t), v),∀v ∈ H1
0 (Ω),∀ a.e. t ∈ I, (31)

whose unique (weak) solution u∗ has the same regularity than before, namely u∗ ∈ L2(I;H1
0 (Ω))∩

C(Ī;L2(Ω)) with ∂tu
∗ ∈ L2(I;H−1(Ω)).

3.3 The discrete setting of the parabolic problem

To discretize problem (26), we suppose given a sequence of discrete times {tn}Nn=0, with N ∈ N∗

such that t0 = 0, tN = T and tn < tn+1, for all n = 0, · · · , N −1. For all n = 1, · · · , N , we define
In = [tn−1, tn| and let τn = tn− tn−1 be its length. For all n = 0, · · · , N , we also suppose given a
partition T n of polygonal elements T that covers exactly Ω. As before for simplicity, we assume
that the meshes are simplicial and matching. For all n = 0, · · · , N , we set hn = maxT∈T n hT .

In a standard a posteriori error analysis of the primal problem (26), the initial mesh T 0 is
used to approximate the initial data u0, while for n ≥ 1, T n corresponds to a refinement or a
coarsening of T n−1 as time evolves. Here the situation is more involved since our estimator is
also based on the resolution of the dual problem. Anyway, since we use an implicit scheme in
time (for the primal and the dual problems), we suppose that for all n = 1, · · · , N , T n−1 and
T n has a common refinement mesh T n−1,n.

For all n = 0, · · · , N , we finally suppose given two finite-dimensional spaces V n
h and V ∗,n

h of
H1(T n).

For a vector space W (of functions defined on Ω), and k = 0 or 1, we denote by

P k
τ (W ) := {v ∈ L2(0, T,W ) | v|In ∈ Pk(In,W ),∀n = 1, · · · , N},

where P0(In,W ) (resp. P1(In,W )) denotes the space of functions from In to W constant (resp.
affine) in time. Note that any function v ∈ P 1

τ (W ) is uniquely determined by its values vn :=
v(·, tn) at tn, n = 0, · · · , N . On the contrary, any function v ∈ P 0

τ (W ) is uniquely determined
by its values vn = v(·, t)|In , n = 1, · · · , N . Let us finally observe that the time derivative ∂tv of
v ∈ P 1

τ (W ) belongs to P 0
τ (W ) and that

(∂tv)
n = ∂tv|In =

vn − vn−1

τn
,∀n = 1, · · · , N. (32)

For shortness we set ∂tv
n = (∂tv)

n.
Let us also introduce an approximation f̃ ∈ P 0

τ (L
2(Ω)) of f defined by

f̃n =
1

τn

∫
In

f(·, t) dt,∀n = 0, · · · , N.

As in [9], we suppose given an approximation uhτ ∈ P 1
τ (L

2(Ω)) of the solution u of (27) such
that unhτ = uhτ (t

n) ∈ V n
h , for all n = 0, · · · , N . Similarly, we suppose given an approximation

u∗hτ ∈ P 1
τ (L

2(Ω)) of the solution u∗ of (31) such that u∗,nhτ = u∗hτ (t
n) ∈ V ∗,n

h , for all n = 0, · · · , N .
We also assume that a flux reconstruction θhτ and a potential reconstruction shτ are available

and satisfy the following conservation properties. θhτ ∈ P 0
τ (H(div,Ω)) and satisfies (compare

with [9, identity (4.5)])

(∂tu
n
hτ + div θnhτ − f̃n, 1)T = 0, ∀T ∈ T n, n = 1, · · · , N. (33)

On the other hand, shτ ∈ P 1
τ (H

1
0 (Ω)) and satisfies

(snhτ , 1)T ′ = (unhτ , 1)T ′ , ∀T ′ ∈ T n,n+1, n = 0, · · · , N. (34)

A direct consequence of this property is that (see [9, Lemma 3.1])

(∂ts
n
hτ , 1)T = (∂tu

n
hτ , 1)T , ∀T ∈ T n, n = 1, · · · , N, (35)

11



holds.
Note further that (35) and (33) directly leads to

(∂ts
n
hτ + div θnhτ − f̃n, 1)T = 0, ∀T ∈ T n, n = 1, · · · , N. (36)

In the same manner, we assume that a flux reconstruction θ∗hτ and a potential reconstruction
s∗hτ are available and satisfy the following conservation properties: θ∗hτ ∈ P 0

τ (H(div,Ω)) and
satisfies

(−∂tu
∗,n
hτ + div θ∗,nhτ − g̃n, 1)T = 0, ∀T ∈ T n, n = 0, · · · , N − 1. (37)

As before, s∗hτ ∈ P 1
τ (H

1
0 (Ω) is such that

(s∗,nhτ , 1)T ′ = (u∗,nhτ , 1)T ′ ,∀T ′ ∈ T n−1,n, n = 0, · · · , N, (38)

which yields
(∂ts

∗,n
hτ , 1)T = (∂tu

∗,n
hτ , 1)T ,∀T ∈ T n, n = 0, · · · , N − 1. (39)

3.4 The error representation of the parabolic problem

Let us first transform Q(u) as a function of the solution of the adjoint problem.

