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NULL CONTROLLABILITY OF THE PARABOLIC SPHERICAL

GRUSHIN EQUATION∗

Cyprien Tamekue**

Abstract. We investigate the null controllability property of the parabolic equation associated with
the Grushin operator defined by the canonical almost-Riemannian structure on the 2-dimensional
sphere S2. This is the natural generalization of the Grushin operator G = ∂2

x + x2∂2
y on R2 to this

curved setting and presents a degeneracy at the equator of S2. We prove that the null controllability is
verified in large time when the control acts as a source term distributed on a subset ω = {(x1, x2, x3) ∈
S2 | α < |x3| < β} for some 0 ≤ α < β ≤ 1. More precisely, we show the existence of a positive time
T ∗ > 0 such that the system is null controllable from ω in any time T ≥ T ∗, and that the minimal
time of control from ω satisfies Tmin ≥ log(1/

√
1− α2). Here, the lower bound corresponds to the

Agmon distance of ω from the equator. These results are obtained by proving a suitable Carleman
estimate using unitary transformations and Hardy-Poincaré type inequalities to show the positive null-
controllability result. The negative statement is proved by exploiting an appropriate family of spherical
harmonics, concentrating at the equator, to falsify the uniform observability inequality.

Mathematics Subject Classification. 93B05, 93B07, 93C20, 53C17.
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1. Introduction

During the last decade, there has been a lot of interest in studying the null controllability of degenerate
parabolic equations, that is, parabolic equations whose principal symbol can vanish inside the domain. In [3], it
has been shown that null controllability for the Grushin equation, which is an example of a degenerate parabolic
equation, requires a non-trivial positive time. This is in stark contrast with what happens for the usual heat
equations (see, for instance, [14, 17, 20, 22]), which are null controllable in an arbitrarily short time.

The study of properties of null controllability of parabolic, spherical Grushin equation is relevant since the
latter is both degenerate and singular at different locations. So it is natural to expect such a study to be a bit
more subtle than dimension 2. Before going further, let us start by recalling some well-known results going in
our direction.
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1.1. The 2D parabolic Grushin equation

Since its introduction in Baouendi [2] (see also Grushin [18]), the so-called Grushin (or Baouendi-Grushin)
operator, defined in the bi-dimensional setting as

G := ∂2
x + x2∂2

y , (1.1)

where (x, y) ∈ R2, received considerable attention in the field of differential geometry, as well as in control theory
as a prototypical example of a degenerate elliptic, hypoelliptic operator, see for instance [3, 9, 11, 18].

More recently, in [3], the authors investigated the properties of null controllability for the degenerate parabolic
equation associated with (1.1), showing that they exhibit a wider range of behaviours. In particular, null
controllability may hold true or not depending on the geometry of the open set ω and the time horizon T . More
precisely, the authors considered the following parabolic equation, which presents a degeneracy at x = 0:

∂tf − Gf = u(t, x, y)1ω0
(x, y), (t, x, y) ∈ (0, T )× Ω0,

f(t, x, y) = 0, (t, x, y) ∈ (0, T )× ∂Ω0,

f(0, x, y) = f0(x, y), (x, y) ∈ Ω0,

(1.2)

where T > 0, Ω0 = (−1, 1) × (0, 1), ω0 ⊂ Ω0 is an open subset, f is the state, u is the control function, f0 is
the initial datum. Then, we have the following, see Theorem 1 of [3].

Theorem 1.1 ([3]). Let ω0 = (a, b)× (0, 1), where 0 < a < b ≤ 1. Then, we have

Tmin := inf{T > 0 : system (1.2) is null controllable from ω0 in time T} ≥ a2

2
.

This result is to be interpreted in the following sense: there exists a positive time T ∗ > 0 such that system
(1.2) is null controllable from ω0 in any time T > T ∗ and that the minimal time Tmin required for the null

controllability of system (1.2) from ω0 satisfies Tmin ≥ a2

2 .
Following this line of investigation, in Theorem 1.4 of [4], Beauchard, Dardé, and Ervedoza consider the more

general operator Gq = ∂2
x + q(x)2∂2

y , where q is a real function, satisfying for some L± > 0 the following:

q(0) = 0, q ∈ C3([−L−, L+]), inf
(−L−,L+)

q′ > 0. (1.3)

For the associated parabolic degenerate equation on Γ = (−L−, L+) × (0, π), with boundary control at the
vertical side Γ+ = {L+} × (0, π), and with initial datum f0 ∈ H1

0 (Γ) the authors are able to obtain the sharp
value of the minimal time:

Tmin =
1

q′(0)

∫ L+

0

q(s)ds. (1.4)

Note that the integral in (1.4) can be seen as the Agmon’s distance associated to potential q between {L+}
(related to the control support) and {0} (related to the degeneracy location). See also [5] for preliminary results
in this direction.

1.2. Setting, main results and strategy of proofs

Let us consider the 2-dimensional sphere S2 = {p = (x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}. We let X, Y and

Z be vector fields generating the counter clock-wise rotations around the x1, x2 and x3 axes respectively, viz.

X = −x3∂x2
+ x2∂x3

, Y = −x3∂x1
+ x1∂x3

, Z = −x2∂x1
+ x1∂x2

. (1.5)
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Here, we are using the identification of vector fields with derivations. These vector fields, usually known as the
Killing vector fields on S2 span at each point p of S2 the tangent space TpS2.

Observe that {X,Y } are linearly independent outside of the equator E := {x3 = 0}. Nevertheless, since
[X,Y ] = Z, the system of vector fields {X,Y } is bracket-generating and determines a sub-Riemannian structure
on S2 which is a 2-almost-Riemannian structure (2-ARS for short) on S2 (see for instance [1, 8, 9, 11, 31, 32]
for more details). The pair {X,Y } is called the generating frame of the 2-ARS.

In this work, we are interested in the hypoelliptic operator defined by

L := divµ ◦∇sR = −X+X − Y +Y. (1.6)

Here, ∇sR is the sub-Riemannian gradient defined by ∇sRφ = (Xφ)X + (Y φ)Y for any φ ∈ C∞(S2), while
divµ denotes the divergence w.r.t. the standard Riemannian volume form µ on S2, as induced by the Euclidean
Lebesgue measure. Moreover, X+ and Y + denote respectively the formal adjoints of X and Y taken in the space
L2(S2;µ), the Hilbert space of measurable and square-integrable functions over S2 with respect to µ. As evident
from the coordinate expression we will present in the following, this is a degenerate operator that generalizes
to the sphere S2 the Grushin operator. Note that, C∞(S2) is canonically defined as the space of the restrictions
to S2 of functions that are C∞ on an open neighbourhood of S2. Such functions have compact support since S2

is a compact manifold.
The operator L is essentially self-adjoint on C∞(S2), and we will henceforth consider its self-adjoint realization.

See Section 2. Our main result is then the following.

Theorem 1.2. Let f0 ∈ L2(S2;µ) and u ∈ L2(0, T ;L2(S2;µ)). Let ω = {(x1, x2, x3) ∈ S2 | α < |x3| < β} with
0 ≤ α < β < 1. We consider the following equation{

∂tf − Lf = u1ω, in (0, T )× S2,

f |t=0 = f0, in S2.
(1.7)

Then, the minimal time of null controllability from ω satisfies Tmin ≥ log(1/
√

1− α2). Moreover, there exists
T ∗ > 0 such that, for every T ≥ T ∗, system (1.7) is null controllable from ω in time T .

It should be noted that we will prove in this paper the Theorem 1.2 only in the interesting case when α > 0,
i.e., when the control region ω does not touch the degeneracy E = {x3 = 0}. However, let us emphasise that if
α = 0 then the equation (1.7) is null controllable in any time T > 0. This result can be proved using a classical
cut-off argument (as done, for instance, in [3, 5] for the 2-dimensional parabolic Grushin operator) by taking
advantage of the fact that the equation is null controllable in both hemispheres S2

+ and S2
− in any time T > 0

by the result of Lebeau and Robbiano [22] (see also Fursikov and Imanuvilov [17]) since L is a uniformly elliptic
operator on the two hemispheres S2

+ and S2
−.

