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Abstract - The control of industrial robot manipulators presents a difficult problem
for control engineers due to the complexity of robot dynamics models. Nonlinear
controls based on feedback linearization are developed to meet control requirements.
Model-based nonlinear control is highly sensitive to parameter errors and leads to
problems of robustness for tracking trajectories at high speeds, and there is the addi-
tional problem of a heavy computational burden to consider in the design of nonlinear
controllers. In this paper, a mechatronics design approach is proposed, which aims to
facilitate controller design by redesigning the mechanical structure. The problem is
approached in two steps: first, the dynamic decoupling conditions of manipulators are
described and discussed, involving redistribution of the moving mass, which leads to
the decoupling of motion equations. A classical linear control technique is then used
to track the desired efficient bang-bang profile trajectory. An analysis of the results
from a simulation of this approach demonstrates its effectiveness in controller design.
The proposed improvement in control performance is illustrated via a two-revolute
joint spatial manipulator.

1 Introduction

In recent years, industrial robots have been widely used for high-precision applications
[1]. Different types of industrial robots are developed to carry out various tasks such
as painting, welding, manufacturing, assembling and so on. The requirements for indus-
trial robot performance are accuracy, speed and versatility of manipulation. To meet this
demand, robot control is a key element for robot manufacturers, and a great deal of de-
velopment work is carried out to increase the performance of robots, reduce their cost and
introduce new functionalities. In terms of controller design, robustness, tracking accuracy,
energy consumption and computational burden must be taken into account [2, 3]. How-
ever, robot manipulator dynamics are known to be highly nonlinear and coupled, which
results in poorer control performance at high speeds [4, 5]. The complicated dynamics are
the result of varying inertia and interactions between the different joints, and the nonlin-
ear coupled dynamics of the robot manipulator also increase the energy consumption and
computational burden of the controller [4]. Various nonlinear control strategies have been
developed to resolve this problem, such as feedback linearization [6].

Feedback linearization is a tool widely used for controlling non-linear systems, and
operates by canceling the nonlinearities in robot dynamics [7, 8]. With this method, the
closed-loop system becomes nominally linear and classical linear system control techniques
can then be applied in the controller design, with relative efficiency. However, feedback
linearization requires an accurate model and high sampling rate for successful implemen-
tation [9]. In addition, the computational burden caused by nonlinear and coupled terms
cannot be avoided with complex robot structures in feedback control [10, 11].
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For example, computed torque (CT) control is a well-known control law that consists
of a propotional-derivative (PD) term and the feedback dynamic compensation term cal-
culated from the actual velocity and desired acceleration signals [12]. CT control offers a
wide range of advantages, such as high tracking accuracy, low energy consumption, and
more compliant control. However, its major drawback is the precise analytical dynamic
models required for torque generation, which cannot always be obtained due to modeling
errors and unknown disturbances [13]. Inaccurate models will lead to low tracking perfor-
mance in practice, and a complex robot structure also requires an enormous calculations
in the CT controller.

The nonlinear model can be said to increase the difficulty in designing suitable con-
trollers for robot manipulators. Some researchers suggest canceling the nonlinearities by
removing the complex inertia terms in dynamic models, as these are negligible at low
speeds [14, 15]. However, at high motion speeds, the errors in the model resulting from
this approach become significant and would probably reduce stability, leading to loss of
effectiveness in tracking performance.

As described above, it is challenging to find a simple and effective strategy for control-
ling robot manipulators due to the presence of model nonlinearities and errors. To resolve
this problem, a mechatronic design methodology known as Design For Control (DFC) was
proposed by [16]. The method points out that the performance of the mechatronic system
relies not only on the design of the controller but also on the design of its mechanical
structure. Controller design is usually considered subsequent to mechanical design, but an
appropriate mechanical structure design will lead to a simple dynamic model which makes
design of the controller easier. In this paper, an effective design approach is proposed to
improve the control performance of a 2R robot manipulator, based on development of the
mechanical structure design. With dynamic decoupling, a simplified system is obtained
and effective conventional control techniques, rather than complex nonlinear control tech-
niques, are applied. There are three ways to create dynamically decoupled manipulators
through mechanical transformation: i) via mass redistribution; ii) via actuator relocation;
iii) via the addition of auxiliary links.