Lemma 3.1 It holds
Q(u) =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0)). (40)

Proof. Taking in (31) a test function v ∈ L2(I,H1
0 (Ω)) and integrating in time yields∫

I
(−⟨∂tu∗(·, t), v(·, t)⟩+ (D∇u∗(·, t),∇v(·, t))) dt =

∫
I
(g(·, t), v(·, t)) dt,∀v ∈ L2(I,H1

0 (Ω)).

(41)
Hence taking v = u, we get∫

I
(−⟨∂tu∗(·, t), u(·, t)⟩+ (D∇u∗(·, t),∇u(·, t))) dt =

∫
I
(g(·, t), u(·, t)) dt.

Due to the regularities of u and u∗, the following integration by parts formula is valid∫
I
⟨∂tu∗(·, t), u(·, t)⟩ dt = −

∫
I
⟨∂tu(·, t), u∗(·, t)⟩ dt+ (u∗(·, t), u(·, T ))− (u∗(·, 0), u(·, 0)).

Inserting this identity into the previous one, and using the initial and final conditions on u and
u∗, we find∫
I
(⟨∂tu(·, t), u∗(·, t)⟩+ (D∇u∗(·, t),∇u(·, t))) dt−(u∗T , u(·, T ))+(u∗(·, 0), u0) =

∫
I
(g(·, t), u(·, t)) dt.

As before as (26) implies that∫
I
(⟨∂tu(·, t), u∗(·, t)⟩+ (D∇u∗(·, t),∇u(·, t))) dt =

∫
I
(f(·, t), u∗(·, t)) dt,

we conclude by inserting this identity in the last one.
The error on the quantity of interest is defined by

E = Q(u)−Q(uhτ ). (42)

Inspired by section 2.3, we show that it can be decomposed into a fully computable expression
and a remainder that will be estimated by a fully computable quantity.
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Theorem 3.2 With the previous notation, we have

E = ηQOI +R, (43)

where the estimator ηQOI is given by

ηQOI = (u0 − shτ (0), u
∗
hτ (0)) + (u∗,Nhτ , shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt (44)

+

∫
I
(f(·, t)− f̃ , u∗hτ (·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u

∗
hτ (·, t)) dt

+

∫
I

∫
Ω
(θhτ +D∇shτ ) ·D−1θ∗hτ dxdt,

while the remainder term R is defined by

R = (u0 − shτ (0), (u
∗ − u∗hτ )(0)) + (u∗T − u∗,Nhτ , shτ (T )− uNhτ ) (45)

+

∫
I
(f(·, t)− f̃ , (u∗ − u∗hτ )(·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , (u

∗ − u∗hτ )(·, t)) dt

−
∫
I

∫
Ω
(θhτ +D∇shτ ) ·D−1(D∇u∗ + θ∗hτ ) dxdt.

Proof. Using the definition (42) of the error and Lemma 3.1, we have

E =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0))−
∫
I
(g(·, t), uhτ ) dt− (u∗T , uhτ (·, T )).

Introducing artificially shτ , we get

E =

∫
I
(f(·, t), u∗(·, t)) dt+(u0, u

∗(0))−
∫
I
(g(·, t), uhτ−shτ ) dt−

∫
I
(g(·, t), shτ ) dt−(u∗T , uhτ (·, T )).

Using (30), this is equivalent to

E =

∫
I
(f(·, t), u∗(·, t)) dt+ (u0, u

∗(0))−
∫
I
(g(·, t), uhτ − shτ ) dt (46)

+

∫
I
(∂tu

∗ + div(D∇u∗), shτ ) dt− (u∗T , uhτ (·, T )).

As shτ is in H1(I,H1
0 (Ω)) an integration by parts in space and in time leads to∫

I
(div(D∇u∗), shτ ) dt = −

∫
I

∫
Ω
D∇u∗ · ∇shτ dxdt,∫

I
(∂tu

∗, shτ ) dt = −
∫
I
(u∗, ∂tshτ ) dt+ (u∗(T ), shτ (T ))− (u∗(0), shτ (0)).