To prove Theorem 1.2 and, by the way, understand how the operator L is connected with the Grushin
operator, we use spherical coordinates. To this end, it is slightly easier to consider the vector fields (1.5) as the
restriction of S2 of the vector fields in R3 given by the same formulae.

Let

Ω := (−π/2, π/2)× [0, 2π), and U := R∗+ × Ω, (1.8)

and consider the latitude-longitude coordinates (x, y), viz.

F : U −→ R3

(r, x, y) 7−→ F(r, x, y) = (r cosx cos y, r cosx sin y, r sinx), (1.9)
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Figure 1. The equator E (in red), a control region ω (in green), north and south pole (in blue).

so that F−1(S2\{N,S}) = {1} × Ω ∼= Ω. We let Φ := F |Ω, then up to a rotation of angle y − π
2 , the pull-back

by Φ of the vector fields of the generating frame read

Φ∗X := (dF−1 ·X)|Φ(r,x,y) = ∂x, Φ∗Y := (dF−1 ·Y )|Φ(r,x,y) = tanx∂y, (1.10)

where dF−1 denotes the inverse of the Jacobian matrix of F.
Let us denote by D(p) the linear span of the two vector fields Φ∗X and Φ∗Y at a point Φ−1(p), p ∈ S2\{N,S}.

One can easily check that, D(p) is 2-dimensional except on the equator Φ−1(E) = {x = 0} where it is 1-
dimensional. We may also observe that, due to the system of coordinates, the vector field Φ∗Y is singular at
±π/2. The standard rotation-invariant measure on Ω in these coordinates is given by

dσ = cosxdxdy. (1.11)

Observe that the diffeomorphism Φ : Ω→ S2\{N,S} induces a unitary transformation

TΦ : L2(S2\{N,S};µ) −→ L2(Ω;σ) (1.12)

v 7−→ TΦ v = v ◦ Φ,

and that Φ∗X = TΦX T+
Φ and Φ∗Y = TΦ Y T+

Φ . Here T+
Φ is the adjoint of TΦ. From now on we let the spherical

Grushin operator be the coordinate representation under Φ of L. That is, the operator defined by

Φ∗L := TΦ LT+
Φ . (1.13)

In particular, Φ∗L is self-adjoint with core TΦ(C∞(S2)). See Section 2.1 for characterization of its domain and
corresponding boundary conditions.

In terms of the local generating family of vector fields {Φ∗X, Φ∗Y } we have

Φ∗L := −(Φ∗X)+(Φ∗X)− (Φ∗Y )+(Φ∗Y ) =
1

cosx
∂x(cosx∂x) + tan2 x∂2

y , (1.14)

with (Φ∗X)+ and (Φ∗Y )+ being the formal adjoints of Φ∗X and Φ∗Y respectively, taken in the space L2(Ω;σ).
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Remark 1.3. The singularity of (1.14) at north and south poles is due to the latitude-longitude chart Φ. We
stress that whatever chart is chosen, this phenomenon of singularity will always occur since global coordinates
do not exist1 on S2.

Throughout the following, we let the real numbers 0 < a < b ≤ π/2 be such that α = sin a and β = sin b, α
and β being as in Theorem 1.2. We set

ω := ωa,b × (0, 2π) and ωa,b := (−b,−a) ∪ (a, b). (1.15)

Hence, Theorem 1.2 is equivalent to the following.

Theorem 1.4. Let f0 ∈ L2(Ω;σ) and u ∈ L2(0, T ;L2(Ω;σ)). Let ω be defined as in (1.15). We consider the
following equation {

∂tf − (Φ∗L)f = u1ω, in (0, T )× Ω,

f |t=0 = f0, in Ω.
(1.16)

Then, the minimal time of null controllability from ω satisfies Tmin ≥ log(1/ cos a). Moreover, there exists T ∗ > 0
such that, for every T ≥ T ∗, system (1.16) is null controllable from ω in time T .

Recall that system (1.16) is null controllable from ω ⊂ Ω in time T > 0 if, for every f0 ∈ L2(Ω;σ), there exists
a control u ∈ L2(0, T ;L2(Ω;σ)) supported in (0, T )× ω such that the solution f of (1.16) satisfies f(T, ·, ·) = 0.

The following remark, although formal, illustrates the connection between the spherical Grushin operator
Φ∗L and the 2D Grushin operator G.

Remark 1.5. We consider (1.11) and (1.14). Taking the first order Taylor expansion of cosx and tanx at x ≈ 0
we observe that dσ ≈ dxdy and Φ∗L ≈ ∂2

x + x2∂2
y , so that Φ∗L behaves like the Grushin operator (1.1) in a

neighbourhood of the degeneracy. As a consequence, we may expect the same properties of null controllability
for the parabolic equation (1.16) associated with Φ∗L as for the 2D parabolic Grushin equation (1.2).

Let us briefly discuss our strategy of proof. As it is now classical, Theorem 1.4 is a straightforward conse-
quence of the Hilbert Uniqueness Method [23] meaning that the null controllability property of system (1.16)
is equivalent to the observability of the adjoint system associated to (1.16).

Thus, Theorem 1.4 is equivalent to the following.

Theorem 1.6. Let g0 ∈ L2(Ω;σ) and ω be defined as in (1.15). Consider the adjoint system of (1.16),{
∂tg − (Φ∗L)g = 0, in (0, T )× Ω,

g|t=0 = g0, in Ω.
(1.17)

Then, the minimal time required for observability in ω satisfies Tmin ≥ log(1/ cos a). Moreover, there exists
T ∗ > 0 such that, for every T ≥ T ∗, system (1.17) is observable in ω in time T .

Recall that system (1.17) is observable in ω ⊂ Ω in time T > 0 if there exists C(T, ω) > 0 such that, for every
g0 ∈ L2(Ω;σ), the solution g of system (1.17) satisfies

∫
Ω

|g(T, x, y)|2dσ ≤ C(T, ω)

∫ T

0

∫
ω

|g(t, x, y)|2dσdt. (1.18)

1In fact, S2 is not a local surface of R3 in the sense of Berger and Gostiaux ([6], p. 348), meaning that there is no open set
U ⊂ R2 and an immersion Φ ∈ C∞(U ;R3) such that Φ is a homeomorphism between U and its image S2 = Φ(U).
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The observability inequality (1.18) means that the energy of the solution of (1.17) concentrated in ω yields an
upper bound of the energy in time T everywhere in Ω.

Finally, note that the proof of Theorem 1.6 is divided into two distinct steps:

1. Prove that for any time T ≤ log(1/ cos a), the equation is not observable in ω in time T ;
2. Prove that there exists T ∗ > 0 such that, for every T ≥ T ∗, the equation is observable in ω in time T .

1.3. Comments and open questions

The lower bound of minimal time Tmin in Theorem 1.4 appears to be the Agmon distance between the control
region ω = ωa,b × (0, 2π) and the degeneracy (the equator in fact) Φ−1(E) = {x = 0}, that is to say, the lower
bound of Tmin satisfies (1.4) with q(x) = tanx and L+ = a. However, it should be noted that the result of [4]
can not be directly applied to our case.

In fact, in [4], the authors investigate the boundary null-controllability of the 2D parabolic Grushin equation
with more general potential satisfying assumptions (1.3). In our case, equation (1.16) is the coordinate rep-
resentation of equation (1.7), posed on the whole sphere S2, which is a compact manifold without boundary.
Moreover the potential q(x) = tanx does not satisfies assumptions (1.3) on (−π/2, π/2).

The presence of two spherical crowns in the control region is a technical assumption required in the proof of
the Carleman estimate in Section 4 and is related to the symmetry of the singularity locations (the north and
south poles) with respect to the equator Φ−1(E) = {x = 0}. The case where the control function acts only on
one spherical crown (i.e., ω = (a, b)× (0, 2π)) remains open. Another interesting open question is to show the
sharpness of the lower bound of the minimal time, as done in [5] for the 2D parabolic Grushin equation.

Remark 1.7. If the elevation angle (latitude) a of the control region ω with respect to the equator is equal
to zero, i.e., if ω contains the equator, then the strategy used in Section 5.1 to obtain the lower bound of the
minimal time Tmin can not be applied. On the other hand, if the control acts only on one spherical crown (i.e.,
ω = (a, b)× (0, 2π)), the proof presented here still applies and shows that the lower bound of minimal time is
still log(1/ cos a).

