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Null controllability of the parabolic spherical
Grushin equation∗

Cyprien Tamekue†

Université Paris-Saclay, CNRS, CentraleSupélec, 91190, Gif-sur-Yvette, France

June 10, 2022

We investigate the null controllability property of the parabolic equation associated
with the Grushin operator defined by the canonical almost-Riemannian structure
on the 2-dimensional sphere S2. This is the natural generalization of the Grushin
operator G = ∂2

x + x2∂2
y on R2 to this curved setting, and presents a degeneracy at

the equator of S2.
We prove that the null controllability is verified in large time when the control

acts as a source term distributed on a subset ω = {(x1, x2, x3) ∈ S2 | α < |x3| < β}
for some 0 ≤ α < β ≤ 1. More precisely, we show the existence of a positive time
T ∗ > 0 such that the system is null controllable from ω in any time T ≥ T ∗, and
that the minimal time of control from ω satisfies Tmin ≥ log(1/

√
1− α2). Here, the

lower bound corresponds to the Agmon distance of ω from the equator.
These results are obtained by proving a suitable Carleman estimate by using uni-

tary transformations and Hardy-Poincaré type inequalities to show the positive null-
controllability result. The negative statement is proved by exploiting an appropriate
family of spherical harmonics, which concentrates at the equator, to falsify the uni-
form observability inequality.

Key words: Null controllability, Carleman estimates, singular/degenerate parabolic
equations, Hardy-Poincaré type inequalities, Grushin operator, unitary transforma-
tion, spherical harmonics, almost-Riemannian geometry.
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1 Introduction

During the last decade, there has been a lot of interest in studying the null controllability of
degenerate parabolic equations, that is to say, parabolic equations whose principal symbol can
vanish inside the domain. In [3], it has been shown that null controllability for the Grushin
equation, which is an example of a degenerate parabolic equation, requires a non-trivial positive
time. This is in stark contrast with what happens for the usual heat equations (see, for instance,
[15, 18, 21, 23]), which are null controllable in an arbitrarily short time.
The study of properties of null controllability of parabolic, spherical Grushin equation is

relevant since the latter is both degenerate and singular at different locations. So it is natural
to expect that such a study would be a bit more subtle than that of dimension 2. Before going
further, let us start by recalling some well-known results going in our direction.

1.1 The 2D parabolic Grushin equation

Since its introduction in Baouendi [2] (see also Grushin [19]), the so-called Grushin (or Grushin-
Baouendi) operator, defined in the bidimensional setting as

G := ∂2
x + x2∂2

y , (1)

where (x, y) ∈ R2, received considerable attention in the field of differential geometry, as well as
in control theory as a prototypical example of a degenerate elliptic, hypoelliptic operator, see
for instance [3, 8, 9, 11, 19].
More recently, in [3] the authors investigated the properties of null controllability for the

degenerate parabolic equation associated with (1), showing that they exhibit a wider range of
behaviours. In particular, null controllability may hold true or not depending on the geometry
of the open set ω and the time horizon T . More precisely, the authors considered the following
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parabolic equation, which presents a degeneracy at x = 0:
∂tf − Gf = u(t, x, y)1ω0(x, y), (t, x, y) ∈ (0, T )× Ω0,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω0,

f(0, x, y) = f0(x, y), (x, y) ∈ Ω0,

(2)

where T > 0, Ω0 = (−1, 1) × (0, 1), ω0 ⊂ Ω0 is an open subset, f is the state, u is the control
function, f0 is the initial datum. Then, we have the following, see [3, Theorem 1].

Theorem 1.1 ([3]). Let ω = (a, b)× (0, 1), where 0 < a < b ≤ 1. Then, we have

Tmin := inf{T > 0 : system (2) is null controllable from ω0 in time T} ≥ a2

2 .

This result is to be interpreted in the following sense: there exists a positive time T ∗ > 0 such
that system (2) is null controllable from ω0 in any time T > T ∗ and that the minimal time Tmin
required for the null controllability of system (2) from ω0 satisfies Tmin ≥ a2

2 .
Following this line of investigation, in [4, Theorem 1.4], Beauchard, Dardé, and Ervedoza

consider the more general operator Gq = ∂2
x + q(x)2∂2

y , where q is a real function, satisfying for
some L± > 0 the following:

q(0) = 0, q ∈ C3([−L−, L+]), inf
(−L−,L+)

q′ > 0. (3)

For the associated parabolic degenerate equation on Ω = (−L−, L+) × (0, π), with boundary
control at the vertical side Γ+ = {L+} × (0, π), and with initial datum f0 ∈ H1

0 (Ω) the authors
are able to obtain the sharp value of the minimal time:

Tmin = 1
q′(0)

∫ L+

0
q(s)ds. (4)

Note that the integral in (4) can be seen as the Agmon’s distance associated to potential q
between {L+} (related to the control support) and {0} (related to the degeneracy location). See
also [5] for preliminary results in this direction.

1.2 Setting, main results and strategy of proofs
Let us consider the 2−dimensional sphere S2 = {p = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 = 1}. We
let X, Y and Z be vector fields generating the counter clock-wise rotations around the x1, x2
and x3 axes respectively, viz.

X = −x3∂x2 + x2∂x3 , Y = −x3∂x1 + x1∂x3 , Z = −x2∂x1 + x1∂x2 . (5)

Here, we are using the identification of vector fields with derivations. These vector fields, usually
known as the Killing vector fields on S2 span at each point p of S2 the tangent space TpS2.
Observe that {X,Y } are linearly independent outside of the equator E := {x3 = 0}. Neverthe-

less, since [X,Y ] = Z, the system of vector fields {X,Y } is bracket-generating and determines a
sub-Riemannian structure on S2 which is a 2−almost-Riemannian structure (2−ARS for short)
on S2 (see for instance [1, 8, 9, 11, 14, 32] for more details). The pair {X,Y } is called the
generating frame of the 2−ARS.
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In this work we are interested in the hypoelliptic operator defined by

L := divµ ◦∇sR = −X+X − Y +Y. (6)

Here, ∇sR is the sub-Riemannian gradient defined by ∇sRφ = (Xφ)X + (Y φ)Y for any φ ∈
C∞(S2), while divµ denotes the divergence w.r.t. the standard Riemannian volume form µ on
S2, as induced by the Euclidean Lebesgue measure. Moreover, X+ and Y + denote respectively
the formal adjoints of X and Y taken in the space L2(S2;µ), the Hilbert space of measurable and
square-integrable functions over S2 with respect to µ. As it will be evident from the coordinate
expression that we will present in the following, this is a degenerate operator that generalizes
to the sphere S2 the Grushin operator. Note that, C∞(S2) is canonically defined as the space of
the restrictions to S2 of functions that are C∞ on an open neighbourhood of S2. Such functions
have compact support since S2 is a compact manifold.
The operator L is essentially self-adjoint on C∞(S2), and we will henceforth consider its self-

adjoint realization. See Section 2. Our main result is then the following.

Theorem 1. Let f0 ∈ L2(S2;µ) and u ∈ L2(0, T ;L2(S2;µ)). Let ω = {(x1, x2, x3) ∈ S2 | α <
|x3| < β} with 0 ≤ α < β < 1. We consider the following equation{

∂tf − Lf = u1ω, in (0, T )× S2,

f |t=0 = f0, in S2.
(7)

Then, the minimal time of null controllability from ω satisfies Tmin ≥ log(1/
√

1− α2). Moreover,
there exists T ∗ > 0 such that, for every T ≥ T ∗, system (7) is null controllable from ω in time T .

It should be noted that we will prove in this paper the Theorem 1 only in the interesting
case when α > 0, i.e., when the control region ω does not touch the degeneracy E = {x3 = 0}.
However, let us emphasise that if α = 0 then the equation (7) is null controllable in any time
T > 0. This result can be proved using a classical cut-off argument (as done for instance in
[3, 5] for the 2-dimensional parabolic Grushin operator) by taking advantage of the fact that the
equation is null controllable in both hemispheres S2

+ and S2
− in any time T > 0 by the result of

Lebeau and Robbiano [23] (see also Fursikov and Imanuvilov [18]) since L is a uniformly elliptic
operator on the two hemispheres S2

+ and S2
−.

To prove Theorem 1 and, by the way, understand how the operator L is connected with the
Grushin operator, we use spherical coordinates. To this end, it is slightly easier to consider the
vector fields (5) as the restriction of S2 of the vector fields in R3 given by the same formulae.
Let

Ω := (−π/2, π/2)× [0, 2π), and U := R∗+ × Ω, (8)

and consider the latitude x and longitude y coordinates, viz.

F : U −→ R3

(r, x, y) 7−→ F(r, x, y) = (r cosx cos y, r cosx sin y, r sin x), (9)

so that F−1(S2\{N,S}) = {1} ×Ω ∼= Ω. We let Φ := F |Ω, then up to a rotation of angle y − π
2 ,

the pull-back by Φ of the vector fields of the generating frame read

Φ∗X := (dF−1 ·X)|Φ(r,x,y) = ∂x, Φ∗Y := (dF−1 ·Y )|Φ(r,x,y) = tan x∂y, (10)

where dF−1 denotes the inverse of the Jacobian matrix of F.
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Figure 1: The equator E (in red), a control region ω (in green), north and south pole (in blue).