To eliminate the coupling and nonlinear torques via mass redistribution, the inertia
matrix must be diagonalized and made invariant for all arm configurations [17–20]. The
linearization and dynamic decoupling of 2-DOF manipulators via mass redistribution has
been considered previously [20]. In this study, all arm constructions yielding decoupled
inertia matrices were identified. The proposed approach was applied to serial manipulators
in which the axes of joints were not parallel; with parallel axes this approach allows
linearization of the dynamic equations but not their dynamic decoupling [21] and cannot
therefore, be used with planar serial manipulators. As a result, the inertia matrix cannot
be decoupled unless the joint axes are orthogonal to each other in serial manipulator arms
with an open kinematic chain structure.

As regards the decoupling of dynamic equations via actuator relocation, a review [18]
has shown that the remote-actuation design concept is not optimal from the point of view
of precise reproduction of the end-effector tasks, because it accumulates all errors due to
intermediate transmissions. It is evidently much better to connect actuators directly to
the links than to use transmission mechanisms. The clearance, flexibility, manufacturing
and assembly errors of the added transmission mechanisms have a negative impact on the
robot’s precision.

The linearization of dynamic equations and their decoupling by adding auxiliary links
to redesign the manipulator has also been developed [22–24]: dynamic decoupling of the
manipulator by connecting a two-link group to the initial structure, forming a Scott-
Russell mechanism, was proposed by [25]. Noted that dynamic decoupling via redesign of
the manipulator by adding auxiliary links is a promising new approach in robotics.
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As discussed above, taking into account the structural features of the 2R spatial serial
manipulator, i.e., orthogonality of the joint axes, it can be confidently asserted that dy-
namic decoupling via mass redistribution is the most expedient approach. This paper is
organized as follows: section 2 contains a review of the dynamic decoupling conditions of
2R spatial serial manipulators based on mass redistribution, and the generation of motion
by “bang-bang” profile, enabling reduction of the maximal input torque values. In section
3, different conventional linear controllers are used to stabilize the decoupled system and
track the desired trajectory. Numerical simulations are also carried out. Section 4 presents
conclusions and perspectives.

2 Decoupled dynamics of the 2R spatial serial manipulator
and its motion generation via bang-bang profile

Before addressing the problem of control performance improvement, the dynamic decou-
pling conditions of the 2R spatial serial manipulator (Fig.1) are reviewed below.

Figure 1. 2R spatial serial manipulator

The manipulator consists of two orthogonal links, 1 and 2, with rotating angles θ1 and

θ2 . We will distinguish the relative angular velocities of vectors θ̇r
1 and θ̇r

2 with θ̈
r
1, θ̈

r
2,

and the vectors θ̇1 and the absolute angular velocities θ̇2 with θ̇1 = θ̇r
1 and θ̇2 = θ̇r

1 + θ̇r
2.

In the study [17], it was reported that the 2R spatial serial manipulator can be dynam-
ically decoupled completely if the following conditions are satisfied:

- the potential energy of the manipulator is constant (or canceled),
i.e. the manipulator is statically balanced;

- Ix2 = Iy2 = I∗, where Ix2 and Iy2 are the axial moments of inertia
of link 2 relative to the corresponding coordinate axes of the syst-
em associated with link 2;
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As a consequence of such a redistribution of moving masses, the motion equations
become linear and decoupled:

τ1 = (I1 + I∗)θ̈r1 (1)

τ2 = Iz2 θ̈
r
2 (2)

The non-linear dynamic system is thus transformed into a double integrator model and
the state space equation of each link can be defined:

ẋ = Ax+Bu (3)

with

A =
[
0 1
0 0

]
, B =

[
0

1/I

]
(4)

where, I is calculated with inertia moment of each link in Eq.8 and Eq.9. I = (I1 + I∗)
for the first link and I = Iz2 for the second link.

As discussed in [17], to generate motion in the dynamically decoupled 2R spatial se-
rial manipualtor, it is preferable to apply the “bang-bang” profile (Fig.2), which enables
reduction of the maximal input torque values.

Figure 2. “Bang-bang” profile used for generation of motion in the dynamically
decoupled 2R spatial serial manipulator.