Inserting these identities in (46) we find

E = (u0 − shτ (0), u
∗(0)) + (u∗(T ), shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
((f(·, t), u∗(·, t))− (u∗, ∂tshτ )) dt

−
∫
I

∫
Ω
D∇u∗ · ∇shτ dxdt.
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Adding and subtracting the term ∫
I

∫
Ω
∇u∗ · θhτ dxdt,

we find

E = (u0 − shτ (0), u
∗(0)) + (u∗(T ), shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− ∂tshτ , u

∗(·, t)) dt

+

∫
I

∫
Ω
∇u∗ · θhτ dxdt

−
∫
I

∫
Ω
(θhτ +D∇shτ ) · ∇u∗ dxdt.

Using Green’s formula in the fourth term of this right-hand side we find

E = (u0 − shτ (0), u
∗(0)) + (u∗(T ), shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− div θhτ (·, t)− ∂tshτ , u

∗(·, t)) dt

−
∫
I

∫
Ω
(θhτ +D∇shτ ) · ∇u∗ dxdt.

Replacing f by f − f̃ + f̃ , we find

E = (u0 − shτ (0), u
∗(0)) + (u∗(T ), shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt

+

∫
I
(f(·, t)− f̃ , u∗(·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u

∗(·, t)) dt

−
∫
I

∫
Ω
(θhτ +D∇shτ ) · ∇u∗ dxdt

Writing u∗ = u∗hτ + u∗ − u∗hτ and D∇u∗ = −θ∗hτ +D∇u∗ + θ∗hτ , we arrive at (43).

Remark 3.3 As in Remark 2.2, our estimator ηQOI admits the decomposition

ηQOI = ηO + η∇ + ηH,

where

ηO =

∫
I
(f(·, t)− f̃n, u∗hτ (·, t)) dt

+

∫
I
(f̃(·, t)− div θhτ (·, t)− ∂tshτ , u

∗
hτ (·, t)) dt,

η∇ =

∫
I

∫
Ω
(θhτ +D∇shτ ) ·D−1θ∗hτ dxdt,

ηH = (u0 − shτ (0), u
∗
hτ (0)) + (u∗,Nhτ , shτ (T )− uNhτ )−

∫
I
(g(·, t), uhτ − shτ ) dt.

As before ηO represents the data oscillation with respect to the primal problem weighted by the
dual approximate solution, the flux estimator η∇ that measures the deviation of −D∇shτ from
the reconstructed flux θhτ and ηH that measures the deviation of uhτ from H1

0 (Ω).
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Let us now show that the remainder can be explicitly estimated using the error estimators
for u and u∗ obtained in [9, Theorem 3.2]. Namely denote by η (resp. η∗) the estimator obtained
in this reference using the discrete spaces V n

h (resp. V ∗,n
h ) to approximate the solution u of the

primal problem (27) (resp. u∗ of the dual problem (31)), so that

∥u− uhτ∥Y ≤ η + 3∥f − f̃∥X′ , (47)
∥u∗ − u∗hτ∥Y ≤ η∗ + 3∥g − g̃∥X′ , (48)

where

η = 3

{
N∑

n=1

∫
In

∑
T∈T n

(ηnR,T (t) + ηnDF,T (t))
2 dt

} 1
2

+ ηIC

+

{
N∑

n=1

∫
In

∑
T∈T n

(ηnNC1,T (t))
2 dt

} 1
2

+

{
N∑

n=1

τn
∫
In

∑
T∈T n

(ηnNC2,T (t))
2 dt

} 1
2

,

with
ηIC =

√
2∥s0hτ − u0∥,

and for all n = 1, ·, N , t ∈ In and T ∈ T n,

ηnR,T (t) = π−1∥D− 1
2 ∥∞,ThT ∥f̃ − ∂tshτ − div θnhτ∥T ,

ηnDF,T (t) = ∥D− 1
2 (θhτ +D∇shτ )∥T ,

ηnNC1,T (t) = ∥D
1
2∇(shτ − uhτ )∥T ,

ηnNC2,T (t) = π−1∥D− 1
2 ∥∞,ThT ∥∂t(shτ − uhτ )

n∥T .

The estimator η∗ of the dual problem is defined similarly by replacing uhτ by u∗hτ , θhτ by
θ∗hτ , shτ by s∗hτ , s

0
hτ by s∗,0hτ , u0 by u∗T , f by q, and ∂t by −∂t.