Let us denote by D(p) the linear span of the two vector fields Φ∗X and Φ∗Y at a point
Φ−1(p), p ∈ S2\{N,S}. One can easily check that, D(p) is 2−dimensional except on the
equator Φ−1(E) = {x = 0} where it is 1−dimensional. We may also observe that, due to the
system of coordinates, the vector field Φ∗Y is singular at ±π/2. The standard rotation-invariant
measure on Ω in these coordinates is given by

dσ = cosxdxdy. (11)

Observe that the diffeomorphism Φ : Ω→ S2\{N,S} induces a unitary transformation

TΦ : L2(Ω;σ) −→ L2(S2\{N,S};µ) (12)
v 7−→ TΦ v = v ◦ Φ−1,

and that Φ∗X = T−1
Φ X TΦ and Φ∗Y = T−1

Φ Y TΦ. Here T−1
Φ is the inverse (or the adjoint) of

TΦ. From now on we let the spherical Grushin operator be the coordinate representation under
Φ of L. That is, the operator defined by

Φ∗L := T−1
Φ LTΦ . (13)

In particular, Φ∗L is self-adjoint with core T−1
Φ (C∞((S2))). See Section 2.1 for a characterization

of its domain and corresponding boundary conditions.
In terms of the local generating family of vector fields {Φ∗X, Φ∗Y } we have

Φ∗L := −(Φ∗X)+(Φ∗X)− (Φ∗Y )+(Φ∗Y ) = 1
cosx∂x(cosx∂x) + tan2 x∂2

y , (14)

with (Φ∗X)+ and (Φ∗Y )+ being the formal adjoints of Φ∗X and Φ∗Y respectively, taken in the
space L2(Ω;σ).

Remark 1.1. The singularity of (14) at north and south poles is due to the latitude-longitude
chart Φ. We stress that whatever chart is chosen, this phenomenon of singularity will always
occur since global coordinates do not exist1 on S2.

1In fact, S2 is not a local surface of R3 in the sense of Berger and Gostiaux [6, p. 348], meaning that there is
no open set U ⊂ R2 and an immersion Φ ∈ C∞(U ;R3) such that Φ is a homeomorphism between U and its
image S2 = Φ(U).
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Throughout the following, we let the real numbers 0 < a < b ≤ π/2 be such that α = sin a
and β = sin b, α and β being as in Theorem 1. We set

ω := ωa,b × (0, 2π) and ωa,b := (−b,−a) ∪ (a, b). (15)

Hence, Theorem 1 is equivalent to the following.
Theorem 2. Let f0 ∈ L2(Ω;σ) and u ∈ L2(0, T ;L2(Ω;σ)). Let ω be defined as in (15). We
consider the following equation{

∂tf − (Φ∗L)f = u1ω, in (0, T )× Ω,
f |t=0 = f0, in Ω.

(16)

Then, the minimal time of null controllability from ω satisfies Tmin ≥ log(1/ cos a). Moreover,
there exists T ∗ > 0 such that, for every T ≥ T ∗, system (16) is null controllable from ω in time T .
Recall that system (16) is null controllable from ω ⊂ Ω in time T > 0 if, for every f0 ∈ L2(Ω;σ),

there exists a control u ∈ L2(0, T ;L2(Ω;σ)) supported in (0, T )× ω such that the solution f of
(16) satisfies f(T, ·, ·) = 0.
The following remark, although formal, illustrates the connection between the spherical Grushin

operator Φ∗L and the 2D Grushin operator G.
Remark 1.2. We consider (11) and (14). Taking the first order Taylor expansion of cosx and
tan x at x ≈ 0 we observe that dσ ≈ dxdy and Φ∗L ≈ ∂2

x + x2∂2
y , so that Φ∗L behaves like the

Grushin operator (1) in a neighbourhood of the degeneracy. As a consequence, we may expect
the same properties of null controllability for the parabolic equation (16) associated to Φ∗L as
for the 2D parabolic Grushin equation (2).
Let us briefly discuss our strategy of proof. As it is now classical, Theorem 2 is a straightfor-

ward consequence of the Hilbert Uniqueness Method [24] meaning that the null controllability
property of system (16) is equivalent to the observability of the adjoint system associated to
(16).
Thus, Theorem 2 is equivalent to the following.

Theorem 3. Let g0 ∈ L2(Ω;σ) and ω be defined as in (15). Consider the adjoint system of (16),{
∂tg − (Φ∗L)g = 0, in (0, T )× Ω,
g|t=0 = g0, in Ω.

(17)

Then, the minimal time required for observability in ω satisfies Tmin ≥ log(1/ cos a). Moreover,
there exists T ∗ > 0 such that, for every T ≥ T ∗, system (17) is observable in ω in time T .
Recall that system (17) is observable in ω ⊂ Ω in time T > 0 if there exists C(T, ω) > 0 such

that, for every g0 ∈ L2(Ω;σ), the solution g of system (17) satisfies∫
Ω
|g(T, x, y)|2dσ ≤ C(T, ω)

∫ T

0

∫
ω
|g(t, x, y)|2dσdt. (18)

The observability inequality (18) means that the energy of the solution of (17) concentrated in
ω yields an upper bound of the energy in time T everywhere in Ω.
Finally, note that the proof of Theorem 3 is divided in two distinct steps:
1. Prove that for any time T ≤ log(1/ cos a), the equation is not observable in ω in time T ;

2. Prove that there exists T ∗ > 0 such that, for every T ≥ T ∗, the equation is observable in
ω in time T .
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1.3 Comments and open questions

The lower bound of minimal time Tmin in Theorem 2 appears to be the Agmon distance between
the control region ω = ωa,b× (0, 2π) and the degeneracy (the equator in fact) Φ−1(E) = {x = 0},
that is to say, the lower bound of Tmin satisfies (4) with q(x) = tan x and L+ = a. However, it
should be noted that the result of [4] can not be directly applied to our case.
In fact, in [4], the authors investigate the boundary null-controllability of the 2D parabolic

Grushin equation with more general potential satisfying assumptions (3). In our case, equation
(16) is the coordinate representation of equation (7), posed on the whole sphere S2, which is
a compact manifold without boundary. Moreover the potential q(x) = tan x does not satisfies
assumptions (3) on (−π/2, π/2).
The presence of two spherical crowns in the control region is a technical assumption required in

the proof of the Carleman estimate in Section 4 and is related to the symmetry of the singularity
locations (the north and south poles) with respect to the equator Φ−1(E) = {x = 0}. The case
where the control function acts only on one spherical crown (i.e., ω = (a, b) × (0, 2π)) remains
open. Another interesting open question is to show the sharpness of the lower bound of the
minimal time, as done in [5] for the 2D parabolic Grushin equation.

Remark 1.3. If the elevation angle (latitude) a of the control region ω with respect to equator
is equal to zero, i.e., if ω contains the equator, then the strategy used in Subsection 5.1 to obtain
the lower bound of the minimal time Tmin can not be applied. On the other hand, if the control
acts only on one spherical crown (i.e., ω = (a, b)× (0, 2π)), the proof presented here still applies
and shows that the lower bound of minimal time is still log(1/ cos a).

1.4 Structure of the paper

The first part of the paper, contained in Section 2, is devoted to general results about parabolic
Grushin equation (16). Here we prove the well-posedness of equation in Subsection 2.1, we study
the properties of Fourier components of solution of the adjoint system (17) in Subsection 2.2 as
well as their dissipation rate. In Subsection 2.3, we present the strategy of the proof of Theorem
3, that is, we show how the uniform observability estimate of Fourier components yields the
observability estimate of solution of the adjoint system.
In Section 3, we recast the equation satisfied by the Fourier components in spaces L2 without

weight using unitary transformations.
In Section 4 we prove a global Carleman estimate for the 1D parabolic equation satisfy by

the Fourier components for non zero frequencies in a space L2 without weight.
Finally, Section 5 is devoted to the proof of Theorem 3 (or equivalently of Theorem 2 and

therefore the proof of Theorem 1). In Subsection 5.1 we prove the negative statement of Theorem
3 and the positive statement in Subsection 5.2.

Acknowledgement. This work started when the author was a Master 2 student at the Institut
de Mathématiques et de Sciences Physiques in Dangbo, Benin. The author would like to thank
its thesis advisors Yacine Chitour and Dario Prandi for bringing this problem to its attention
and for interesting and fruitful discussions. He would like to thank also the reviewers for the
careful reading of the paper and for their valuable comments having enhanced the presentation
of the paper.
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2 Well-posedness, Fourier decomposition and strategy for the proof
2.1 Well-posedness of Cauchy problems
It is interesting and useful to start with the well-posedness of the parabolic equation (7) asso-
ciated to the intrinsic operator L as defined in (6). Since {X,Y, [X,Y ]}p generates the tangent
space TpS2 for any p ∈ S2, it follows from Strichartz [32, p.260-261] that −L with domain

D(L) =
{
u ∈ L2(S2;µ) : Lu := −X+Xu− Y +Y u ∈ L2(S2;µ)

}
, (19)

is a densely-defined, self-adjoint operator on L2(S2;µ), hypoelliptic [20, Theorem 1.1] and has
a compact resolvent. Therefore, its spectrum is real, discrete and consists of eigenvalues with
finite multiplicity, labelled in increasing order, that is, (λm)m∈N∗ , with 0 = λ1 < λ2 ≤ · · · ≤ · · · ,
with λm → ∞ as m → ∞. Moreover, there exists an orthonormal Hilbert basis (ϕm)m∈N∗ of
L2(S2;µ) consisting of eigenfunctions of L associated with the eigenvalues (λm)m∈N∗ .

Remark 2.1. It should be noted that the sub-Riemannian manifold S2 endowed with the 2−ARS
described in Subsection 1.2 is obtained as restriction of complete Riemannian manifolds. So, it is
completes as metric space. It follows that, the sub-Riemannian Laplacian L defined on C∞(S2) is
essentially self-adjoint in L2(S2;µ) and the domain of its unique self-adjoint extension coincides
with (19) (see, Strichartz [32, p.261], [31, p.50 and Theorem 2.4]).