1.4. Structure of the paper

The first part of the paper, contained in Section 2, is devoted to general results about parabolic Grushin
equation (1.16). Here we prove the well-posedness of the equation in Section 2.1, we study the properties of
Fourier components of solution of the adjoint system (1.17) in Section 2.2 as well as their dissipation rate. In
Section 2.3, we present the strategy of the proof of Theorem 1.6, that is, we show how the uniform observability
estimate of Fourier components yields the observability estimate of the solution of the adjoint system.

In Section 3, we recast the equation satisfied by the Fourier components in spaces L2 without weight using
unitary transformations.

In Section 4 we prove a global Carleman estimate for the 1D parabolic equation satisfied by the Fourier
components for non-zero frequencies in a space L2 without weight.

Finally, Section 5 is devoted to the proof of Theorem 1.6 (or equivalently of Theorem 1.4 and therefore the
proof of Thm. 1.2). In Section 5.1 we prove the negative statement of Theorem 1.6 and the positive statement
in Section 5.2.

2. Well-posedness, Fourier decomposition and strategy for the
proof

2.1. Well-posedness of Cauchy problems

It is interesting and useful to start with the well-posedness of the parabolic equation (1.7) associated to the
intrinsic operator L as defined in (1.6). Since {X,Y, [X,Y ]}p generates the tangent space TpS2 for any p ∈ S2,
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it follows from Strichartz ([31], p. 260–261) that −L with domain

D(L) =
{
u ∈ L2(S2;µ) : Lu := −X+Xu− Y +Y u ∈ L2(S2;µ)

}
, (2.1)

is a nonnegative, densely-defined, self-adjoint operator on L2(S2;µ), hypoelliptic ([19], Thm. 1.1) and has a
compact resolvent. Therefore, its spectrum is real, discrete and consists of eigenvalues with finite multiplicity,
labelled in increasing order, that is, (λm)m∈N∗ , with 0 = λ1 < λ2 ≤ · · · ≤ · · · , with λm → ∞ as m → ∞.
Moreover, there exists an orthonormal Hilbert basis (ϕm)m∈N∗ of L2(S2;µ) consisting of eigenfunctions of L
associated with the eigenvalues (λm)m∈N∗ .

Remark 2.1. It should be noted that the sub-Riemannian manifold S2 endowed with the 2-ARS described in
Section 1.2 is obtained as a restriction of complete Riemannian manifolds. So, it is completed as metric space.
It follows that, the sub-Riemannian Laplacian L defined on C∞(S2) is essentially self-adjoint in L2(S2;µ) and
the domain of its unique self-adjoint extension coincides with (2.1) (see, Strichartz [31], p. 261, [30], p. 50 and
Thm. 2.4).

We define the intrinsic semigroup on L2(S2;µ) denoted (etL)t≥0, as the family of operator L2(S2;µ) →
L2(S2;µ) defined as follows for every t ≥ 0: given f0 ∈ L2(S2;µ), etLf0 is the unique solution at time t of the
homogeneous equation of (1.7), which is C∞ on ]0,+∞[×S2 (by the hypoellipticity of operator L) and given by

etLf0 =
∑
m∈N∗

e−tλm〈f0, ϕm〉L2(S2;µ)ϕm. (2.2)

Let us state the following well-posedness result of the intrinsic parabolic equation (1.7) whose proof is classical
(see, e.g., [28], Chap. 4).

Proposition 2.2. Given T > 0, f0 ∈ L2(S2;µ) and v := 1ωu ∈ L2(0, T ;L2(S2;µ)), there exists a unique
solution

f ∈ C([0, T ];L2(S2;µ)) ∩ L2((0, T ); D(L))

of equation (1.7), and f is given by Duhamel’s formula

f(t) = etLf0 +

∫ t

0

e(t−s)Lv(s)ds, t ∈ [0, T ]. (2.3)

We now can provide an argument about the well-posedness of the parabolic equation (1.16) associated with
the spherical Grushin operator Φ∗L defined in (1.13) (or equivalently in (1.14)).

Let Hσ := L2(Ω;σ), and denote by 〈·, ·〉Hσ and ‖ · ‖Hσ , respectively, the scalar product and norm in Hσ.We
have that (L,D(L)) and (Φ∗L,D(Φ∗L)) are unitarily equivalent, where we let

Φ∗L = TΦ LT+
Φ on D(Φ∗L) = TΦ(D(L)). (2.4)

Here, TΦ is the unitary transformation defined in (1.12), T+
Φ being its adjoint. So, −Φ∗L with domain D(Φ∗L)

is a nonnegative, densely-defined, self-adjoint operator on Hσ and has compact resolvent. We also remark that
v ∈ D(Φ∗L) means v = u ◦ Φ for some u ∈ D(L). So, we have the following.

Lemma 2.3. Let v ∈ D(Φ∗L). Then, we have that v, Φ∗Lv ∈ Hσ, the function y 7→ v(π/2, y) (resp. y 7→
v(−π/2, y)) is constant, and y 7→ v(x, y) is 2π-periodic for any x ∈ [−π/2, π/2]. Moreover, the following
functions are well defined and real-valued:

y ∈ [0, 2π) 7→ ∂xv(π/2, y), y ∈ [0, 2π) 7→ ∂xv(−π/2, y), (x, y) ∈ Ω 7→ tanx ∂yv(x, y). (2.5)
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Remark 2.4. We stress that boundary conditions of Lemma 2.3 are naturally associated to Cauchy problems
(1.16) and (1.17).

Let {W`,n}`∈N,−`≤n≤` denotes the family of spherical harmonics, defined by

W`,n(x, y) =

√
2`+ 1

4π

(`− n)!

(`+ n)!
Pn` (sinx)einy, ∀x ∈ [−π/2, π/2]× [0, 2π), (2.6)

with Pn` being associated Legendre functions of the first kind. Then we can check that each W`,n lies in D(Φ*L)
and the operator Φ∗L satisfies (see, [11], p. 9 and references within)

− (Φ∗L)W`,n = λ`,nW`,n, λ`,n := `(`+ 1)− n2, ∀ |n| ≤ ` ∈ N. (2.7)

Moreover, by using the identification Hσ
∼= L2((−π/2, π/2); cosxdx) ⊗ L2((0, 2π),dy), we have that

{W`,n}`∈N,−`≤n≤` form an orthonormal Hilbert basis of the space Hσ ([29], p. 137) so that, D(Φ*L) is a
non-empty and dense subspace of Hσ.

The spherical Grushin semigroup on Hσ denoted (etΦ
∗L)t≥0 is then the family of operators Hσ → Hσ defined

as follows for every t ≥ 0: given f0 ∈ Hσ, etΦ
∗Lf0 is the unique solution at time t of the homogeneous equation

of (1.16), which is C∞ on ]0,+∞[×Ω and given by

etΦ
∗Lf0 =

∑
|n|≤`∈N

e−tλ`,n〈f0,W`,n〉HσW`,n. (2.8)

We now can state the following well-posedness result of the parabolic equation (1.16) associated with the
spherical Grushin operator Φ∗L (see, e.g., [28], Chap. 4).

Proposition 2.5. Given T > 0, f0 ∈ Hσ and v := 1ωu ∈ L2(0, T ; Hσ), there exists a unique solution

f ∈ C([0, T ]; Hσ) ∩ L2((0, T ); D(Φ*L))

of equation (1.16), and Duhamel’s formula gives f

f(t) = etΦ
∗Lf0 +

∫ t

0

e(t−s)Φ∗Lv(s)ds, t ∈ [0, T ]. (2.9)

We end this section by the following Hardy-Poincaré inequality in the Sobolev space H1
0 (−π/2, π/2). The

reader could find another proof of such inequality in page 92 of [27].