Theorem 3.4 With η (resp. η∗) defined before, we have

|R| ≤ DY

(
η + ∥(shτ − uhτ )(T )∥+ ∥f − f̃∥X′

)(
η∗ + ∥(s∗hτ − u∗hτ )(0)∥+ ∥g − g̃∥X′

)
(49)

+ π−1hn∥D− 1
2 ∥∞,Ω∥f(·, t)− f̃∥Cη∗,

with DY =
√
2max{1, 3CY }+ 11.

Proof. We estimate each term of R separetely. For the first term, by Cauchy-Schwarz’s
inequality we have

|(u0 − shτ (0), (u
∗ − u∗hτ )(0))| ≤ ∥u0 − shτ (0)∥∥(u∗ − u∗hτ )(0)∥. (50)

Note that
∥u0 − shτ (0)∥ ≤ 2−1/2η, (51)

therefore it remains to estimate the second factor of the right-hand side of (50). But since u∗hτ
does not belong to Y , we write (u∗ − u∗hτ )(0) = (u∗ − s∗hτ )(0) + (s∗hτ − u∗hτ )(0), and use the
triangular inequality to find

∥(u∗ − u∗hτ )(0)∥ ≤ ∥(u∗ − s∗hτ )(0)∥+ ∥(s∗hτ − u∗hτ )(0)∥. (52)

For the first term of this right-hand side we use the continuous embedding Y ↪→ C([0, T ];L2(Ω))
to find (see (28))

∥(u∗ − s∗hτ )(0)∥ ≤ CY ∥u∗ − s∗hτ∥Y . (53)
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Then using the identity

∥u∗ − s∗hτ∥Y = ∥∂t(u∗ − s∗hτ )∥L2(0,T,H−1(Ω) +
( N∑

n=1

∫
In

∑
T∈T n−1,n

∥D
1
2∇(u∗ − s∗hτ )(t)∥2T dt

) 1
2
,

inserting artificially u∗hτ and using the triangular inequality, we find

∥u∗ − s∗hτ∥Y ≤ ∥∂t(u∗ − u∗hτ )∥L2(0,T,H−1(Ω) + ∥∂t(u∗hτ − s∗hτ )∥L2(0,T,H−1(Ω)

+
(N−1∑

n=0

∫
In

∑
T∈T n−1,n

∥D
1
2∇(u∗ − u∗hτ )(t)∥2T dt

) 1
2

+
(N−1∑

n=0

∫
In

∑
T∈T n−1,n

∥D
1
2∇(u∗hτ − s∗hτ )(t)∥2T dt

) 1
2
.

According to the definition of the norm Y for u∗ − u∗hτ and to the definition of η∗, we find

∥u∗ − s∗hτ∥Y ≤ ∥u∗ − u∗hτ∥Y + η∗ (54)
+ ∥∂t(u∗hτ − s∗hτ )∥L2(0,T,H−1(Ω).

For this last term, for all t ∈ (0, T ), we define the H−1(Ω)-norm by1

∥∂t(u∗hτ − s∗hτ )(t)∥H−1(Ω) = sup
φ∈H1

0 (Ω),φ̸=0

∣∣∫
Ω ∂t(u

∗
hτ − s∗hτ )(t)φdx

∣∣
∥D

1
2∇φ∥

. (55)

Hence using (39), we may write∫
Ω
∂t(u

∗
hτ − s∗hτ )(t)φdx =

∑
T∈T n

∫
T
∂t(u

∗
hτ − s∗hτ )(t)(φ−MTφ) dx,

where MTφ is the mean of φ on T . Therefore by the Poincaré inequality stating that

∥φ−MTφ∥T ≤ π−1hT |φ|1,T ,

we find
∥φ−MTφ∥T ≤ π−1hT ∥D− 1

2 ∥∞,T ∥D
1
2∇φ∥T ,

and hence∣∣∣∣∫
Ω
∂t(u

∗
hτ − s∗hτ )(t)φdx

∣∣∣∣ ≤ π−1
∑
T∈T n

hT ∥D− 1
2 ∥∞,T ∥∂t(u∗hτ − s∗hτ )(t)∥T ∥D

1
2∇φ∥T .

Using the discrete Cauchy-Schwarz’s inequality and inserting this estimate in (55), we obtain

∥∂t(u∗hτ − s∗hτ )(t)∥H−1(Ω) ≤ π−1
( ∑

T∈T n

h2T ∥D− 1
2 ∥2∞,T ∥∂t(u∗hτ − s∗hτ )(t)∥2T

) 1
2
.