We define the intrinsic semigroup on L2(S2;µ) denoted (etL)t≥0, as the family of operator
L2(S2;µ) → L2(S2;µ) defined as follows for every t ≥ 0: given f0 ∈ L2(S2;µ), etLf0 is the
unique solution at time t of the homogeneous equation of (7), which is C∞ on ]0,+∞[×S2 (by
the hypoellipticity of operator L) and given by

etLf0 =
∑
m∈N∗

e−tλm〈f0, ϕm〉L2(S2;µ)ϕm. (20)

Let us state the following well-posedness result of the intrinsic parabolic equation (7) whose
proof is classical (see, e.g., [29, Chapter 4]).

Proposition 2.1. Given T > 0, f0 ∈ L2(S2;µ) and v := 1ωu ∈ L2(0, T ;L2(S2;µ)), there exists
a unique solution

f ∈ C([0, T ];L2(S2;µ)) ∩ L2((0, T ); D(L))

of equation (7), and f is given by Duhamel’s formula

f(t) = etLf0 +
∫ t

0
e(t−s)Lv(s)ds, t ∈ [0, T ]. (21)

We now can provide an argument about the well-posedness of the parabolic equation (16)
associated with the spherical Grushin operator Φ∗L defined in (13) (or equivalently in (14)).

Let Hσ := L2(Ω;σ), and denote by 〈·, ·〉Hσ and ‖ · ‖Hσ , respectively, the scalar product and
norm in Hσ.We have that (L,D(L)) and (Φ∗L,D(Φ∗L)) are unitarily equivalent, where we let

Φ∗L = T−1
Φ LTΦ on D(Φ∗L) = T−1

Φ (D(L)). (22)

Here, TΦ is the unitary transformation defined in (12), T−1
Φ being is inverse. So, Φ∗L with

domain D(Φ∗L) is a densely-defined, self-adjoint operator on Hσ and has compact resolvent. We
also remark that v ∈ D(Φ∗L) means v = u ◦ Φ for some u ∈ D(L). So, we have the following.
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Lemma 2.1. Let v ∈ D(Φ∗L). Then, we have that v, Φ∗Lv ∈ Hσ, the function y 7→ v(π/2, y)
(resp. y 7→ v(−π/2, y)) is constant, and y 7→ v(x, y) is 2π-periodic for any x ∈ [−π/2, π/2].
Moreover, the following functions are well defined and real-valued:

y ∈ [0, 2π) 7→ ∂xv(π/2, y), y ∈ [0, 2π) 7→ ∂xv(−π/2, y), (x, y) ∈ Ω 7→ tan x ∂yv(x, y). (23)

Remark 2.2. We stress that boundary conditions of Lemma 2.1 are naturally associated to
Cauchy problems (16) and (17).

Let {W`,n}`∈N,−`≤n≤` denotes the family of spherical harmonics, defined by

W`,n(x, y) =
√

2`+ 1
4π

(`− n)!
(`+ n)!P

n
` (sin x)einy, ∀x ∈ [−π/2, π/2]× [0, 2π), (24)

with Pn` being associated Legendre functions of the first kind. Then we can check that each
W`,n lies in D(Φ*L) and the operator Φ∗L satisfies (see, [11, p.9] and references within)

− (Φ∗L)W`,n = λ`,nW`,n, λ`,n := `(`+ 1)− n2, ∀ |n| ≤ ` ∈ N. (25)

Moreover, by using the identification Hσ
∼= L2((−π/2, π/2); cosxdx) ⊗ L2((0, 2π), dy), we have

that {W`,n}`∈N,−`≤n≤` form an orthonormal Hilbert basis of the space Hσ [30, p.137] so that,
D(Φ*L) is a non-empty and dense subspace of Hσ.
The spherical Grushin semigroup on Hσ denoted (etΦ∗L)t≥0 is then the family of operators

Hσ → Hσ defined as follows for every t ≥ 0: given f0 ∈ Hσ, etΦ
∗Lf0 is the unique solution at

time t of the homogeneous equation of (16), which is C∞ on ]0,+∞[×Ω and given by

etΦ
∗Lf0 =

∑
|n|≤`∈N

e−tλ`,n〈f0,W`,n〉HσW`,n. (26)

We now can state the following well-posedness result of the parabolic equation (16) associated
with the spherical Grushin operator Φ∗L (see, e.g., [29, Chapter 4]).

Proposition 2.2. Given T > 0, f0 ∈ Hσ and v := 1ωu ∈ L2(0, T ; Hσ), there exists a unique
solution

f ∈ C([0, T ]; Hσ) ∩ L2((0, T ); D(Φ*L))

of equation (16), and f is given by Duhamel’s formula

f(t) = etΦ
∗Lf0 +

∫ t

0
e(t−s)Φ∗Lv(s)ds, t ∈ [0, T ]. (27)

We end this section by the following Hardy-Poincaré inequality in the Sobolev spaceH1
0 (−π/2, π/2).

The reader could find another proof of such inequality in [28, p.92].

Lemma 2.2. Let w ∈ H1
0 (−π/2, π/2). Then, it holds

∫ π
2

−π2

|w(x)|2

cos2 x
dx ≤ 4

∫ π
2

−π2
|w′(x)|2dx. (28)

9



Proof. First of all, highlight that, the main theorem of [13, p. 199] is valid in the space
L2([0, π/2)) by repeating the same proof with π/2 playing the role of ∞. Note that, such
results are consequence of lemma of [17, p.42], adapting the proof in the case at hand. Let
f ∈ L2(−π/2, π/2). Then,∫ π

2

0
(|f(x)|2 + |f(−x)|2)dx =

∫ π
2

−π2
|f(x)|2dx,

so that, f, f̃ ∈ L2([0, π/2)), where f̃(x) = f(−x), x ∈ [0, π/2). We adopt the notations of [13],
then [13, eq.(1.3)] recasts

(S f)(x) = φ(x)
∫ π

2

x
ψ(t)f(t)dt, x ∈ [0, π/2). (29)

We let φ(x) = 1/ cosx and ψ(x) = 1 for all x ∈ [0, π/2). Thus, ψ ∈ L2([0, π/2)), φ ∈ L2([0, α])
for all 0 < α < π/2 and∫ x

0
|φ(t)|2dt

∫ π
2

x
|ψ(t)|2dt =

(
π

2 − x
)

tan x ≤ 1, ∀x ∈ [0, π/2],

so that, [13, eq. (2.1) to (2.3)] are satisfy with K := 1. It follows that S defined in (29) is a
bounded operator from L2([0, π/2)) to itself and the following holds for all f ∈ L2([0, π/2)),∫ π

2

0
|(S f)(x)|2dx ≤ 4K

∫ π
2

0
|f(x)|2dx = 4

∫ π
2

0
|f(x)|2dx. (30)

Let now w ∈ H1
0 (−π/2, π/2), then w,w′ ∈ L2(−π/2, π/2) and w(±π/2) = 0. Letting f = w′ in

(29) we find

(Sw′)(x) = φ(x)
∫ π

2

x
ψ(t)w′(t)dt = −w(x)

cosx, x ∈ [0, π/2).

Hence (30) leads to ∫ π
2

0

|w(x)|2

cos2 x
dx ≤ 4

∫ π
2

0
|w′(x)|2dx.

We argue similarly for w̃, and combining both inequalities we complete the proof of lemma.

2.2 Fourier decomposition of solution
Using a complete orthonormal eigenbasis of L2((0, 2π); dy), we can separate the space Hσ =
⊕⊥n∈ZHn, where Hn ∼= L2((−π/2, π/2); cosxdx). Therefore, one has for every t ≥ 0,

etΦ
∗L =

⊥⊕
n∈Z

etLn , (31)

where for any n ∈ Z, the operator Ln is defined on Hn by

D(Ln) =
{
v ∈ Hn : Lnv ∈ Hn, v(±π/2), v′(±π2) ∈ R

}
, (32)

Lnv = 1
cosx(cosxv′)′ − n2 tan2 xv, ∀v ∈ D(Ln). (33)
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Since the solution g of (17) belongs to C([0, T ]; Hσ), the function y 7→ g(t, x, y) belongs to
L2((0, 2π); dy) for a.e. (t, x) ∈ (0, T ) × (−π/2, π/2). So, the adjoint system (17) is formally
equivalent to the following family of one-dimensional parabolic equations indexed by n ∈ Z,{

∂tgn − Lngn = 0, a.e. in (0, T )× (−π/2, π/2),
gn(0, x) = g0,n(x), x ∈ (−π/2, π/2).

(34)

Here, the n-th Fourier component gn is given by

gn(t, x) =
∫ 2π

0
g(t, x, y)einydy, (t, x) ∈ (0, T )× (−π/2, π/2). (35)

We derive in the following lemmas some properties of functions belonging to D(Ln) as well as
their behaviour at ±π/2. We begin by the case n = 0.