Lemma 2.6. Let w ∈ H1
0 (−π/2, π/2). Then, it holds∫ π

2

−π2

|w(x)|2

cos2 x
dx ≤ 4

∫ π
2

−π2
|w′(x)|2dx. (2.10)

Proof. First of all, highlight that the main theorem of page 199 in [13] is valid in the space L2([0, π/2)) by
repeating the same proof with π/2 playing the role of ∞. Note that such results result from the lemma of page
42 in [16], adapting the proof in the case at hand. Let f ∈ L2(−π/2, π/2). Then,∫ π

2

0

(|f(x)|2 + |f(−x)|2)dx =

∫ π
2

−π2
|f(x)|2dx,



NULL CONTROLLABILITY OF THE PARABOLIC SPHERICAL GRUSHIN EQUATION 9

so that, f, f̃ ∈ L2([0, π/2)), where f̃(x) = f(−x), x ∈ [0, π/2). We adopt the notations of [13], then ([13],
eq. (1.3)) recasts

(S f)(x) = φ(x)

∫ π
2

x

ψ(t)f(t)dt, x ∈ [0, π/2). (2.11)

We let φ(x) = 1/ cosx and ψ(x) = 1 for all x ∈ [0, π/2). Thus, ψ ∈ L2([0, π/2)), φ ∈ L2([0, α]) for all 0 < α < π/2
and ∫ x

0

|φ(t)|2dt

∫ π
2

x

|ψ(t)|2dt =
(π

2
− x
)

tanx ≤ 1, ∀x ∈ [0, π/2],

so that, ([13], Eqs. (2.1) to (2.3)) are satisfy with K := 1. It follows that S defined in (2.11) is a bounded
operator from L2([0, π/2)) to itself and the following holds for all f ∈ L2([0, π/2)),

∫ π
2

0

|(S f)(x)|2dx ≤ 4K

∫ π
2

0

|f(x)|2dx = 4

∫ π
2

0

|f(x)|2dx. (2.12)

Let now w ∈ H1
0 (−π/2, π/2), then w,w′ ∈ L2(−π/2, π/2) and w(±π/2) = 0. Letting f = w′ in (2.11) we find

(Sw′)(x) = φ(x)

∫ π
2

x

ψ(t)w′(t)dt = −w(x)

cosx
, x ∈ [0, π/2).

Hence (2.12) leads to

∫ π
2

0

|w(x)|2

cos2 x
dx ≤ 4

∫ π
2

0

|w′(x)|2dx.

We argue similarly for w̃, and combining both inequalities, we complete the proof of the lemma.

2.2. Fourier decomposition of solution

Using a complete orthonormal eigenbasis of L2((0, 2π); dy), we can separate the space Hσ = ⊕⊥n∈ZHn, where
Hn ∼= L2((−π/2, π/2); cosxdx). Therefore, one has for every t ≥ 0,

etΦ
∗L =

⊥⊕
n∈Z

etLn , (2.13)

where for any n ∈ Z, the operator Ln is defined on Hn by

D(Ln) = {v ∈ Hn : Lnv ∈ Hn, v(±π/2), v′(±π2) ∈ R} , (2.14)

Lnv =
1

cosx
(cosxv′)′ − n2 tan2 xv, ∀v ∈ D(Ln). (2.15)

Since the solution g of (1.17) belongs to C([0, T ]; Hσ), the function y 7→ g(t, x, y) belongs to L2((0, 2π); dy)
for a.e. (t, x) ∈ (0, T )× (−π/2, π/2). So, the adjoint system (1.17) is formally equivalent to the following family
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of one-dimensional parabolic equations indexed by n ∈ Z,

{
∂tgn − Lngn = 0, a.e. in (0, T )× (−π/2, π/2),

gn(0, x) = g0,n(x), x ∈ (−π/2, π/2).
(2.16)

Here, the nth Fourier component gn is given by

gn(t, x) =

∫ 2π

0

g(t, x, y)einydy, (t, x) ∈ (0, T )× (−π/2, π/2). (2.17)

We derive in the following lemmas some properties of functions belonging to D(Ln) as well as their behaviour
at ±π/2. We begin by the case n = 0.

Lemma 2.7. Let v ∈ D(L0). Then v belongs to the Sobolev space H1(−π/2, π/2) and v is locally absolutely
continuous on [−π/2, π/2]. Moreover, it holds

lim
x→−π2 +

v′(x) = lim
x→π

2
−
v′(x) = 0. (2.18)

Proof. Let v ∈ D(L0). Then v, L0v ∈ H0
∼= L2((−π/2, π/2); cosxdx) and v(±π/2), v′(±π/2) ∈ R. One has,

‖v′‖2H0
= −〈L0v, v〉H0

<∞. (2.19)

Since it is clear that sinxv′, cosxv,
√

cosxv,
√

cosxv′ ∈ H0, it holds

‖v‖2H1(−π/2,π/2) = 2
[
〈L0v, cosxv − sinxv′〉H0 + ‖

√
cosxv‖2H0

+ ‖
√

cosxv′‖2H0

]
<∞. (2.20)

It follows that v belongs to the Sobolev space H1(−π/2, π/2) ↪→ W 1,1(−π/2, π/2), and then v is locally
absolutely continuous on [−π/2, π/2]. On the other hand, one has

∫ π
2

−π2

|v′(x)|2

cosx
dx ≤

∫ π
2

−π2

(
|v′′(x)|2 +

|v′(x)|2

cos2 x

)
cosxdx

=

∫ π
2

−π2
|L0v(x)|2 cosxdx+ |v′(π/2)|2 + |v′(−π/2)|2 <∞. (2.21)

Since cos(±π/2) = 0 this implies (2.18). Moreover (2.21) also shows that v′′ ∈ H0. In particular, tanxv′ ∈ H0,
since L0v ∈ H0 and v′′ ∈ H0. This completes the proof of the lemma.

In the case n ∈ Z\{0}, we have the following

Lemma 2.8. Let n ∈ Z\{0} and v ∈ D(Ln). Then v belongs to the Sobolev space H1(−π/2, π/2) and v is locally
absolutely continuous on [−π/2, π/2]. Moreover, it holds

lim
x→−π2 +

v(x) = lim
x→π

2
−
v(x) = 0 and lim

x→−π2 +

v(x)√
cosx

= lim
x→π

2
−

v(x)√
cosx

= 0. (2.22)
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Proof. Let n ∈ Z\{0} and v ∈ D(Ln). Since v, Lnv ∈ Hn ∼= L2((−π/2, π/2); cosxdx), v(±π/2) ∈ R and
v′(±π2) ∈ R, one has,

‖v′‖2Hn ≤
∫ π

2

−π2

(
|v′(x)|2 + |n tanxv|2

)
cosxdx = −〈v,Lnv〉Hn <∞, (2.23)

showing in particular that tanxv ∈ Hn. It follows that

‖ cos−1 xv‖2Hn = ‖ tanxv‖2Hn + ‖v‖2Hn <∞, (2.24)

and by Cauchy-Schwarz inequality,

‖v‖2L2(−π/2,π/2) ≤ ‖ cos−1 xv‖Hn‖v‖Hn <∞. (2.25)

So,

‖ cos−1 v‖2L2(−π/2,π/2) = ‖v‖2L2(−π/2,π/2) +
1

n2

[〈
−Lnv,

v

cosx

〉
Hn
−
∫ π

2

−π2
tanx|v(x)|2dx

]
<∞. (2.26)

It is clear that sinxv′ ∈ Hn, so that,

‖v′‖2L2(−π/2,π/2) = −2〈Lnv, sinxv′〉Hn + n2

∫ π
2

−π2
sin2 x(3 + tan2 x)|v(x)|2dx <∞, (2.27)

by (2.24), (2.25) and (2.26). Thus, v belongs to the Sobolev space H1(−π/2, π/2) ↪→ W 1,1(−π/2, π/2), and
then v is locally absolutely continuous on [−π/2, π/2]. So,

v(x2)− v(x1) =

∫ x2

x1

v′(s)ds ∀x1, x2 ∈ [−π/2, π/2]. (2.28)

On the other hand, since tanxv ∈ Hn, the first identity of (2.22) immediately follows. Let us turn to an
argument for the second identity of (2.22). Let ε > 0, then by the first identity of (2.22), and (2.28) one has for
all v ∈ D(Ln), n 6= 0,

∣∣∣v (−π
2

+ ε
)∣∣∣ ≤ ∫ −π2 +ε

−π2
|v′(t)|dt ≤ ‖v′‖∞ε.