Integrating the square of this estimate in 0, T ) and using the definition of η∗, we arrive at

∥∂t(u∗hτ − s∗hτ )(t)∥L2(0,T,H−1(Ω)) ≤ η∗,

and using it into (54) yields

∥u∗ − s∗hτ∥Y ≤ ∥u∗ − u∗hτ∥2Y + 2η∗.

1as D is bounded and positive definite this norm is equivalent to the usual one.
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The estimate (48) then leads to

∥u∗ − s∗hτ∥Y ≤ 3(η∗ + ∥g − g̃∥X′). (56)

Combining this estimate with (53) leads to

∥(u∗ − s∗hτ )(0)∥ ≤ 3CY (η
∗ + ∥g − g̃∥X′),

that can be used in (52) to find

∥(u∗ − u∗hτ )(0)∥ ≤ max{1, 3CY }(η∗ + ∥(s∗hτ − u∗hτ )(0)∥+ ∥g − g̃∥X′). (57)

Coming back to (50) and using this last estimate and (51), we finally find

|(u0 − shτ (0), (u
∗ − u∗hτ )(0))| ≤ 2−

1
2 max{1, 3CY }η(η∗ + ∥(s∗hτ − u∗hτ )(0)∥+ ∥g − g̃∥X′). (58)

The second term is the symmetric of the first one by exchanging the rule of u and u∗, hence

|(u∗T − u∗,Nhτ , shτ (T )− uNhτ )| ≤ 2−
1
2 max{1, 3CY }(η + ∥(shτ − uhτ )(T )∥+ ∥f − f̃∥X′)η∗. (59)

Concerning the third term, we again introduce artificially s∗hτ to get

R3 :=

∫
I
(f(·, t)− f̃ , (u∗ − u∗hτ )(·, t)) dt =

∫
I
(f(·, t)− f̃ , (u∗ − s∗hτ )(·, t)) dt

+
N∑

n=1

∫
In

(f(·, t)− f̃n, (s∗hτ − u∗hτ )(·, t)) dt,

and by using a duality argument for the first term and Cauchy-Schwarz’s inequality for the
second one, we obtain

|R3| ≤ ∥f(·, t)− f̃∥X′∥u∗ − s∗hτ∥X

+
N∑

n=1

∫
In

∑
T∈T n,n−1

∥f(·, t)− f̃n∥T ∥(s∗hτ − u∗hτ )(·, t)∥T dt.

Due to the property (38) and the Poincaré inequality, we find

|R3| ≤ ∥f(·, t)− f̃∥X′∥u∗ − s∗hτ∥X

+ π−1
N∑

n=1

∫
In

∑
T∈T n,n−1

∥f(·, t)− f̃n∥ThT ∥∇(s∗hτ − u∗hτ ))(·, t)∥T dt.

Using the definition of the broken gradient of u∗hτ and the fact that hT ≤ hn for all T ∈ T n−1,n,
we get

|R3| ≤ ∥f(·, t)− f̃∥X′∥u∗ − s∗hτ∥X

+ π−1hn∥D− 1
2 ∥∞,Ω

N∑
n=1

∫
In

∑
T∈T n

∥f(·, t)− f̃n∥T ∥D
1
2∇n−1,n(s∗hτ − u∗hτ ))(·, t)∥T dt.

Hence using Cauchy-Schwarz’s inequality, we find

|R3| ≤ ∥f(·, t)− f̃∥X′∥u∗ − s∗hτ∥X + π−1hn∥D− 1
2 ∥∞,Ω∥f(·, t)− f̃∥Cη∗.

Finally as by definition ∥u∗ − s∗hτ∥X ≤ ∥u∗ − s∗hτ∥Y , the estimate (56) yields

|R3| ≤ 3∥f(·, t)− f̃∥X′(η∗ + ∥g − g̃∥X′) + π−1hn∥D− 1
2 ∥∞,Ω∥f(·, t)− f̃∥Cη∗. (60)

17



For the fourth term again inserting artificially s∗hτ we get

R4 :=
N∑

n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u
∗ − u∗hτ )(·, t))T dt

=
N∑

n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u
∗ − s∗hτ )(·, t))T dt

+

N∑
n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (s
∗
hτ − u∗hτ )(·, t))T dt.