Lemma 2.3. Let v ∈ D(L0). Then v belongs to the Sobolev space H1(−π/2, π/2) and v is
locally absolutely continuous on [−π/2, π/2]. Moreover, it holds

lim
x→−π2

+
v′(x) = lim

x→π
2
−
v′(x) = 0. (36)

Proof. Let v ∈ D(L0). Then v, L0v ∈ H0 ∼= L2((−π/2, π/2); cosxdx) and v(±π/2), v′(±π/2) ∈ R.
One has,

‖v′‖2H0 = −〈L0v, v〉H0 <∞. (37)

Since it is clear that sin xv′, cosxv,
√

cosxv,
√

cosxv′ ∈ H0, it holds

‖v‖2H1(−π/2,π/2) = 2
[
〈L0v, cosxv − sin xv′〉H0 + ‖

√
cosxv‖2H0 + ‖

√
cosxv′‖2H0

]
<∞. (38)

It follows that v belongs to the Sobolev space H1(−π/2, π/2) ↪→ W 1,1(−π/2, π/2), and then v
is locally absolutely continuous on [−π/2, π/2]. On the other hand, one has

∫ π
2

−π2

|v′(x)|2

cosx dx ≤
∫ π

2

−π2

(
|v′′(x)|2 + |v

′(x)|2

cos2 x

)
cosxdx

=
∫ π

2

−π2
|L0v(x)|2 cosxdx+

∣∣v′(π/2)
∣∣2 +

∣∣v′(−π/2)
∣∣2 <∞. (39)

Since cos(±π/2) = 0 this implies (36). Moreover (39) also shows that v′′ ∈ H0. In particular,
tan xv′ ∈ H0, since L0v ∈ H0 and v′′ ∈ H0. This completes the proof of lemma.

In the case n ∈ Z\{0}, we have the following

Lemma 2.4. Let n ∈ Z\{0} and v ∈ D(Ln). Then v belongs to the Sobolev space H1(−π/2, π/2)
and v is locally absolutely continuous on [−π/2, π/2]. Moreover, it holds

lim
x→−π2

+
v(x) = lim

x→π
2
−
v(x) = 0 and lim

x→−π2
+

v(x)√
cosx = lim

x→π
2
−

v(x)√
cosx = 0. (40)
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Proof. Let n ∈ Z\{0} and v ∈ D(Ln). Since v, Lnv ∈ Hn ∼= L2((−π/2, π/2); cosxdx) and
v(±π/2), v′(±π2) ∈ R, one has,

‖v′‖2Hn ≤
∫ π

2

−π2

(
|v′(x)|2 + |n tan xv|2

)
cosxdx = −〈v,Lnv〉Hn <∞, (41)

showing in particular that tan xv ∈ Hn. It follows that

‖ cos−1 xv‖2Hn = ‖ tan xv‖2Hn + ‖v‖2Hn <∞, (42)

and by Cauchy-Schwarz’ inequality,

‖v‖2L2(−π/2,π/2) ≤ ‖ cos−1 xv‖Hn‖v‖Hn <∞. (43)

So,

‖ cos−1 v‖2L2(−π/2,π/2) = ‖v‖2L2(−π/2,π/2) + 1
n2

[〈
−Lnv,

v

cosx

〉
Hn
−
∫ π

2

−π2
tan x|v(x)|2dx

]
<∞.

(44)
It is clear that sin xv′ ∈ Hn, so that,

‖v′‖2L2(−π/2,π/2) = −2〈Lnv, sin xv′〉Hn + n2
∫ π

2

−π2
sin2 x(3 + tan2 x)|v(x)|2dx <∞, (45)

by (42), (43) and (44). Thus, v belongs to the Sobolev spaceH1(−π/2, π/2) ↪→W 1,1(−π/2, π/2),
and then v is locally absolutely continuous on [−π/2, π/2]. So,

v(x2)− v(x1) =
∫ x2

x1
v′(s)ds ∀x1, x2 ∈ [−π/2, π/2]. (46)

On the other hand, since tan xv ∈ Hn, the first identity of (40) immediately follows. Let us
turn to an argument for the second identity of (40). Let ε > 0, then by the first identity of (40),
and (46) one has for all v ∈ D(Ln), n 6= 0,∣∣∣∣v (−π2 + ε

)∣∣∣∣ ≤ ∫ −π2 +ε

−π2
|v′(t)|dt ≤ ‖v′‖∞ε.

Hence,

lim
x→−π2

+

|v(x)|√
cosx = lim

ε→0

|v(−π
2 + ε)|√

cos(−π
2 + ε)

≤ ‖v′‖∞ lim
ε→0

ε√
sin ε

= 0.

The proof of the limit at π/2 is similar.

Remark 2.3. Lemmas 2.3 and 2.4 show in particular that, for all v ∈ D(Ln), Lnv has a
meaning a. e. in (−π/2, π/2). Moreover, Lemma 2.4 also shows that the domain D(Ln) is a
subspace of the Sobolev space H1

0 (−π/2, π/2) in the case n ∈ Z\{0}. Therefore, Lemma 2.2
holds true in D(Ln).

The following proposition is the direct consequence of the section 2.1. We also refer to [27, p.
68] in which the theory of singular Sturm-Liouville equation is well-elaborated.
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Proposition 2.3. Let n ∈ Z. Then, −Ln : D(Ln) ⊂ Hn → Hn is a densely defined, self-adjoint
positive operator with compact resolvent.

One can check that the functions vn,` defined for ` ∈ N, n ∈ Z and |n| ≤ ` by

vn,`(x) =
√

2`+ 1
2

(`− n)!
(`+ n)!P

n
` (sin x), ∀x ∈ [−π/2, π/2], (47)

form a complete orthonormal set of the Hilbert space Hn, with Pn` being the associated Legendre
function of the first kind. Moreover, each vn,` lies in D(Ln) and we have

−Lnvn,` = (`(`+ 1)− n2)vn,`.

So the functions vn,` are the eigenfunctions of operators −Ln with eigenvalues λ`,n = `(`+1)−n2.
Thanks to Proposition 2.3, it is then straightforward to prove the following

Proposition 2.4. Let T > 0. For every n ∈ Z, the n-th Fourier component gn of g, as given
by (35), is the unique solution of (34) lying in the class

C([0, T ];Hn) ∩ C((0, T ); D(Ln)) ∩ C1((0, T );Hn). (48)

Moreover, it is equal to
etLng0,n =

∑
`∈N

e−λ`,nt〈g0,n, vn,`〉Hnvn,`, (49)

where g0,n ∈ Hn is given by g0,n(x) =
∫ 2π

0
g0(x, y)einydy, and g0 being the initial condition in

equation (17).

Remark 2.4. In fact, we may show by an inductive argument that for all n ∈ Z

gn ∈ C∞((0, T ); D(Ln)). (50)

Moreover, gn is C∞ on ]0,+∞[×(−π/2, π/2).

By Proposition 2.4, the following dissipation rate of Fourier component gn is satisfies

‖gn(T, ·)‖Hn ≤ e−|n|(T−t)‖gn(t, ·)‖Hn , ∀t ∈ (0, T ). (51)

Notation 2.1. In what follows, to simplify the notation, we shall assume n ∈ N. The same
considerations hold for n ∈ Z− by replacing n with |n|.

2.3 Strategy for the proof of Theorem 3 and uniform observability
We show in this subsection how the proof of Theorem 3 reduces to the proof of an observability
inequality for the 1D parabolic equations (34) that is uniform with respect to n ∈ N. Recall
that if g is the solution of (17), then it can be represented by

g(t, x, y) =
∑
n∈Z

gn(t, x)einy, for a.e. (t, x, y) ∈ (0, T )× Ω. (52)
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We also emphasize that, by Bessel-Parseval’s equality, one has, for a.e. t ∈ (0, T ) and every
−π/2 ≤ a1 ≤ b1 ≤ π/2, that∫ b1

a1

∫ 2π

0
|g(t, x, y)|2dσ =

∑
n∈Z

∫ b1

a1
|gn(t, x)|2 cosxdx. (53)

Thus, if there exists a positive constant C > 0, independent of n ∈ N, and such that the following
uniform observability holds true for the system (34)∫ π

2

−π2
|gn(T, x)|2dx ≤ C

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt, (54)

then, we can easily show that the observability inequality (18) is verified. Indeed, thanks to
(52), (53) and (54), we find

∫
Ω
|g(T, x, y)|2dσ =

∑
|n|≤`∈N

∫ π
2

−π2
|gn(T, x)|2 cosxdx

≤ C
∑
|n|≤`∈N

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt = C

∫ T

0

∫
ωa,b

∫ 2π

0
|g(t, x, y)|2dσdt. (55)

This immediately yields (18). Hence, in order to prove Theorem 3 it is necessary and sufficient
to study the observability of system (34) uniformly with respect to n ∈ N.

Definition 2.1. (Uniform observability) Let ωa,b be defined as in (15). Then system (34) is
observable in ωa,b in time T uniformly with respect to n ∈ N, if there exists C > 0 such that, for
every n ∈ N, and g0,n ∈ Hn, the solution of (34) satisfies (54).

3 The 1D equations in the space L2 without weight
In this section, we recast the 1D equation (34) in the space L2(−π/2, π/2) without weight in
the cases n ∈ N\{0} and in the space L2(−1, 1) when n = 0.

3.1 The 1D equation in the space L2(−1, 1) and observability inequality when n = 0

Let us consider the unitary transformation

V : L2((−π/2, π/2); cosxdx) −→ L2(−1, 1)
v 7−→ (V v)(x) = v(arcsin x).

We define the unbounded operator M0 on the space L2(−1, 1) by

M0 = VL0 V∗, D(M0) = V D(L0). (56)

Here, V∗ is the adjoint of the unitary operator V, that is,

V∗ : L2(−1, 1) −→ L2((−π/2, π/2); cosxdx)
w 7−→ (Vw)(x) = w(sin x).
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We then have the following expression of operator M0:

M0w = ((1− x2)w′)′, ∀w ∈ D(M0) . (57)

Since the differential operator ∂t commutes with the unitary transformation V, one deduces
easily that, when n = 0, system (34) is equivalent to the following{

∂tg̃0 −M0 g̃0 = 0, a.e. in (0, T )× (−1, 1),
g̃0(0, x) = g̃0,0(x), x ∈ (−1, 1).

(58)

In particular, the solution g̃0 = V g0 lies in the class (see Proposition 2.4 and Remark 2.4)

C([0, T ];L2(−1, 1)) ∩ C∞((0, T ); D(M0)). (59)

We characterise in the following some useful properties of functions belonging to the domain
D(M0), that are obtained by Lemma 2.3.