Bang-Bang motion profile:

θ(t) =

{
θ(t0) + 2( t

tf
)2θf , t0 < t < tf/2

θ(t0) +
[
−1 + 4( t

tf
)− 2( t

tf
)2
]
θf , tf/2 < t < tf

(5)
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3 Design of Linear Controller

3.1 Performance Indices

For the controller design, performance indices are introduced to quantify and evaluate
system performance. Two performance indices were considered in our case: the integral
of the square of the error (ISE) and the maximum input torque. The form of the ISE is
defined as:

ISE =

∫ tf

t0

e2dt (6)

The ISE discriminates between excessively over-damped and excessively under-damped
systems. Tracking accuracy can be evaluated using this criterion. The other criterion
introduced was the maximum input torque, which represents input energy. The actuator
capacity requirement also depends on the maximum input torque.

3.2 Pole Placement

Since the double integrator model system is unstable, the control technique should in-
crease the stability of the system. Therefore, the speed of response and tracking error
requirement should be improved in order to track the bang-bang profile. Pole placement
is a well-established design method for linear control systems. We assumed that all state
variables were measurable and also available for feedback. It will be shown that if the
system considered is completely state controllable, then pole feedback is through an ap-
propriate state feedback gain matrix. The system must be completely state-controllable
for arbitrary pole placement. The controllability matrix is given by:

C =
[
B AB A2B ... An−1B

]
=

[
0 1/I

1/I 0

]
(7)

Since the control matrix C of the state space equation obtained has full row rank 2, this
decoupled dynamic system is controllable. The system input can therefore be defined as
u = −Kx, where K is the state feedback gain matrix. The state space equation is obtained
as follows:

ẋ = (A−BK)x (8)

To ensure stability and speed of response, the desired closed-loop eigenvalues (poles) of
A − BK must be negative. Two eigenvalues, λ1 and λ2, were set at −120. The state
feedback gain matrix K can then be determined by direct substitution. The characteristic
polynomial for the desired system is:

|λI −A+BK| =
∣∣∣∣[λ 0
0 λ

]
−

[
0 1
0 0

]
+

[
0

1/I

]
[k1 k2]

∣∣∣∣ = λ2 +
k2
I
λ+

k1
I

(9)

This characteristic polynomial must be equal to:

(λ+ 120)2 = λ2 + 240λ+ 14400 (10)

By equating the coefficients of the terms of the like powers of λ, we obtain:

K = [k1 k2] = [240I 14400I] (11)
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The simulation was carried out in Matlab software with I = 0.4kgm2 and the time-step
set at 0.00001. The initial and final values of the rotating angles were as follows: θi = 0◦

and θf = 30◦. Tracking performance and input torque are obtained as follows:

Figure 3. Trajectory Tracking of Pole
Placement

Figure 4. Torque Generation of Pole
Placement

From the simulation results, it was observed that the decoupled dynamic system with
the pole placement method results in excellent tracking performance by the bang-bang
profile. The ISE is 0.0182 and the maximum torque 3.1933 Nm. However, this is a full
state feedback control method; when the system is not measurable for velocity, other linear
control techniques are considered.

3.3 Lead Compensation

The primary function of the lead compensator is to reshape the frequency-response
curve to provide a phase lead angle sufficient to offset the excessive lag phase associated
with the components of the fixed system. Since our new linear system, obtained by
dynamic decoupling, was a double integrator model, a lead compensator could be used to
stabilize the system by increasing the phase margin. A lead compensator in the following
form will be used:

Gc(s) = Kc
T s + 1

αT s + 1
(12)

where Kc, T and α are the coefficients determined with the maximum phase lead angle.
Note however that the system’s dynamic characteristics need to be modified by increasing
the cut-off frequency, which increases the dynamic response speed to track the bang-bang
profile. The modified dynamic system expression is then:

G(s) = k
I

s2
(13)

where the value of k is determined to increase the system cut-off frequency wc. The lead
compensator is then applied to help the modified system track the desired trajectory by
increasing a certain phase margin. In this case, the selected value of k is 20,000. The gain
crossover frequency is therefore increased to 89.44rad/s. This implies an increase in the
speed of response. We assumed that the necessary maximum phase lead angle ϕm is 70◦,
and therefore the coefficients in the lead compensator, could be determined. The Bode
plot of the compensated system is as follows:
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Figure 5. Frequency domain response with and without a lead compensator

As observed in the Bode plot, the maximum phase lead margin was increased to 70◦ at
the gain crossover frequency, which improved the stability. To see the tracking performance
and input torque, the simulation was carried out in Matlab/Simulink. The value of the
time-step was set at 0.00001s.