Hence,

lim
x→−π2 +

|v(x)|√
cosx

= lim
ε→0

|v(−π2 + ε)|√
cos(−π2 + ε)

≤ ‖v′‖∞ lim
ε→0

ε√
sin ε

= 0.

The proof of the limit at π/2 is similar.

Remark 2.9. Lemmas 2.7 and 2.8 show in particular that, for all v ∈ D(Ln), Lnv has a meaning a. e. in
(−π/2, π/2). Moreover, Lemma 2.8 also shows that the domain D(Ln) is a subspace of the Sobolev space
H1

0 (−π/2, π/2) in the case n ∈ Z\{0}. Therefore, Lemma 2.6 holds true in D(Ln).
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The following proposition is the direct consequence of the Section 2.1. We also refer to page 68 of [26] in
which the theory of the singular Sturm-Liouville equation is well-elaborated.

Proposition 2.10. Let n ∈ Z. Then, −Ln : D(Ln) ⊂ Hn → Hn is a densely defined, self-adjoint positive
operator with compact resolvent.

One can check that the functions vn,` defined for ` ∈ N, n ∈ Z and |n| ≤ ` by

vn,`(x) =

√
2`+ 1

2

(`− n)!

(`+ n)!
Pn` (sinx), ∀x ∈ [−π/2, π/2], (2.29)

form a complete orthonormal set of the Hilbert space Hn, with Pn` being the associated Legendre function of
the first kind. Moreover, each vn,` lies in D(Ln) and we have

−Lnvn,` = (`(`+ 1)− n2)vn,`.

So the functions vn,` are the eigenfunctions of operators −Ln with eigenvalues λ`,n = `(`+ 1)− n2.
Thanks to Proposition 2.10, it is then straightforward to prove the following

Proposition 2.11. Let T > 0. For every n ∈ Z, the n-th Fourier component gn of g, as given by (2.17), is the
unique solution of (2.16) lying in the class

C([0, T ];Hn) ∩ C((0, T ); D(Ln)) ∩ C1((0, T );Hn). (2.30)

Moreover, it is equal to

etLng0,n =
∑
`∈N

e−λ`,nt〈g0,n, vn,`〉Hnvn,`, (2.31)

where g0,n ∈ Hn is given by g0,n(x) =

∫ 2π

0

g0(x, y)einydy, and g0 being the initial condition in equation (1.17).

Remark 2.12. We may show by an inductive argument that for all n ∈ Z

gn ∈ C∞((0, T ); D(Ln)). (2.32)

Moreover, gn is C∞ on ]0,+∞[×(−π/2, π/2).

By Proposition 2.11, the following dissipation rate of Fourier component gn is satisfies

‖gn(T, ·)‖Hn ≤ e−|n|(T−t)‖gn(t, ·)‖Hn , ∀t ∈ (0, T ). (2.33)

Notation 2.13. In what follows, to simplify the notation, we shall assume n ∈ N. The same considerations
hold for n ∈ Z− by replacing n with |n|.

2.3. Strategy for the proof of Theorem 1.6 and uniform observability

We show in this subsection how the proof of Theorem 1.6 reduces to the proof of an observability inequality
for the 1D parabolic equations (2.16) that is uniform concerning n ∈ N. Recall that if g is the solution of (1.17),
then it can be represented by

g(t, x, y) =
∑
n∈Z

gn(t, x)einy, for a.e. (t, x, y) ∈ (0, T )× Ω. (2.34)
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We also emphasize that, by Bessel-Parseval’s equality, one has, for a.e. t ∈ (0, T ) and every −π/2 ≤ a1 ≤ b1 ≤
π/2, that

∫ b1

a1

∫ 2π

0

|g(t, x, y)|2dσ =
∑
n∈Z

∫ b1

a1

|gn(t, x)|2 cosxdx. (2.35)

Thus, if there exists a positive constant C > 0, independent of n ∈ N, and such that the following uniform
observability holds for the system (2.16)

∫ π
2

−π2
|gn(T, x)|2dx ≤ C

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt, (2.36)

then, we can easily show that the observability inequality (1.18) is verified. Indeed, thanks to (2.34), (2.35) and
(2.36), we find

∫
Ω

|g(T, x, y)|2dσ =
∑
|n|≤`∈N

∫ π
2

−π2
|gn(T, x)|2 cosxdx

≤ C
∑
|n|≤`∈N

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt = C

∫ T

0

∫
ωa,b

∫ 2π

0

|g(t, x, y)|2dσdt. (2.37)

This immediately yields (1.18). Hence, to prove Theorem 1.6 it is necessary and sufficient to study the
observability of system (2.16) uniformly concerning n ∈ N.

Definition 2.14. (Uniform observability) Let ωa,b be defined as in (1.15). The system (2.16) is observable in
ωa,b in time T uniformly with respect to n ∈ N, if there exists C > 0 such that, for every n ∈ N, and g0,n ∈ Hn,
the solution of (2.16) satisfies (2.36).

3. The 1D equations in the space L2 without weight

In this section, we recast the 1D equation (2.16) in the space L2(−π/2, π/2) without weight in the cases
n ∈ N\{0} and in the space L2(−1, 1) when n = 0.

3.1. The 1D equation in the space L2(−1, 1) and observability inequality when n = 0

Let us consider the unitary transformation

V : L2((−π/2, π/2); cosxdx) −→ L2(−1, 1)

v 7−→ (V v)(x) = v(arcsinx).

We define the unbounded operator M0 on the space L2(−1, 1) by

M0 = VL0 V+, D(M0) = V D(L0). (3.1)

Here, V+ is the adjoint of the unitary operator V, that is,

V+ : L2(−1, 1) −→ L2((−π/2, π/2); cosxdx)

w 7−→ (V+ w)(x) = w(sinx).
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We then have the following expression of operator M0:

M0 w = ((1− x2)w′)′, ∀w ∈ D(M0) . (3.2)

Since the differential operator ∂t commutes with the unitary transformation V, one deduces easily that, when
n = 0, system (2.16) is equivalent to the following{

∂tg̃0 −M0 g̃0 = 0, a.e. in (0, T )× (−1, 1),

g̃0(0, x) = g̃0,0(x), x ∈ (−1, 1).
(3.3)

In particular, the solution g̃0 = V g0 lies in the class (see Prop. 2.11 and Rem. 2.12)

C([0, T ];L2(−1, 1)) ∩ C∞((0, T ); D(M0)). (3.4)

We characterise in the following some useful properties of functions belonging to the domain D(M0), that is
obtained by Lemma 2.7.

Lemma 3.1. Let w ∈ D(M0). Then w belongs to the Sobolev space H1(−1, 1) and w is locally absolutely
continuous on [−1, 1]. Moreover, it holds

w(±1) ∈ R and w′(x)
√

1− x2|x=±1 = 0. (3.5)

Proof. Let w ∈ D(M0). Then w(x) = v(arcsinx) for some v ∈ D(L0) and a. e., x ∈ (−1, 1). Since v(±π/2) ∈ R,
the first property in (3.5) immediately follows. Similarly, since v ∈ H0

∼= L2((−π/2, π/2); cosxdx), and using
(2.21), it holds

∫ 1

−1

|w(x)|2dx =

∫ π
2

−π2
|v(x)|2 cosxdx <∞ and

∫ 1

−1

|w′(x)|2dx =

∫ π
2

−π2

|v′(x)|2

cosx
dx <∞,

so that, w,w′ ∈ L2(−1, 1). Finally, w′(x)
√

1− x2|x=±1 = v′(±π/2) = 0, by (2.18).

Remark 3.2. We note that an observability inequality for equation (3.3) was established in [24] by Martinez
and Vancostenoble. Indeed thanks to Lemma 3.1, we aim to prove an observability inequality for the following
equation 

∂tw − ∂x(a(x)∂xw) = 0, a.e. in (0, T )× (−1, 1),

(a(x)∂xw)(t,±1) = 0, t ∈ (0, T ),

w(0, x) = w0(x), x ∈ (−1, 1),

(3.6)

where a(x) := 1− x2, w0 ∈ L2(−1, 1) and the solution w belongs to the class (3.4). We observe that the weight
function a satisfies 0 ≤ a ∈ C2([−1, 1]), a(±1) = 0, a > 0 on (−1, 1), 1√

a
∈ L1(−1, 1) and

(1 + x)a′(x)

a(x)
−−−−−→
x→−1+

1 and
(1− x)a′(x)

a(x)
−−−−→
x→1−

−1.