Lemma 3.1. Let w ∈ D(M0). Then w belongs to the Sobolev space H1(−1, 1) and w is locally
absolutely continuous on [−1, 1]. Moreover, it holds

w(±1) ∈ R and w′(x)
√

1− x2|x=±1 = 0. (60)

Proof. Let w ∈ D(M0). Then w(x) = v(arcsin x) for some v ∈ D(L0) and a. e., x ∈ (−1, 1).
Since v(±π/2) ∈ R, the first property in (60) immediately follows. Similarly, since v ∈ H0 ∼=
L2((−π/2, π/2); cosxdx), and using (39), it holds
∫ 1

−1
|w(x)|2dx =

∫ π
2

−π2
|v(x)|2 cosxdx <∞ and

∫ 1

−1
|w′(x)|2dx =

∫ π
2

−π2

|v′(x)|2

cosx dx <∞,

so that, w,w′ ∈ L2(−1, 1). Finally, w′(x)
√

1− x2|x=±1 = v′(±π/2) = 0, by (36).

Remark 3.1. We note that an observability inequality for equation (58) was established in [25]
by Martinez and Vancostenoble. Indeed thanks to Lemma 3.1 we aim at proving an observability
inequality for the following equation

∂tw − ∂x(a(x)∂xw) = 0, a.e. in (0, T )× (−1, 1),
(a(x)∂xw)(t,±1) = 0, t ∈ (0, T ),
w(0, x) = w0(x), x ∈ (−1, 1),

(61)

where a(x) := 1−x2, w0 ∈ L2(−1, 1) and the solution w belongs to the class (59). We observe that
the weight function a satisfies 0 ≤ a ∈ C2([−1, 1]), a(±1) = 0, a > 0 on (−1, 1), 1√

a
∈ L1(−1, 1)

and
(1 + x)a′(x)

a(x) −−−−−→
x→−1+

1 and (1− x)a′(x)
a(x) −−−−→

x→1−
−1.

So, we are in the framework of [25].

Then [25, Theorem 3.4] gives the following
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Lemma 3.2. Let T > 0 and a, b ∈ R be such that 0 < a < b ≤ π
2 . Let ω̃a,b := (− sin b,− sin a)∪

(sin a, sin b). Then, there exists a positive constant C0 > 0 such that every solution w of system
(61) satisfies ∫ 1

−1
|w(T, x)|2dx ≤ C0

∫ T

0

∫
ω̃a,b

|w(t, x)|2dxdt. (62)

Finally, thanks to the above lemma and the fact that w := V g0 is the solution of system (61),
we deduce the following observability inequality for equation (34) when n = 0.
Proposition 3.1. Let T > 0 and ωa,b be defined as in (15). Then, there exists a positive
constant C0 > 0 such that the first Fourier component g0, which is the solution of equation (34)
when n = 0 satisfies∫ π

2

−π2
|g0(T, x)|2 cosxdx ≤ C0

∫ T

0

∫
ωa,b

|g0(t, x)|2 cosxdxdt. (63)

Remark 3.2. We highlight that the result of [25, Theorem 3.4] ensures that when n = 0, system
(34) is observable in any subset ω ⊂⊂ (−π/2, π/2) and in arbitrary time T > 0.

3.2 The 1D equations in the space L2(−π/2, π/2) without weight in the cases
n ∈ N∗

In these cases, we consider the unitary transformation

U : L2((−π/2, π/2); cosxdx) −→ L2(−π/2, π/2)
v 7−→ (U v)(x) =

√
cosxv(x).

We define for all n ∈ N∗ the unbounded operator Mn on the space L2(−π/2, π/2) by

Mn = ULn U∗, D(Mn) = U D(Ln), (64)

where, U∗ is the adjoint of the unitary operator U. So, we deduce the following expression of
operator Mn:

Mnw = w′′ − qn(x)w, ∀w ∈ D(Mn), (65)
where, for all n ∈ N∗, the potential qn is given by

qn(x) = (n2 − 1/4) tan2 x− 1/2, ∀x ∈ (−π/2, π/2). (66)

Remark 3.3. Let us emphasis that, since U is an unitary transformation, then the unbounded
operator (Mn,D(Mn)) defined on the space L2(−π/2, π/2) inherits some properties of the oper-
ator (Ln,D(Ln)). That is, the operator (−Mn,D(Mn)) is a densely defined, self-adjoint, and
positive operator with compact resolvent on L2(−π/2, π/2) for all n ∈ N∗.
Since the differential operator ∂t commutes with the unitary transformation U, one deduces

easily that system (34) is equivalent to the following{
∂tg̃n −Mn g̃n = 0, a.e. in (0, T )× (−π/2, π/2),
g̃n(0, x) = g̃0,n(x), x ∈ (−π/2, π/2).

(67)

In particular, the solution g̃n = U gn lies in the class (see Proposition 2.4 and Remark 2.4)

C([0, T ];L2(−π/2, π/2)) ∩ C∞((0, T ); D(Mn)). (68)

In the following, we collect some properties of the functions lying in the domain D(Mn) (n ∈ N∗)
which will be useful in the proof of a global Carleman estimate for system (67) in Section 4.
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Lemma 3.3. Let n ∈ N∗ and w ∈ D(Mn). Then w′ belongs to L2(−π/2, π/2) and w is locally
absolutely continuous on [−π/2, π/2]. Moreover,

lim
x→−π2

+
w(x) = lim

x→π
2
−
w(x) = 0, lim

x→−π2
+
w′(x) = lim

x→π
2
−
w′(x) = 0. (69)

Proof. Let n ∈ N∗ and w ∈ D(Mn). Then w =
√

cosxv for some v ∈ D(Ln) and a. e., x ∈
(−π/2, π/2). Since v(±π/2) ∈ R, the first identity in (69) immediately follows. Similarly, since
tan xv ∈ Hn (see, (41)), it holds

‖ tan xw‖2L2(−π/2,π/2) = ‖ tan xv‖2Hn <∞.

By deriving w, we find that w′ + tan xw/2 =
√

cosxv′ belongs to L2(−π/2, π/2), due to (41),
and then w′ ∈ L2(−π/2, π/2). Since v′(±π/2) ∈ R, it holds

lim
x→−π2

+
w′(x) = lim

x→−π2
+
−1

2
sin x√
cosxv(x) +

√
cosxv′(x) = 0,

by the second identity of (40). The proof of the limit at π/2 is similar. It then follows that w
is locally absolutely continuous on [−π/2, π/2].

Remark 3.4. The above lemma also shows that for all n ∈ N∗, the domain D(Mn) is a subspace
of the Sobolev space H1

0 (−π/2, π/2). Therefore, Lemma 2.2 holds true in D(Mn).

4 A global Carleman estimate in the cases n ∈ N∗

The purpose of this section is to obtain a global Carleman estimate for systems (67) in the case
n ∈ N∗. This will allow us, using the dissipation rate (51), to prove the uniform observability
inequality (54) in Section 5.2. We drop the tilde and the index n to simplify the notations.

Proposition 4.1. Let ωa,b be defined as in (15). Then there exist a weight function β ∈
C4([−π/2, π/2]) and positive constants R0,R1 > 0 such that for every T > 0, n ∈ N∗ and
s ≥ R0 max(T + T 2, T 2n), every g ∈ C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T ); D(Mn)) satisfies

R1

∫ T

0

∫ π
2

−π2

(
s

t(T − t) |∂xg(t, x)|2 + s3

(t(T − t))3 |g(t, x)|2
)
e
− 2sβ(x)
t(T−t)dxdt

≤
∫ T

0

∫
ωa,b

s3

(t(T − t))3 |g(t, x)|2e−
2sβ(x)
t(T−t)dxdt+

∫ T

0

∫ π
2

−π2
|Png(t, x)|2e−

2sβ(x)
t(T−t)dxdt. (70)

Here, Ri := Ri(β, a, b), i = 0, 1 and we let

Pn := ∂t − ∂2
x + qn(x) with qn(x) = (n2 − 1/4) tan2 x− 1/2.

Before proving the above proposition, let us present some important remarks and comments
which are essential to understand the proof.
As it is now well-understood, the main difficulty in the proof of Carleman estimates as (70) is

to identify a suitable weight function β which is able to deal with the specificity of the parabolic
operator under consideration. For example, for the standard parabolic operator see the pioneer
work by Imanuvilov [21] or Fursikov and Imanuvilov [18]; for the standard parabolic operator
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with interior quadratic singularities (resp. boundary singularity) see the work by Ervedoza [16]
(resp. Cazacu [12] or Biccari and Zuazua [7]); for the 2D parabolic Grushin operator, see the
work by Beauchard and al [3, 4, 5] and Koenig [22]; for 2D parabolic Grushin operator with
internal (resp. boundary) singular potential see the work by Morancey [26] (resp. Cannarsa and
Guglielmi [10]). We remark that in general, the function β is chosen to be strictly monotone
outside of the control region, and concave, so that the term in s3 is the leading one. Particularly
in the singular cases, this choice allows to get rid of the singular terms which can not be bounded
at the singularity, usually by taking advantage of Hardy-Poincaré type inequalities.
In the case at hand, the potential qn is singular in ±π/2. Thus, we shall apply the Hardy-

Poincaré inequalities of Lemma 2.2 (see, Remark 3.4) to get rid of the singular terms which can
not be bounded at ±π/2.

Remark 4.1. The proof of Proposition 4.1 will be split into several lemmas using the classical
strategy [18] by Fursikov and Imanuvilov (we refer to [15, p.79] for a pedagogical presentation).
Let us emphasize that functions in D(Mn) have the regularity in the space variable that we need
in order to apply integrations by parts (see, e. g. Lemma 3.3).