For the first term using (36), we can replace u∗ − s∗hτ by u∗ − s∗hτ −MT (u
∗ − s∗hτ ) on T ∈ T n,

while for the second term we reorganize the summation on the triangulation T n−1,n and then
find

R4 =
N∑

n=1

∫
In

∑
T∈T n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (u
∗ − s∗hτ )(·, t)−MT (u

∗ − s∗hτ ))T dt

+
N∑

n=1

∫
In

∑
T ′∈T n−1,n

(f̃n(·, t)− div θhτ (·, t)− ∂tshτ , (s
∗
hτ − u∗hτ )(·, t))T ′ dt.

Using Poincaré inequality for each term of this right-hand side (recalling the property (38)), we
find

|R4| ≤ π−1
N∑

n=1

∫
In

∑
T∈T n

hT ∥D− 1
2 ∥∞,T ∥f̃n(·, t)− div θhτ (·, t)− ∂tshτ∥T ∥D

1
2∇(u∗ − s∗hτ )(·, t)∥T dt

+π−1
N∑

n=1

∫
In

∑
T ′∈T n−1,n

hT ′∥D− 1
2 ∥∞,T ′∥f̃n(·, t)− div θhτ (·, t)− ∂tshτ∥T ′∥D

1
2∇(s∗hτ − u∗hτ )∥T ′ dt.

Using Cauchy-Schwarz’s inequality and reorganizing the summation in the second term (using
the fact that hT ′ ≤ hT , for all T ′ ∈ T n−1,n such that T ′ ⊂ T ∈ T n), we get

|R4| ≤ η(∥u∗ − s∗hτ∥Y + η∗).

As before the estimate (56) yields

|R4| ≤ 3η(η∗ + ∥g − g̃∥X′) + ηη∗. (61)

It remains the last term that can be transformed as

R5 :=

∫
I

∫
Ω
(θhτ +D∇shτ ) ·D−1(D∇u∗ + θ∗hτ ) dxdt

=

∫
I

∫
Ω
(θhτ +D∇shτ ) · ∇(u∗ − s∗hτ ) dxdt

+

∫
I

∫
Ω
(θhτ +D∇shτ ) ·D−1(D∇shτ + θ∗hτ ) dxdt.

Hence Cauchy-Schwarz’s inequality directly yields

|R5| ≤ η(∥u∗ − s∗hτ∥Y + η∗).

With the help of the estimate (56) we again obtain

|R5| ≤ 3η(η∗ + ∥g − g̃∥X′) + ηη∗. (62)

The conclusion follows from the estimate (58), (59), (60) (61), and (62).
Note that Remark 2.5 remains valid for our parabolic problem (26).
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4 Numerical examples

In this section, we present some illustrative numerical examples that validate our theoretical
results. Before going on, let us notice that all numerical simulations are realized by the free
scientific computing software FreeFem++ [11].

4.1 Diffusion problems

In this subsection, we aim to illustrate the theoretical results obtained for diffusion problems,
and specifically Theorems 2.1 and 2.3.

4.1.1 Regular solutions

We first consider the same benchmark as the one proposed in [17], section 8 and [15], section
6.1. The primal problem (4) is defined with d = 2, Ω =]0, 1[2, D = IR2

2 and r = 0. The
exact solution is chosen equal to u(x, y) = 104x(1 − x)y(1 − y)e−100(ρ(x,y))2 with ρ(x, y) =
((x−0.752)+(y−0.75)2)1/2 (see Figure 1(a)), and the right-hand-side f is computed accordingly.
The dual problem is defined by (8) with q = 1ω and ω = {(x, y) ∈ Ω : 1.5 ≤ x+ y ≤ 1.75} (see
Figure 1(b)).

IsoValue
0
13.966
27.932
41.8979
55.8639
69.8299
83.7959
97.7618
111.728
125.694
139.66
153.626
167.592
181.558
195.524
209.49
223.456
237.422
251.388
265.354
279.32
293.285
307.251
321.217
335.183
349.149
363.115

(a) (b)

Figure 1: Diffusion problem, regular solution. (a) : regular solution. (b) : q function.

The approximation uh of u solution of the primal problem is made using standard conforming
P1 finite elements on regular meshes made of triangles (see Figure 2 for the first three refinements),
and the corresponding flux reconstruction θh is approximated using some standard RT1 finite
elements (Raviart-Thomas finite elements of degree 2 on each triangle). The approximation u∗h
of u∗ solution of the dual problem is made using standard conforming P2 finite elements on the
same meshes, and the corresponding flux reconstruction θ∗h is approximated using some standard
RT2 finite elements (Raviart-Thomas finite elements of degree 3 on each triangle).