So, we are in the framework of [24].

Then Theorem 3.4 of [24] gives the following
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Lemma 3.3. Let T > 0 and a, b ∈ R be such that 0 < a < b ≤ π
2 . Let ω̃a,b := (− sin b,− sin a) ∪ (sin a, sin b).

Then, there exists a positive constant C0 > 0 such that every solution w of system (3.6) satisfies

∫ 1

−1

|w(T, x)|2dx ≤ C0

∫ T

0

∫
ω̃a,b

|w(t, x)|2dxdt. (3.7)

Finally, thanks to the above lemma and the fact that w := V g0 is the solution of system (3.6), we deduce
the following observability inequality for equation (2.16) when n = 0.

Proposition 3.4. Let T > 0 and ωa,b be defined as in (1.15). Then, there exists a positive constant C0 > 0
such that the first Fourier component g0, which is the solution of equation (2.16) when n = 0 satisfies

∫ π
2

−π2
|g0(T, x)|2 cosxdx ≤ C0

∫ T

0

∫
ωa,b

|g0(t, x)|2 cosxdxdt. (3.8)

Remark 3.5. We highlight that the result of Theorem 3.4 in [24] ensures that when n = 0, system (2.16) is
observable in any subset ω ⊂⊂ (−π/2, π/2) and in arbitrary time T > 0.

3.2. The 1D equations in the space L2(−π/2, π/2) without weight in the cases n ∈ N∗

In these cases, we consider the unitary transformation

U : L2((−π/2, π/2); cosxdx) −→ L2(−π/2, π/2)

v 7−→ (U v)(x) =
√

cosxv(x).

We define for all n ∈ N∗ the unbounded operator Mn on the space L2(−π/2, π/2) by

Mn = ULn U+, D(Mn) = U D(Ln), (3.9)

where U+ is the adjoint of the unitary operator U. So, we deduce the following expression of operator Mn:

Mn w = w′′ − qn(x)w, ∀w ∈ D(Mn), (3.10)

where, for all n ∈ N∗, the potential qn is given by

qn(x) = (n2 − 1/4) tan2 x− 1/2, ∀x ∈ (−π/2, π/2). (3.11)

Remark 3.6. Let us emphasis that, since U is an unitary transformation, then the unbounded operator
(Mn,D(Mn)) defined on the space L2(−π/2, π/2) inherits some properties of the operator (Ln,D(Ln)). That is,
the operator (−Mn,D(Mn)) is a densely defined, self-adjoint, and positive operator with compact resolvent on
L2(−π/2, π/2) for all n ∈ N∗.

Since the differential operator ∂t commutes with the unitary transformation U, one deduces easily that system
(2.16) is equivalent to the following{

∂tg̃n −Mn g̃n = 0, a.e. in (0, T )× (−π/2, π/2),

g̃n(0, x) = g̃0,n(x), x ∈ (−π/2, π/2).
(3.12)
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In particular, the solution g̃n = U gn lies in the class (see Prop. 2.11 and Rem. 2.12)

C([0, T ];L2(−π/2, π/2)) ∩ C∞((0, T ); D(Mn)). (3.13)

In the following, we collect some properties of the functions lying in the domain D(Mn) (n ∈ N∗), which will be
useful in the proof of a global Carleman estimate for system (3.12) in Section 4.

Lemma 3.7. Let n ∈ N∗ and w ∈ D(Mn). Then w′ belongs to L2(−π/2, π/2) and w is locally absolutely
continuous on [−π/2, π/2]. Moreover,

lim
x→−π2 +

w(x) = lim
x→π

2
−
w(x) = 0, lim

x→−π2 +
w′(x) = lim

x→π
2
−
w′(x) = 0. (3.14)

Proof. Let n ∈ N∗ and w ∈ D(Mn). Then w =
√

cosxv for some v ∈ D(Ln) and a. e., x ∈ (−π/2, π/2). Since
v(±π/2) ∈ R, the first identity in (3.14) immediately follows. Similarly, since tanxv ∈ Hn (see, (2.23)), it holds

‖ tanxw‖2L2(−π/2,π/2) = ‖ tanxv‖2Hn <∞.

By deriving w, we find that w′ + tanxw/2 =
√

cosxv′ belongs to L2(−π/2, π/2), due to (2.23), and then
w′ ∈ L2(−π/2, π/2). Since v′(±π/2) ∈ R, it holds

lim
x→−π2 +

w′(x) = lim
x→−π2 +

−1

2

sinx√
cosx

v(x) +
√

cosxv′(x) = 0,

by the second identity of (2.22). The proof of the limit at π/2 is similar. It then follows that w is locally
absolutely continuous on [−π/2, π/2].

Remark 3.8. The above lemma also shows that for all n ∈ N∗, the domain D(Mn) is a subspace of the Sobolev
space H1

0 (−π/2, π/2). Therefore, Lemma 2.6 holds true in D(Mn).

4. A global Carleman estimate in the cases n ∈ N∗

This section aims to obtain a global Carleman estimate for systems (3.12) in the cases n ∈ N∗. This will
allow us, using the dissipation rate (2.33), to prove the uniform observability inequality (2.36) in Section 5.2.
We drop the tilde and the index n to simplify the notations.

Proposition 4.1. Let ωa,b be defined as in (1.15). Then there exist a weight function β ∈ C4([−π/2, π/2])
and positive constants R0,R1 > 0 such that for every T > 0, n ∈ N∗ and s ≥ R0 max(T + T 2, T 2n), every
g ∈ C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T ); D(Mn)) satisfies

R1

∫ T

0

∫ π
2

−π2

(
s

t(T − t)
|∂xg(t, x)|2 +

s3

(t(T − t))3
|g(t, x)|2

)
e−

2sβ(x)
t(T−t) dxdt

≤
∫ T

0

∫
ωa,b

s3

(t(T − t))3
|g(t, x)|2e−

2sβ(x)
t(T−t) dxdt+

∫ T

0

∫ π
2

−π2
|Png(t, x)|2e−

2sβ(x)
t(T−t) dxdt. (4.1)

Here, Ri := Ri(β, a, b), i = 0, 1 and we let

Pn := ∂t − ∂2
x + qn(x) with qn(x) = (n2 − 1/4) tan2 x− 1/2.

Before proving the above proposition, let us present some important remarks and comments essential to
understanding the proof.
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As it is now well-understood, the main difficulty in the proof of Carleman estimates as (4.1) is to identify a
suitable weight function β which can deal with the specificity of the parabolic operator under consideration. For
example, for the standard parabolic operator see the pioneer work by Imanuvilov [20] or Fursikov and Imanuvilov
[17]; for the standard parabolic operator with interior quadratic singularities (resp. boundary singularity) see
the work by Ervedoza [15] (resp. Cazacu [12] or Biccari and Zuazua [7]); for the 2D parabolic Grushin operator,
see the work by Beauchard et al. [3–5] and Koenig [21]; for 2D parabolic Grushin operator with internal (resp.
boundary) singular potential see the work by Morancey [25] (resp. Cannarsa and Guglielmi [10]). We remark
that, in general, the function β is chosen to be strictly monotone outside of the control region and concave so
that the term in s3 is the leading one. Particularly in the singular cases, this choice allows getting rid of the
singular terms which can not be bounded at the singularity, usually by taking advantage of Hardy-Poincaré
type inequalities.

In the case at hand, the potential qn is singular in ±π/2. Thus, we shall apply the Hardy-Poincaré inequalities
of Lemma 2.6 (see, Rem. 3.8) to get rid of the singular terms which can not be bounded at ±π/2.

Remark 4.2. The proof of Proposition 4.1 will be split into several lemmas using the classical strategy [17]
by Fursikov and Imanuvilov (we refer to page 79 of [14] for a pedagogical presentation). Let us emphasize that
functions in D(Mn) have the regularity in the space variable that we need in order to apply integrations by
parts (see, e.g. Lem. 3.7).