Notation 4.1. Let us introduce the general notations which will be used in what follows. We
let a′ and b′ are real numbers such that

0 < a < a′ < b′ < b ≤ π/2 and [a′, b′] ⊂ (a, b). (71)

We consider the subdomains

ωcon := (−b′,−a′) ∪ (a′, b′), ωdeg := (−a′, a′), ωbdy :=
(
−π/2,−b′

)
∪
(
b′, π/2

)
, (72)

so that
(−π/2, π/2) = ωbdy ∪ωdeg ∪ωcon and ωcon ⊂ ωa,b.

We also introduce the weight function

ϕ(t, x) = sθ(t)β(x), (t, x) ∈ Q := (0, T )× I, I := (−π/2, π/2), (73)

where the positive constant s = s(T, n, β) > 0 will be chosen later on and the temporal weight θ
is given by

θ(t) = 1
t(T − t) , t ∈ (0, T ). (74)

We end this part of notations introducing for all n ∈ N∗ and every g ∈ C([0, T ];L2(−π/2, π/2))∩
C2((0, T ); D(Mn)), the change of function

z(t, x) = g(t, x)e−ϕ(t,x), (t, x) ∈ Q. (75)

In the following lemma we design the weight function β.

Lemma 4.1. The function β ∈ C4([−π/2, π/2]) satisfies

β ≥ 1, on (−π/2, π/2), (76)

β(x) =
{

log | sin x|+A1|x|+A2 if x ∈ ωbdy,
log cosx− x2

2 +A3(x+ 1) if x ∈ ωdeg,
(77)
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Figure 2: The spatial weight function β. The subcontrol region ωa′,b′ is in blue.

where the positive constants Ai, 1 ≤ i ≤ 3 are such that (76) is verified and{
|β′(x)| ≥ η1, x ∈ ωbdy,
β′(x) ≥ η2, x ∈ ωdeg,

(78)

for some positive constants η1, η2 > 0.

Remark 4.2. We stress that the explicit expression of the weight β is only needed near ±π/2,
in order to get rid of the singular terms which can not be bounded at ±π/2. Apart from this,
assuming that β is strictly monotonous and concave outside the subcontrol region ωcon suffices.

The following lemma gives some useful properties of the temporal weight θ which are obtained
by direct computations.

Lemma 4.2. Let the temporal weight θ be given by (74). Then we have for all t ∈ (0, T ),

θ′(t) = (2t− T )θ2(t), θ′′(t) = 2θ2(t)(1 + (2t− T )2θ(t)),

and the following inequalities hold

θ(t) ≤ 2−4T 4θ3(t), |θ′(t)| ≤ 2−2T 3θ3(t), |θ(t)θ′(t)| ≤ Tθ3(t), |θ′′(t)| ≤ 5
2T

2θ3(t).

Moreover, one has
lim
t→0+

θ(t) = lim
t→T−

θ(t) = +∞.

In the following lemma, we give some useful properties of the function z introduced in (75)
which are obtained by direct computations applying Lemmas 3.3 and 4.2

Lemma 4.3. Let n ∈ N∗, then the function z introduced in (75) belongs at least in the class
C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T ); D(Mn)) and satisfies{

z(0, x) = z(T, x) = ∂xz(0, x) = ∂xz(T, x) = 0, x ∈ [−π/2, π/2],
z(t,±π/2) = ∂tz(t,±π/2) = ∂xz(t,±π/2) = 0, t ∈ (0, T ).

(79)

Moreover, one has
P+
n z + P−n z = e−ϕPng, (80)

where Pn is the parabolic operator introduced in Proposition 4.1, and we let

P+
n z = −Mn z + (∂tϕ− |∂xϕ|2)z and P−n z = ∂tz − 2∂xz∂xϕ− (∂2

xϕ)z. (81)
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Let Q = (0, T ) × (−π/2, π/2) and dQ = dxdt. Observe first that, P+
n z and P−n z belong to

L2(Q) by the definition of D(Mn) and Lemma 3.3. So, developing the L2(Q) squared norm in
identity (80), leads to ∫

Q
P+
n zP−n zdQ ≤

1
2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (82)

In the following we compute the scalar product in the left hand side of (82) using integration
by parts and Fubini’s Theorem.

Lemma 4.4. Let n ∈ N∗, then we have∫
Q
P+
n zP−n zdQ = −2

∫
Q
∂2
xϕ|∂xz|2dQ+ 1

2

∫
Q
∂4
xϕ|z|2dQ+

∫
Q
∂xϕq

′
n(x)|z|2dQ

− 1
2

∫
Q

(∂2
t ϕ− 2∂xϕ∂txϕ)|z|2dQ+

∫
Q
∂xϕ∂x(∂tϕ− |∂xϕ|2)|z|2dQ. (83)

Proof. Let n ∈ N∗ and z be defined in (75). We compute the six terms of the left hand side of
(83) using integration by parts and Fubini’s Theorem.

1. The three terms involving operator −Mn z are

−
∫
Q

Mn z∂tzdQ+ 2
∫
Q

Mn z∂xz∂xϕdQ+
∫
Q

Mn z∂
2
xϕzdQ.

So, one has using (79),

−
∫
Q

Mn z∂tzdQ =
∫ T

0

{
[−∂xz∂x(∂tz)]

π
2
−π2

+
∫ π

2

−π2

1
2∂t(|∂xz|

2)dx
}
dt+

∫ π
2

−π2

qn(x)
2

[
|z|2

]T
0
dx

= 1
2

∫ π
2

−π2

{
|∂xz(T, x)|2 − |∂xz(0, x)|2

}
dx = 0. (84)

2
∫
Q

Mn z∂xz∂xϕdQ = −
∫
Q
∂2
xϕ|∂xz|2dQ+

∫
Q
∂x(qn(x)∂xϕ)|z|2dQ

+
∫ T

0

{
[|∂xz|2∂xϕ]

π
2
−π2
− [qn(x)∂xϕ|z|2]

π
2
−π2

}
dt

= −
∫
Q
∂2
xϕ|∂xz|2dQ+

∫
Q
∂x(qn(x)∂xϕ)|z|2dQ. (85)

Observe that boundary terms [|∂xz|2∂xϕ]
π
2
−π2

= 0 and [qn(x)∂xϕ|z|2]
π
2
−π2

= 0 due to (69) and (40).
Remember that z(t, ·) ∈ D(Mn) implies z(t, ·) =

√
cosxv(t, ·) for some v(t, ·) ∈ D(Ln).

The third term is∫
Q

Mn z∂
2
xϕzdQ = −

∫
Q
∂2
xϕ|∂xz|2dQ+ 1

2

∫
Q
∂4
xϕ|z|2dQ−

∫
Q
qn(x)∂2

xϕ|z|2dQ. (86)

2. The three terms involving
(
∂tϕ− |∂xϕ|2

)
z are∫

Q
(∂tϕ− |∂xϕ|2)z∂tzdQ− 2

∫
Q

(∂tϕ− |∂xϕ|2)z∂xz∂xϕdQ−
∫
Q

(∂tϕ− |∂xϕ|2)∂2
xϕ|z|2dQ.
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So one has, ∫
Q

(∂tϕ− |∂xϕ|2)z∂tzdQ = −1
2

∫
Q
∂t(∂tϕ− |∂xϕ|2)|z|2dQ, (87)

Here, the boundary term vanish as t→ 0+, T−, because owing to (75), (76) and Lemma 4.2 one
has

|(∂tϕ− |∂xϕ|2)|z|2| ≤ θ2e−sθ|s|2t− T |β + (sθβ′)2||g|2,

and the right hand side tends to zero as t → 0+, T− for every x ∈ [−π/2, π/2]. Using (79) one
get

− 2
∫
Q

(∂tϕ− |∂xϕ|2)z∂xz∂xϕdQ =
∫
Q
∂x[(∂tϕ− |∂xϕ|2)∂xϕ]|z|2dQ. (88)

Finally, the third term is just
−
∫
Q

(∂tϕ− |∂xϕ|2)∂2
xϕ|z|2dQ. (89)

By combining (84)-(89), we complete the proof of the lemma.

We are going now to bound from below the right hand side of (83). Since Q := (0, T ) ×
(−π/2, π/2) = (0, T )× (ωbdy ∪ωcon ∪ωdeg), we separate the integrals of the right hand side over
(0, T )× J , where J ∈ {ωbdy, ωcon, ωdeg}. Using Lemma 4.1 we immediately get

Lemma 4.5. Let n ∈ N∗ and assume (83). Then one has∫
Q
P+
n zP−n zdQ =

∫ T

0

∫
ωbdy

Kbdy dQ+
∫ T

0

∫
ωcon

Kcon dQ+
∫ T

0

∫
ωdeg

Kdeg dQ, (90)

where

Kdeg = sθ

{( 2
cos2 x

+ 2
)
|∂xz|2 +

(
sin2 x

2 cos4 x
+ x sin x

2 cos3 x

)
|z|2

}

+
{

2n2sθ

cos2 x
+ 2s3θ3

( 1
cos2 x

+ 1
)

(− tan x− x+A3)2
}
|z|2

+sθ
{
A3

(2n2 − 1/2)
cos4 x

+ 2sθ′(− tan x− x+A3)2 − 2n2x tan x
cos2 x

}
|z|2

−sθ
′′

2 (log cosx− x2

2 +A3(x+ 1))|z|2, (91)

Kbdy = 2sθ
sin2 x

{
|∂xz|2 + |z|2

}
+ 2s3θ3

sin2 x

(cosx
sin x +A1 sign(x)

)2
|z|2

+
{

2s2θθ′
(cosx

sin x +A1 sign(x)
)2
− sθ′′

2 (log | sin x|+A1|x|+A2)
}
|z|2

+
{
− 3sθ

sin4 x
+ sθ(2n2 − 1/2)

cos2 x
(1 +A1 sign(x) tan x)

}
|z|2, (92)

and

Kcon = s

{
θβ(4)

2 + θβ′
(

2n2 − 1
2

) sin x
cos3 x

− θ′′β

2 + 2sθβ′2(θ′ − sθ2β′′)
}
|z|2− 2sθβ′′|∂xz|2. (93)
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In the following lemmas, we bound from below (91) and (92) by positive terms.