Figure 6. Trajectory Tracking of Lead
Compensator

Figure 7. Torque Generation of Lead
Compensator

It is evident that the system with the modified gain crossover frequency and lead
compensator with 70◦ phase is capable of tracking the desired bang-bang profile trajectory.
The integral square of errors is 0.0399 and the maximum torque 3.6289. In addition, a
table with a variety of phase lead angles was created to investigate the influence of different
phase lead angles on two criteria:
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Tracking Performance ISE Maximum of Torque (Nm)

6◦ Phase Lead Angle 2.10 10−3 7.18

10◦ Phase Lead Angle 2.30 10−3 6.89

20◦ Phase Lead Angle 3.20 10−3 6.32

30◦ Phase Lead Angle 4.50 10−3 5.78

40◦ Phase Lead Angle 6.80 10−3 5.27

50◦ Phase Lead Angle 1.08 10−2 4.76

60◦ Phase Lead Angle 1.90 10−2 4.23

70◦ Phase Lead Angle 3.99 10−2 3.63

80◦ Phase Lead Angle 1.18 10−1 2.87

Table 1. Results of Different Phase Lead Angles

The table shows that the ISE is diminished and the maximum torque increased when
the phase lead angle is increased. In application, a large phase lead angle is required to
lower the actuator capacity and energy consumption. However, for a system requiring
high tracking accuracy, a small phase lead angle is needed. Obviously, there is a trade-off
between the two criteria, which also means that the required performance can be achieved
by adjusting the phase lead angle, which facilitates the design of the robot manipulator
controller.

4 Conclusion

The control of robot manipulators for high-performance and high-speed tasks has always
been a challenge for control engineers. Nonlinear control has been developed but it can
encounter difficulties such as tracking inaccuracy at high speed and a heavy computa-
tional burden. It can be difficult to obtain satisfactory control performance. To resolve
this problem, a new mechatronics approach is proposed to meet the demand for control
performance. Rather than concentrating on the design of the control algorithm, this ap-
proach focuses on redesigning the mechanical structure to obtain a linear and decoupled
dynamic system. This offers greater convenience for controller design. The arrangement
of centers of mass and inertia redistribution for the links were described to obtain the
decoupled and linear dynamic equations for the manipulator. It was demonstrated that
the input torques in the dynamically decoupled manipulator we obtained are directly pro-
portional to the input angular accelerations. The classical linear control techniques of pole
placement and lead compensation were therefore adopted to track the desired bang-bang
profile trajectory. With these classical linear control strategies, the decoupled system can
be stabilized rapidly and the desired control performance obtained. The results of the
simulations demonstrate the efficiency of the proposed method.

Bibliography

[1] T. Brog̊ardh, “Present and future robot control development—an industrial perspec-
tive,” Annual Reviews in Control, vol. 31, no. 1, pp. 69–79, 2007.

[2] J. Luh, W. Fisher, and R. Paul, “Joint torque control by a direct feedback for in-
dustrial robots,” IEEE Trans. on Automatic Control, vol. 28, no. 2, pp. 153–161,
1983.

[3] J. Luh, “Conventional controller design for industrial robots—a tutorial,” IEEE
Trans. on Systems, Man, and Cybernetics, no. 3, pp. 298–316, 1983.

8



[4] C.-Y. Kuo and S.-P. T. Wang, “Nonlinear robust industrial robot control,” 1989.
[5] E. Freund, “Fast nonlinear control with arbitrary pole-placement for industrial robots

and manipulators,” The Int.J. of Robotics Research, vol. 1, no. 1, pp. 65–78, 1982.
[6] P. Poignet and M. Gautier, “Nonlinear model predictive control of a robot manipu-

lator,” in 6th International workshop on advanced motion control. Proceedings (Cat.
No. 00TH8494). IEEE, 2000, pp. 401–406.