Notation 4.3. Let us introduce the general notations which will be used in what follows. We let a′ and b′ are
real numbers such that

0 < a < a′ < b′ < b ≤ π/2 and [a′, b′] ⊂ (a, b). (4.2)

We consider the subdomains

ωcon := (−b′,−a′) ∪ (a′, b′), ωdeg := (−a′, a′), ωbdy := (−π/2,−b′) ∪ (b′, π/2) , (4.3)

so that

(−π/2, π/2) = ωbdy ∪ωdeg ∪ωcon and ωcon ⊂ ωa,b.

We also introduce the weight function

ϕ(t, x) = sθ(t)β(x), (t, x) ∈ Q := (0, T )× I, I := (−π/2, π/2), (4.4)

where the positive constant s = s(T, n, β) > 0 will be chosen later on and the temporal weight θ is given by

θ(t) =
1

t(T − t)
, t ∈ (0, T ). (4.5)

We end this part of notations introducing for all n ∈ N∗ and every g ∈ C([0, T ];L2(−π/2, π/2)) ∩
C2((0, T ); D(Mn)), the change of function

z(t, x) = g(t, x)e−ϕ(t,x), (t, x) ∈ Q. (4.6)

In the following lemma, we design the weight function β.

Lemma 4.4. The function β ∈ C4([−π/2, π/2]) satisfies

β ≥ 1, on (−π/2, π/2), (4.7)



18 C. TAMEKUE

Figure 2. The spatial weight function β. The subcontrol region ωa′,b′ is in blue.

β(x) =

{
log | sinx|+A1|x|+A2 if x ∈ ωbdy,
log cosx− x2

2 +A3(x+ 1) if x ∈ ωdeg,
(4.8)

where the positive constants Ai, 1 ≤ i ≤ 3 are such that (4.7) is verified and{
|β′(x)| ≥ η1, x ∈ ωbdy,
β′(x) ≥ η2, x ∈ ωdeg,

(4.9)

for some positive constants η1, η2 > 0.

Remark 4.5. We stress that the explicit expression of the weight β is only needed near ±π/2 to eliminate the
singular terms that can not be bounded at ±π/2. Apart from this, assuming that β is strictly monotonous and
concave outside the subcontrol region ωcon suffices.

The following lemma gives some useful properties of the temporal weight θ obtained by direct computations.

Lemma 4.6. Let the temporal weight θ be given by (4.5). Then we have for all t ∈ (0, T ),

θ′(t) = (2t− T )θ2(t), θ′′(t) = 2θ2(t)(1 + (2t− T )2θ(t)),

and the following inequalities hold

θ(t) ≤ 2−4T 4θ3(t), |θ′(t)| ≤ 2−2T 3θ3(t), |θ(t)θ′(t)| ≤ Tθ3(t), |θ′′(t)| ≤ 5

2
T 2θ3(t).

Moreover, one has

lim
t→0+

θ(t) = lim
t→T−

θ(t) = +∞.

In the following lemma, we give some useful properties of the function z introduced in (4.6) which are obtained
by direct computations applying Lemmas 3.7 and 4.6

Lemma 4.7. Let n ∈ N∗, then the function z introduced in (4.6) belongs at least in the class
C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T ); D(Mn)) and satisfies{

z(0, x) = z(T, x) = ∂xz(0, x) = ∂xz(T, x) = 0, x ∈ [−π/2, π/2],

z(t,±π/2) = ∂tz(t,±π/2) = ∂xz(t,±π/2) = 0, t ∈ (0, T ).
(4.10)

Moreover, one has

P+
n z + P−n z = e−ϕPng, (4.11)

where Pn is the parabolic operator introduced in Proposition 4.1, and we let

P+
n z = −Mn z + (∂tϕ− |∂xϕ|2)z and P−n z = ∂tz − 2∂xz∂xϕ− (∂2

xϕ)z. (4.12)
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Let Q = (0, T ) × (−π/2, π/2) and dQ = dxdt. Observe first that, P+
n z and P−n z belong to L2(Q) by the

definition of D(Mn) and Lemma 3.7. So, developing the L2(Q) squared norm in identity (4.11), leads to

∫
Q

P+
n zP−n zdQ ≤

1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (4.13)

In the following, we compute the scalar product on the left-hand side of (4.13) using integration by parts
and Fubini’s Theorem.

Lemma 4.8. Let n ∈ N∗, then we have

∫
Q

P+
n zP−n zdQ = −2

∫
Q

∂2
xϕ|∂xz|2dQ+

1

2

∫
Q

∂4
xϕ|z|2dQ+

∫
Q

∂xϕq
′
n(x)|z|2dQ

− 1

2

∫
Q

(∂2
t ϕ− 2∂xϕ∂txϕ)|z|2dQ+

∫
Q

∂xϕ∂x(∂tϕ− |∂xϕ|2)|z|2dQ. (4.14)

Proof. Let n ∈ N∗ and z be defined in (4.6). We compute the six terms of the left-hand side of (4.14) using
integration by parts and Fubini’s Theorem.

1. The three terms involving operator −Mn z are

−
∫
Q

Mn zdtzdQ+ 2

∫
Q

Mn z∂xz∂xϕdQ+

∫
Q

Mn z∂
2
xϕzdQ.

So, one has by using (4.10),

−
∫
Q

Mn z∂tzdQ =

∫ T

0

{
[−∂xz∂x(dtz)]

π
2

−π2
+

∫ π
2

−π2

1

2
dt(|∂xz|2)dx

}
dt+

∫ π
2

−π2

qn(x)

2

[
|z|2
]T
0

dx

=
1

2

∫ π
2

−π2

{
|∂xz(T, x)|2 − |∂xz(0, x)|2

}
dx = 0. (4.15)

2

∫
Q

Mn z∂xz∂xϕdQ = −
∫
Q

∂2
xϕ|∂xz|2dQ+

∫
Q

∂x(qn(x)∂xϕ)|z|2dQ

+

∫ T

0

{
[|∂xz|2∂xϕ]

π
2

−π2
− [qn(x)∂xϕ|z|2]

π
2

−π2

}
dt

= −
∫
Q

∂2
xϕ|∂xz|2dQ+

∫
Q

∂x(qn(x)∂xϕ)|z|2dQ. (4.16)

Observe that boundary terms [|∂xz|2∂xϕ]
π
2

−π2
= 0 and [qn(x)∂xϕ|z|2]

π
2

−π2
= 0 due to (3.14) and (2.22). Remember

that z(t, ·) ∈ D(Mn) implies z(t, ·) =
√

cosxv(t, ·) for some v(t, ·) ∈ D(Ln).
The third term is∫

Q

Mn z∂
2
xϕzdQ = −

∫
Q

∂2
xϕ|∂xz|2dQ+

1

2

∫
Q

∂4
xϕ|z|2dQ−

∫
Q

qn(x)∂2
xϕ|z|2dQ. (4.17)
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2. The three terms involving
(
∂tϕ− |∂xϕ|2

)
z are∫

Q

(∂tϕ− |∂xϕ|2)z∂tzdQ− 2

∫
Q

(∂tϕ− |∂xϕ|2)z∂xz∂xϕdQ−
∫
Q

(∂tϕ− |∂xϕ|2)∂2
xϕ|z|2dQ.

So one has, ∫
Q

(∂tϕ− |∂xϕ|2)z∂tzdQ = −1

2

∫
Q

∂t(∂tϕ− |∂xϕ|2)|z|2dQ, (4.18)

Here, the boundary term vanish as t→ 0+, T−, because owing to (4.6), (4.7) and Lemma 4.6 one has

|(∂tϕ− |∂xϕ|2)|z|2| ≤ θ2e−sθ|s|2t− T |β + (sθβ′)2||g|2,

and the right hand side tends to zero as t→ 0+, T− for every x ∈ [−π/2, π/2]. Using (4.10) one get

− 2

∫
Q

(∂tϕ− |∂xϕ|2)z∂xz∂xϕdQ =

∫
Q

∂x[(∂tϕ− |∂xϕ|2)∂xϕ]|z|2dQ. (4.19)

Finally, the third term is just

−
∫
Q

(∂tϕ− |∂xϕ|2)∂2
xϕ|z|2dQ. (4.20)

By combining (4.15)–(4.20), we complete the proof of the lemma.