Lemma 4.6. Let n ∈ N∗ and Kdeg be given by (91). Then there exists a positive constant s1 > 0
such that, for all

s ≥ s1 max(T + T 2, T 2n), (94)

the following inequality holds∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
ωdeg

4sθ|∂xz|2 + η2
2s

3θ3|z|2dQ, (95)

with η2 as in (78).

Proof. Let n ∈ N∗ and Kdeg be given by (91). Since x sin x ≥ 0 for all x ∈ [−π, π], we obtain
using (78) that

Kdeg ≥ 4sθ|∂xz|2 + 4η2
2s

3θ3|z|2 − sθ′′

2 (log cosx− x2

2 +A3(x+ 1))|z|2

+
{

2s2θθ′(− tan x− x+A3)2 − 2sθn2x tan x
cos2 x

}
|z|2. (96)

For all x ∈ ωdeg we have owing to Lemma 4.2

∣∣∣2s2θθ′(− tan x− x+A3)2
∣∣∣ ≤ 2C1s

2Tθ3,

∣∣∣∣∣−sθ′′2 (log cosx− x2

2 +A3(x+ 1))
∣∣∣∣∣ ≤ 5C2

4 sT 2θ3,

where C1 = C1(a′) := | tan a′ + a′ +A3|2 and C2 = C2(a′) := | log cos a′ − a′2/2 +A3(a′ + 1)|. It
follows that, if s ≥ max

(
2C1
η2

2
,
√

5C2
2η2

)
T, then (96) yields to

Kdeg ≥ 4sθ|∂xz|2 + 2η2
2s

3θ3|z|2 − 2sθn2x tan x
cos2 x

|z|2. (97)

Due to Lemma 4.2, one has for all x ∈ ωdeg,∣∣∣∣−2sθn2x tan x
cos2 x

∣∣∣∣ ≤ 2n2C4s2−4T 4θ3,

where C4 = C4(a′) := a′ tan a′/ cos2 a′. So, if

s ≥ max

2C1
η2

2
,

√
5C2

2η2
,

1
η2

√
C4
8

max(T, T 2n), (98)

then
Kdeg ≥ 4sθ|∂xz|2 + η2

2s
3θ3|z|2. (99)

Therefore, owing to (98)-(99), we deduce that, for all n ∈ N∗, if s ≥ s1 max(T + T 2, T 2n), with

s1 = s1(a′) := max

2C1
η2

2
,

√
5C2

2η2
,

1
η2

√
A5C3

32 ,
1
η2

√
C4
8

 , (100)

then
Kdeg ≥ 4sθ|∂xz|2 + η2

2s
3θ3|z|2. (101)

This completes the proof of lemma.
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Lemma 4.7. Let n ∈ N∗. Then there exists a positive constant s2 > 0 such that, for all

s ≥ s2(T + T 2), (102)

the following inequality holds∫ T

0

∫
ωbdy

Kbdy dQ ≥
∫ T

0

∫
ωbdy

2sθ|∂xz|2 + 2sθ|z|2 + η2
1
2 s

3θ3|z|2dQ, (103)

with η1 as in (78) and Kbdy be given by (92).

Proof. Let n ∈ N∗ and Kbdy be given by (92). Due to Lemma 4.2, one has for all x ∈ ωbdy,∣∣∣−3sθ/ sin4 x
∣∣∣ ≤ 3C5s2−4T 4θ3,

∣∣∣2s2θθ′ (cosx/ sin x+A1 sign(x))2
∣∣∣ ≤ 2C6s

2Tθ3,

and ∣∣−(sθ′′/2)(log | sin x|+A1|x|+A2)
∣∣ ≤ 5× 2−2C7sT

2θ3.

Here, C5 = C5(b′) := 1/ sin4 b, C6 = C6(b′) := (cos b′/ sin b′ +A1 sign(b′))2 and C7 := A1
(
π
2 + 1

)
.

So, if s ≥ s2(T + T 2), with s2 = s2(b′) := max
(√

3C5
2η1

,
√

5C7
η1

, 8C6
η2

1

)
, then

Kbdy ≥ 2sθ|∂xz|2 + 2sθ|z|2 + η2
1
2 s

3θ3|z|2 + sθ(2n2 − 1/2)
cos2 x

(1 +A1 sign(x) tan x)|z|2. (104)

Observe now that, since 0 ≤ sign(x) sin x ≤ 1 for all x ∈ ωbdy := (−π/2,−b′) ∪ (b′, π/2), we
obtain

0 <
∫ T

0

∫
ωbdy

(1 +A1 sign(x) tan x)
cos2 x

|z(t, x)|2dQ ≤
∫ T

0

∫ π
2

−π2

|z(t, x)|2

cos2 x
dQ+A1

∫ T

0

∫ π
2

−π2

|v(t, x)|2

cos2 x
dQ

< ∞, (105)

by Hardy-Poincaré inequalities (28) (see, Remarks 2.3 and 3.4). Remember that z(t, ·) ∈ D(Mn)
implies z(t, ·) =

√
cosxv(t, ·) for some v(t, ·) ∈ D(Ln). So, the above two inequalities lead to∫ T

0

∫
ωbdy

Kbdy dQ ≥
∫ T

0

∫
ωbdy

2sθ|∂xz|2 + 2sθ|z|2 + η2
1
2 s

3θ3|z|2dQ,

completing the proof of lemma.

The following lemma is a straightforward combination of Lemmas 4.6 and 4.7.

Lemma 4.8. Let n ∈ N and R0 = R0(a′, b′) := max(s1, s2). Then for all

s ≥ R0 max(T + T 2, T 2n), (106)

it holds∫ T

0

∫
ωbdy

Kbdy dQ+
∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ. (107)

We let C8 = C8(a′, b′) := min(η2
1, η

2
2) > 0 and I\ωcon := (−π/2, π/2)\ωcon = ωbdy ∪ωdeg.
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In the subcontrol region ωcon = (−b′,−a′) ∪ (a′, b′), we have the following

Lemma 4.9. Let n ∈ N∗ and assuming (93) and (106). Then there exist positive constants
C9, C12 > 0 such that the following inequality holds

|Kcon | ≤ C9sθ|∂xz|2 + C12s
3θ3|z|2. (108)

Proof. Let n ∈ N∗, then by Lemma 4.2, (93) and (106) we have

|Kcon | ≤
∣∣∣∣∣sθβ(4)

2 + sθβ′
(

2n2 − 1
2

) sin x
cos3 x

− sθ′′β

2 + 2s2θβ′2(θ′ − sθ2β′′)
∣∣∣∣∣ |z|2 + |2sθβ′′||∂xz|2

≤ C9sθ|∂xz|2 + C11s
3θ3|z|2 + C10T

4

8 n2sθ3|z|2,

where
C9 = C9(β) := 2 max{|β′′(x)| : x ∈ [−b′,−a′] ∪ [a′, b′]},

C10 = C10(β) := max
{∣∣∣β(4)(x)

∣∣∣+ ∣∣∣∣ sin x
cos3 x

β′(x)
∣∣∣∣ : x ∈ [−b′,−a′] ∪ [a′, b′]

}
,

and

C11 = C11(β) := 5R−2
0 ‖β‖∞

4 + 2−5R−2
0 C10 + (R−1

0 +C9) max{|β′(x)|2 : x ∈ [−b′,−a′] ∪ [a′, b′]}.

Finally, due to (106), we complete the proof with C12 = C12(a′, b′, β) := C10 + C11/8R2
0.

Thanks to (82), (90), Lemmas 4.8 and 4.9, we immediately obtain the following.

Lemma 4.10. Let n ∈ N∗. Then for all s ≥ R0 max(T + T 2, T 2n), one has

∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ ≤∫ T

0

∫
ωcon

(C9sθ|∂xz|2 + C12s
3θ3|z|2)dQ+ 1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (109)

In the following lemma, we come back to g.

Lemma 4.11. Let n ∈ N∗ and assume (109). Then there exist positive constants C13, C16 and
C17 such that for all s ≥ R0 max(T + T 2, T 2n), it holds∫

Q
(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤∫ T

0

∫
ωcon

(C16sθ|∂xg|2 + C17s
3θ3|g|2)e−2ϕdQ+ 1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (110)

Proof. By (75), one has ∂xz = (∂xg − g∂xϕ)e−ϕ. So, we obtain for all ε > 0,

−2g∂xg∂xϕ ≥ −|∂xg|2/(1 + ε)− (1 + ε)|∂xϕ|2|g|2,

so that

2sθ|∂xg − ∂xϕg|2 + C8s
3θ3|g|2 ≥ 2sθε|∂xg|2/(1 + ε) + s3θ3(C8 − 2ε|β′(x)|2)|g|2.
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Letting now ε = ε(β) := 2−2‖β′‖−2
∞ C8, we have for all s ≥ C0 max(T + T 2, T 2n),

∫ T

0

∫
I\ωcon

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤∫ T

0

∫
ωcon
(C14sθ|∂xg|2 + C15s

3θ3|g|2)e−2ϕdQ+ 1
2

∫
Q

∣∣e−ϕPng∣∣2 dQ, (111)

where C13 = C13(β) := 2ε/(1 + ε), C14 = C14(β) := 2C9, and C15 = C15(β) := C12 +
2C9 max{|β′(x)|2 : x ∈ [−b′,−a′] ∪ [a′, b′]}. By adding the same quantity∫ T

0

∫
ωcon

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ

to the both sides of (111), we complete the proof of lemma, with C16 = C16(β) := C13 + C14
and C17 = C17(β) := C8/2 + C15.