[7] D. Wang and M. Vidyasagar, “Control of a class of manipulators with a single flexible
link: Part i—feedback linearization,” 1991.

[8] F. Lewis, C. Abdallah, and D. Dawson, “Control of robot,” Manipulators, Editorial
Maxwell McMillan, Canada, pp. 25–36, 1993.

[9] M. Spong and M. Vidyasagar, “Robust linear compensator design for nonlinear
robotic control,” IEEE J. on Robotics and Automation, vol. 3, no. 4, pp. 345–351,
1987.

[10] J.-J. E. Slotine, “The robust control of robot manipulators,” The Int.J. of Robotics
Research, vol. 4, no. 2, pp. 49–64, 1985.

[11] T.-J. Tarn, A. K. Bejczy, A. Isidori, and Y. Chen, “Nonlinear feedback in robot arm
control,” in The 23rd IEEE Conf. on Decision and Control. IEEE, 1984, pp. 736–751.

[12] W. Shang and S. Cong, “Nonlinear computed torque control for a high-speed planar
parallel manipulator,” Mechatronics, vol. 19, no. 6, pp. 987–992, 2009.

[13] D. Nguyen-Tuong, M. Seeger, and J. Peters, “Computed torque control with non-
parametric regression models,” in 2008 American Control Conf. IEEE, 2008, pp.
212–217.

[14] H. Sage, M. De Mathelin, and E. Ostertag, “Robust control of robot manipulators:
a survey,” Int.J. of control, vol. 72, no. 16, pp. 1498–1522, 1999.

[15] E. S. Barjuei, P. Boscariol, A. Gasparetto, M. Giovagnoni, and R. Vidoni, “Control
design for 3d flexible link mechanisms using linearized models,” 2014.

[16] W. Zhang, Q. Li, and L. Guo, “Integrated design of mechanical structure and control
algorithm for a programmable four-bar linkage,” IEEE/ASME Trans. on mechatron-
ics, vol. 4, no. 4, pp. 354–362, 1999.

[17] V. Arakelian, J. Geng, and Y. Lu, “Torque minimization of dynamically decoupled
rr spatial serial manipulators via optimal motion control,” Mechanism Design for
Robotics: MEDER 2021, vol. 103, p. 20, 2021.

[18] V. Arakelian, J. Xu, and J.-P. Le Baron, “Dynamic decoupling of robot manipulators:
a review with new examples,” Dynamic Decoupling of Robot Manipulators, pp. 1–23,
2018.

[19] K. Youcef-Toumi and H. H. Asada, “The design of open-loop manipulator arms with
decoupled and configuration-invariant inertia tensors,” Proceedings. 1986 IEEE In-
ternational Conf. on Robotics and Automation, vol. 3, pp. 2018–2026, 1986.

[20] K. Youcef-Toumi and H. Asada, “The design of open-loop manipulator arms with
decoupled and configuration-invariant inertia tensors,” 1987.

[21] R. S. Gompertz and D. C. Yang, “Performance evaluation of dynamically linearized
and kinematically redundant planar manipulators,” Robotics and computer-integrated
manufacturing, vol. 5, no. 4, pp. 321–331, 1989.

[22] T. A. Coelho, L. Yong, and V. F. Alves, “Decoupling of dynamic equations by means
of adaptive balancing of 2-dof open-loop mechanisms,” Mechanism and Machine The-
ory, vol. 39, no. 8, pp. 871–881, 2004.

[23] V. Arakelian and S. Sargsyan, “On the design of serial manipulators with decoupled
dynamics,” Mechatronics, vol. 22, no. 6, pp. 904–909, 2012.

[24] V. Arakelian, J. Xu, and J.-P. Le Baron, “Mechatronic design of adjustable serial
manipulators with decoupled dynamics taking into account the changing payload,”
J. of Engineering Design, vol. 27, no. 11, pp. 768–784, 2016.

[25] J. Xu, V. Arakelian, and J.-P. Le Baron, “The design of planar serial manipulators
with decoupled dynamics taking into account the changing payload,” J. Robot Mech
Eng Resr, vol. 1, no. 4, pp. 38–45, 2016.

9