For each mesh, the value of E = Q(u− uh) defined by (7) is computed, as well as the one of
ηQOI defined by (13). We plot on Figure 3(a) the values of E as well as the one of ηQOI and 4ηη∗

as a function of h in a log-log scale. First of all, we remark that E goes towards zero at the order
O(h2), what is the expected behaviour since u ∈ H2(Ω) and uh is approximated by P1 finite
elements. Moreover, the estimator ηQOI converges towards zero at the same rate of convergence.
Figure 3(b) displays the so-called effectivity index defined by Ieff = E/ηQOI as a function of h.
This one is always nearly equal to one, and consequently the estimator ηQOI is asymptotically

2here and below, IR2 means the 2× 2 identity matrix
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Mesh 1 - h = 1/4 Mesh 2- h = 1/8 Mesh 3 - h = 1/16

Figure 2: Unstructured regular meshes, first three refinements.

exact. Coming back to Figure 3(a), we see that the value of 4ηη∗ goes towards zero faster than E
(here at the order O(h3)), what illustrates the fact that R is clearly superconvergent (see (18)).
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Figure 3: Diffusion problem, D = IR2 , regular solution. (a) : rates of convergence. (b) :
effectivity index.

We have also performed a similar simulation in the same setting than before except that we
take a variable diffusion tensor, namely D(x, y) = (1 + x2 + y2)IR2 , for all (x, y) ∈]0, 1[2. The
results are presented in Figure 4 and are very similar to the case D = IR2 , leading to the same
conclusion than before.

4.1.2 A singular solution

This time we consider a singular case. The primal problem (4) is defined with d = 2, Ω =]−1, 1[2

and r = 0. The diffusion coefficient D is piecewise constant in Ω and defined by D = di IR2 in
Ωi, 1 ≤ i ≤ 4, with Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0) and
Ω4 = (0, 1) × (−1, 0), 0 < d1 = d3 = a < 1 and d2 = d4 = 1. Defining the singular exponant

α =
4

π
arctan(

√
a), the exact solution is given by

u(x, y) = p(x, y)S(x, y),

where p(x, y) = (1− x4)(1− y4) is a truncation function and S(x, y) = ραv(θ) with

ρ =
√

x2 + y2 , θ =

{
arctan(y/x) in Ω1 ∪ Ω4,

π + arctan(y/x) in Ω2 ∪ Ω3,
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Figure 4: Diffusion problem, D(x, y) = (1+x2+y2)IR2 regular solution. (a) : rates of convergence.
(b) : effectivity index.

and

v(θ) =



sin
(
α
(
θ − π

4

))
in Ω1,

√
a cos

(
α
(3π

4
− θ

))
in Ω2,

sin
(
α
(5π

4
− θ

))
in Ω3,

−
√
a cos

(
α
(π
4
+ θ

))
in Ω4.

The right-hand-side f is computed accordingly. Let us note that in such a configuration, for
any ε > 0 we have u ∈ H1+α−ε(Ω) (see e.g. the appendix of [5] for a similar configuration).

The dual problem is defined by (8) with q = 1ω and ω = (0, 0.5) × (−0.25, 0.25). All the
spatial discretizations are done similarly to the regular case of section 4.1.1.

The obtained results are respectively displayed in Figures 5 and 6 for a = 1/5 and a = 1/20,
respectively leading to the values of α ≈ 0.53 and α ≈ 0.28. From these figures, we may notice
that the error, the estimator ηQOI and 4ηη∗ both converge towards zero at the order O(h2α).
For a = 1/5, as the effectivity index is almost one for h small enough, we can conclude that the
remainder R is nevertheless superconvergent. For a = 1/20, this phenomenon is less clear but is
probably due to the very low order of convergence. In any case, for such problems with singular
solutions, an adaptive algorithm should be based on the estimator ηQOI and the product 4ηη∗,
since they have the same rate of convergence.

4.2 Parabolic problems

In this subsection, we aim to illustrate the theoretical results obtained for parabolic problems,
and specifically Theorems 3.2 and 3.4.