Let us prove that terms similar to the second term of the right-hand side of (110) dominate
the first one. We achieve this by the use of a smooth cut-off function.

Lemma 4.12. Let n ∈ N∗ and assume (110). Then there exists a positive constant C19 > 0
such that for all s ≥ R0 max(T + T 2, T 2n), one has∫
Q

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤
∫ T

0

∫
ωa,b

C19s
3θ3|g|2e−2ϕdQ+

∫
Q

∣∣e−ϕPng∣∣2 dQ.
(112)

Proof. Recall that ωcon = (−b′,−a′) ∪ (a′, b′) ⊂ ωa,b = (−b,−a) ∪ (a, b) since 0 < a < a′ < b′ <
b ≤ π/2. Choosing a cut-off function ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1 and

ρ = 1 on ωcon
ρ = 0 on I\ωa,b,

(113)

we get ∫
Q

(Png)gρθe−2ϕdQ ≥
∫
Q

[
g∂tg − g∂2

xg −
1
2 |g|

2
]
ρθe−2ϕdQ. (114)

Or, one has ∫
Q
g∂tgρθe

−2ϕdQ =
∫
Q

1
2 |g|

2ρ(2θ∂tϕ+ (T − 2t)θ2)e−2ϕdQ,

and∫
Q
−g∂2

xgρθe
−2ϕdQ =

∫
Q
ρe−2ϕθ|∂xg|2dQ−

∫
Q

|g|2

2 e−2ϕθ(ρ′′ − 4ρ′∂xϕ+ ρ(4|∂xϕ|2 − 2∂2
xϕ))dQ.

Thus, from (114), we obtain for all s ≥ R0 max(T + T 2, T 2n),∫ T

0

∫
ωcon

C16sθ|∂xg|2e−2ϕdQ ≤
∫
Q
C16sθρ|∂xg|2e−2ϕdQ

≤ 1
2

∫
Q
|e−ϕPng|2dQ+

∫ T

0

∫
ωa,b

C18s
3θ3|g|2e−2ϕdQ, (115)
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where the positive constant,

C18 = C18(β, ρ) := C2
16

8R2
0

+ C16

[
4‖β′‖2∞ + ‖ρ

′β′‖∞ + ‖β′′‖∞ + 4‖β‖∞
2R0

+ 9 + ‖ρ′′‖∞
32R2

0

]
.

So we deduce from (110) and (115) that, for all s ≥ R0 max(T + T 2, T 2n), one has∫
Q

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤
∫ T

0

∫
ωa,b

C19s
3θ3|g|2e−2ϕdQ+

∫
Q

∣∣e−ϕPng∣∣2 dQ,
and this completes the proof of lemma with C19 = C19(β, ρ) := C18 + C17.

We can complete now the proof of Carleman estimate (70).

Proof of Proposition 4.1. It suffices to consider Lemma 4.12, and let

R1 = R1(β, ρ) := min(C13, C8/2)
max(1, C19) .

5 Proof of Theorem 3
In this section we present the proof of Theorem 3, along the following lines:

1. The proof of the negative statement, presented in Section 5.1, relies on the use of appro-
priate test function (which concentrate at zero when n = l → +∞) to falsify uniform
observability inequality (54) when T ≤ log(1/ cos a);

2. The proof of the positive statement, presented in Section 5.2, relies on the uniform ob-
servability inequality (54) in large time, by using the global Carleman estimate for system
(34), proved in the previous section.

5.1 Proof of the negative statement of Theorem 3
The goal of this subsection is to prove

Proposition 5.1. Let a, b ∈ R be such that 0 < a < b ≤ π/2 and T ≤ log (1/ cos a). Then
system (34) is not observable in (a, b) in time T uniformly with respect to n ∈ N∗.

Remark 5.1. Note that, the not null observability result provided here remains true in (−b,−a)∪
(a, b) by symmetry and parity. However, this concerns only the cases n ∈ N∗ (see, Remark 3.2).

Proof. We use a particular function which solves (34) and for which the observability inequality
(54) fails under the condition T ≤ log (1/ cos a). More precisely, in what follows, we design a
sequence of solutions of (34) such that∫ T

0

∫ b

a
|gn(t, x)|2 cosxdxdt∫ π

2

−π2
|gn(T, x)|2 cosxdx

−→ 0 as n −→ +∞. (116)
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We recall that the highest weight spherical harmonics of degree n present extreme concentra-
tion around the equator. These are defined by

Wn,n(x, y) = (−1)n

2nn!

√
(2n+ 1)!

4π einy cosn x, (117)

where n ∈ N∗, (x, y) ∈ [−π/2, π/2]× [0, 2π). Consider the function

wn(x) = (−1)n

2nn!

√
(2n+ 1)!(cosx)n, n ∈ N∗, x ∈ [−π/2, π/2]. (118)

By Wallis’ formula, we have for every n ∈ N∗,
∫ π

2
0 cos2n+1 xdx = 22n(n!)2/(2n+ 1)!. So for every

n ∈ N∗, we deduce ∫ π
2

−π2
w2
n(x) cosxdx = (2n+ 1)!

22n(n!)2

∫ π
2

0
cos2n+1 xdx = 1.

We check easily now that for every n ∈ N∗, the function

gn(t, x) = e−ntwn(x), t ∈ R, x ∈ [−π/2, π/2], (119)

solves the system (34) and
∫ π

2
−π2
|gn(T, x)|2 cosxdx = e−2nT . To get (116), it suffices to prove

that
e2nT

2n

∫ b

a
wn(x)2dx→ 0 as n→ +∞. (120)

Since 0 < a < b ≤ π/2, we have
∫ b

a
(cosx/ cos a)2n+1dx ≤ (b− a). Then, we obtain

e2nT

2n

∫ b

a
wn(x)2 cosxdx ≤ e2n(T+ln cos a) (2n+ 1)!

n22n+1(n!)2 (b− a) cos a. (121)

By Stirling’s formula, we have n! ∼
√

2πnnne−n as n→ +∞. Thus, we deduce from (121) that

e2nT

2n

∫ b

a
wn(x)2 cosxdx ≤ (b− a)cos a

2
√
π

(2n+ 1)
n3/2 −→ 0 as n −→ +∞,

since we are assuming T ≤ log (1/ cos a). This completes the proof of the proposition.

5.2 Proof of the positive statement of Theorem 3
This subsection is devoted to the prove of following proposition using the Carleman estimate
(70) and dissipation rate (51),

Proposition 5.2. Let a, b ∈ R be such that 0 < a < b ≤ π/2. Then there exists a positive time
T ∗ > 0 such that, for every T ≥ T ∗, system (34) is observable in ωa,b = (−b,−a)∪ (a, b) in time
T uniformly with respect to n ∈ N.

Proof. We obtain the uniform observability inequality (54) in large time from observability in-
equality (63) and Carleman estimate (70). Let n ∈ N∗ and g̃n = U gn ∈ C([0, T ];L2(−π/2, π/2))∩
C2((0, T ); D(Mn)) be the solution of system (67), where gn is the Fourier component (35) and
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U, the unitary transformation introduced in Section 3.2. Then by the Carleman estimate (70),
one has

R1

∫
Q
θ3|g̃n(t, x)|2e−2ϕdQ ≤

∫ T

0

∫
ωa,b

θ3|g̃n(t, x)|2e−2ϕdQ, (122)

for all s ≥ R0 max(T + T 2, T 2n), and for some constants R0,R1 > 0 independent of n, T and
g̃n. From now on we set

s := R0 max(T + T 2, T 2n).

For t ∈ (T/3, 2T/3), we have owing to dissipation rate (67)

4
T 2 ≤ θ(t) ≤

9
2T 2 and

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ e−

2
3nT

∫ π
2

−π2
|g̃n(t, x)|2dx.

Integrating over (T/3, 2T/3), we have using (122)

T

3

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

T 6

64
6

8s3β3
∗
e−

2
3nT e

9
T2 sβ

∗
∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt, (123)

where β∗ := min{β(x) : x ∈ [−π/2, π/2]} and β∗ := max{β(x) : x ∈ [−π/2, π/2]}. Then, the
following two cases may occur

First case: n < 1 + 1/T . Then s = R0(T + T 2), and thus (123) yields∫ π
2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

T 5

64
18

8R3
0(T + T 2)3β3

∗
e

9
T2R0(T+T 2)β∗

∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt;

Second case: n ≥ 1 + 1/T . Then s = R0T
2n, and thus (123) yields∫ π

2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

1
64

18
8R3

0T (1 + 1/T )3β3
∗
e−

2
3nT e9nR0β∗

∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt.

It then suffices to observe that −2nT/3 + 9nR0β
∗ ≤ 0 as soon as T ≥ T ∗ := 27R0β∗/2.

So, in both cases, there exists a positive constant C ′0 > 0 which is independent of n ∈ N∗,
such that ∫ π

2

−π2
|gn(T, x)|2 cosxdx ≤ C ′0

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt,

provided T ≥ T ∗. Then the above identity and (63) assure existence of a positive constant
C := max(C0, C

′
0) > 0 independent on n ∈ N such that (54) holds true, provided T ≥ T ∗. This

completes the proof of the proposition.
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