4.2.1 The heat equation

We start to propose a simple problem, defining the primal problem by (26) with d = 2, Ω =]0, 1[2,
T = 1.0 and D = IR2 . We choose the exact solution being equal to u(t, x, y) = x2y2(x− 1)2(y −
1)2 sin(t) and compute the right-hand-side f accordingly. The dual problem is defined by (30),

21



10 -2 10 -1 10 0

Log(h)

10 -4

10 -3

10 -2

10 -1

E
rr

o
rs

 a
n

d
 E

s
ti
m

a
to

rs
 o

f 
Q

O
I

QOI

4 *

slope=1.06

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5

Log(h)

0.865

0.87

0.875

0.88

0.885

0.89

0.895

E
ff

e
c
ti
v
it
y
 i
n

d
e

x

QOI

(a) (b)

Figure 5: Diffusion problem, singular solution, a = 1/5. (a) : rates of convergence. (b) :
effectivity index.
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Figure 6: Diffusion problem, singular solution, a = 1/20. (a) : rates of convergence. (b) :
effectivity index.
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where we choose g = 0 and u∗T = e−
ρ(x,y)2

32 ln 10 with ρ(x, y) = ((x− 0.5)2 + (y − 0.5)2)1/2.

Concerning the time approximation, we use the definition of (∂tu)n given in (32) to compute
an implicit-Euler time integration for the resolution of the primal problem, where un is the
approximation of u(tn, ·) and solution of the elliptic problem:

un − un−1

τ
− div(D∇un) = f̃n in Ω,

un = 0 on ∂Ω,
u0 = u0 in Ω.

(63)

Since the scheme is fully implicit in time, there is no need to impose any stability condition
linking h and τ . For accuracy reasons, we choose τ = h. Similarly to the stationary tests, the
spatial approximation unh of un is made using standard P1 finite elements and the corresponding
flux reconstruction θh is approximated using some standard RT1 finite elements. The time
integration of the dual problem is also done using an implicit-Euler scheme (with τ = h), where
u∗,n is the approximation of u∗(tn, ·) and solution of:

−u∗,n − u∗,n−1

τ
− div(D∇u∗,n−1) = g in C,

u∗(., t) = 0 on ∂Ω× I,
u∗(., T ) = u∗T in Ω.

(64)

The spatial approximation u∗,nh of u∗,n is made using standard P2 finite elements on the same
meshes, and the corresponding flux reconstruction θ∗h is approximated using some standard RT2

finite elements.

For each mesh, we compute the value of E = Q(u − uh) defined by (42) as well as the one
of ηQOI defined by (44). We plot on Figure 7(a) the values of E as well as the one of ηQOI and
ηη∗ as a function of h in a log-log scale. First of all, we remark that the error E goes towards
zero at the order O(h), what is the expected behaviour since even if u is regular enough and
uh is approximated by P1 finite elements, the time integration is at order one and the choice
of τ = h leads to a global rate of convergence equal to one. Moreover, the estimator ηQOI

converges towards zero at the same rate of convergence. Figure 7(b) displays the effectivity
index Ieff = E/ηQOI as a function of h. As for the stationary tests with regular solutions, it
is always nearly equal to one and converges towards one. Consequently the estimator ηQOI is
asymptotically exact. Finally, coming back to Figure 7(a), we see that the value of ηη∗ goes
towards zero faster than E (here around the order O(h1.75)), what illustrates the fact that R is
clearly superconvergent (see (49)).

4.2.2 A moving Gaussian

Finally we consider a more difficult test coming from [21]. This time, the primal problem is
defined by (26) with d = 2, Ω =]0, 1[2, T = 1.0 and D = IR2 . We choose the exact solution being
equal to u(t, x, y) = β(t) e−50(r(x,y,t))2 with r(x, y, t) = ((x − 0.4t − 0.3)2 + (y − 0.4t − 0.3)2)1/2

and β(t) defined by:

β(t) =

{
1− e−50(0.98t+0.01)2 if t ≤ 0.5,

1− e−50(1−0.98t+0.01)2 else.

It consists in a moving Gaussian from the position (0.3, 0.3) to the position (0.7, 0.7) at a non
constant speed. As usual, the right-hand-side f is computed accordingly. The dual problem is

defined by (30), where we choose g = 0 and u∗T = e−
ρ(x,y)2

32 ln 10 with ρ(x, y) = ((x − 0.7)2 + (y −
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Figure 7: Heat equation. (a) : rates of convergence. (b) : asymptotical exactness.

0.7)2)1/2.

For the numerical simulation, we set τ = h/10, all the other numerical parameters are the
same as the ones of section 4.2.1. We can see in Figure 8(a) that once again, the estimator ηQOI

converges towards zero at the order O(h) as theoretically expected, whereas the product η η∗ goes
faster towards zero (in the order O(h1.75)). As expected by Theorems 3.2 and 3.4, Figure 8(b)
illustrates the asymptotic exactness of the estimator since the effectivity index Ieff = E/ηQOI

goes towards 1 when h goes towards zero.
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Figure 8: Moving Gaussian. (a) : rates of convergence. (b) : asymptotical exactness.
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