We are going now to bound from below the right-hand side of (4.14). Since Q := (0, T ) × (−π/2, π/2) =
(0, T ) × (ωbdy ∪ωcon ∪ωdeg), we separate the integrals of the right hand side over (0, T ) × J , where J ∈
{ωbdy, ωcon, ωdeg}. Using Lemma 4.4 we immediately get

Lemma 4.9. Let n ∈ N∗ and assume (4.14). Then one has∫
Q

P+
n zP−n zdQ =

∫ T

0

∫
ωbdy

Kbdy dQ+

∫ T

0

∫
ωcon

Kcon dQ+

∫ T

0

∫
ωdeg

Kdeg dQ, (4.21)

where

Kdeg = sθ

{(
2

cos2 x
+ 2

)
|∂xz|2 +

(
sin2 x

2 cos4 x
+

x sinx

2 cos3 x

)
|z|2
}

+

{
2n2sθ

cos2 x
+ 2s3θ3

(
1

cos2 x
+ 1

)
(− tanx− x+A3)2

}
|z|2

+sθ

{
A3

(2n2 − 1/2)

cos4 x
+ 2sθ′(− tanx− x+A3)2 − 2n2x tanx

cos2 x

}
|z|2

−sθ
′′

2
(log cosx− x2

2
+A3(x+ 1))|z|2, (4.22)

Kbdy =
2sθ

sin2 x

{
|∂xz|2 + |z|2

}
+

2s3θ3

sin2 x

(cosx

sinx
+A1 sign(x)

)2

|z|2
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+

{
2s2θθ′

(cosx

sinx
+A1 sign(x)

)2

− sθ′′

2
(log | sinx|+A1|x|+A2)

}
|z|2

+

{
− 3sθ

sin4 x
+
sθ(2n2 − 1/2)

cos2 x
(1 +A1 sign(x) tanx)

}
|z|2, (4.23)

and

Kcon = s

{
θβ(4)

2
+ θβ′

(
2n2 − 1

2

)
sinx

cos3 x
− θ′′β

2
+ 2sθβ′2(θ′ − sθ2β′′)

}
|z|2 − 2sθβ′′|∂xz|2. (4.24)

In the following lemmas, we bound from below (4.22) and (4.23) by positive terms.

Lemma 4.10. Let n ∈ N∗ and Kdeg be given by (4.22). Then there exists a positive constant s1 > 0 such that,
for all

s ≥ s1 max(T + T 2, T 2n), (4.25)

the following inequality holds

∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
ωdeg

4sθ|∂xz|2 + η2
2s

3θ3|z|2dQ, (4.26)

with η2 as in (4.9).

Proof. Let n ∈ N∗ and Kdeg be given by (4.22). Since x sinx ≥ 0 for all x ∈ [−π, π], we obtain using (4.9) that

Kdeg ≥ 4sθ|∂xz|2 + 4η2
2s

3θ3|z|2 − sθ′′

2
(log cosx− x2

2
+A3(x+ 1))|z|2

+

{
2s2θθ′(− tanx− x+A3)2 − 2sθn2x tanx

cos2 x

}
|z|2. (4.27)

For all x ∈ ωdeg we have owing to Lemma 4.6

∣∣2s2θθ′(− tanx− x+A3)2
∣∣ ≤ 2C1s

2Tθ3,

∣∣∣∣−sθ′′2
(log cosx− x2

2
+A3(x+ 1))

∣∣∣∣ ≤ 5C2

4
sT 2θ3,

where C1 = C1(a′) := | tan a′ + a′ +A3|2 and C2 = C2(a′) := | log cos a′ − a′2/2 +A3(a′ + 1)|. It follows that if

s ≥ max
(

2C1

η22
,
√

5C2

2η2

)
T, then (4.27) yields to

Kdeg ≥ 4sθ|∂xz|2 + 2η2
2s

3θ3|z|2 − 2sθn2x tanx

cos2 x
|z|2. (4.28)

Due to Lemma 4.6, one has for all x ∈ ωdeg,∣∣∣∣−2sθn2x tanx

cos2 x

∣∣∣∣ ≤ 2n2C4s2
−4T 4θ3,
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where C4 = C4(a′) := a′ tan a′/ cos2 a′. So, if

s ≥ max

(
2C1

η2
2

,

√
5C2

2η2
,

1

η2

√
C4

8

)
max(T, T 2n), (4.29)

then

Kdeg ≥ 4sθ|∂xz|2 + η2
2s

3θ3|z|2. (4.30)

Therefore, owing to (4.29)–(4.30), we deduce that, for all n ∈ N∗, if s ≥ s1 max(T + T 2, T 2n), with

s1 = s1(a′) := max

(
2C1

η2
2

,

√
5C2

2η2
,

1

η2

√
A5C3

32
,

1

η2

√
C4

8

)
, (4.31)

then

Kdeg ≥ 4sθ|∂xz|2 + η2
2s

3θ3|z|2. (4.32)

This completes the proof of the lemma.

Lemma 4.11. Let n ∈ N∗. Then there exists a positive constant s2 > 0 such that, for all

s ≥ s2(T + T 2), (4.33)

the following inequality holds∫ T

0

∫
ωbdy

Kbdy dQ ≥
∫ T

0

∫
ωbdy

2sθ|∂xz|2 + 2sθ|z|2 +
η2

1

2
s3θ3|z|2dQ, (4.34)

with η1 as in (4.9) and Kbdy be given by (4.23).

Proof. Let n ∈ N∗ and Kbdy be given by (4.23). Due to Lemma 4.6, one has for all x ∈ ωbdy,∣∣−3sθ/ sin4 x
∣∣ ≤ 3C5s2

−4T 4θ3,
∣∣∣2s2θθ′ (cosx/ sinx+A1 sign(x))

2
∣∣∣ ≤ 2C6s

2Tθ3,

and

|−(sθ′′/2)(log | sinx|+A1|x|+A2)| ≤ 5× 2−2C7sT
2θ3.

Here, C5 = C5(b′) := 1/ sin4 b, C6 = C6(b′) := (cos b′/ sin b′ +A1 sign(b′))
2

and C7 := A1

(
π
2 + 1

)
. So, if s ≥

s2(T + T 2), with s2 = s2(b′) := max
(√

3C5

2η1
,
√

5C7

η1
, 8C6

η21

)
, then

Kbdy ≥ 2sθ|∂xz|2 + 2sθ|z|2 +
η2

1

2
s3θ3|z|2 +

sθ(2n2 − 1/2)

cos2 x
(1 +A1 sign(x) tanx)|z|2. (4.35)

Observe now that, since 0 ≤ sign(x) sinx ≤ 1 for all x ∈ ωbdy := (−π/2,−b′) ∪ (b′, π/2), we obtain

0 <

∫ T

0

∫
ωbdy

(1 +A1 sign(x) tanx)

cos2 x
|z(t, x)|2dQ ≤

∫ T

0

∫ π
2

−π2

|z(t, x)|2

cos2 x
dQ+A1

∫ T

0

∫ π
2

−π2

|v(t, x)|2

cos2 x
dQ
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< ∞, (4.36)

by Hardy-Poincaré inequalities (2.10) (see, Rems. 2.9 and 3.8). Remember that z(t, ·) ∈ D(Mn) implies z(t, ·) =√
cosxv(t, ·) for some v(t, ·) ∈ D(Ln). So, the above two inequalities lead to∫ T

0

∫
ωbdy

Kbdy dQ ≥
∫ T

0

∫
ωbdy

2sθ|∂xz|2 + 2sθ|z|2 +
η2

1

2
s3θ3|z|2dQ,

completing the proof of the lemma.

The following lemma is a straightforward combination of Lemmas 4.10 and 4.11.

Lemma 4.12. Let n ∈ N and R0 = R0(a′, b′) := max(s1, s2). Then for all

s ≥ R0 max(T + T 2, T 2n), (4.37)

it holds ∫ T

0

∫
ωbdy

Kbdy dQ+

∫ T

0

∫
ωdeg

Kdeg dQ ≥
∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ. (4.38)

We let C8 = C8(a′, b′) := min(η2
1 , η

2
2) > 0 and I\ωcon := (−π/2, π/2)\ωcon = ωbdy ∪ωdeg.

In the subcontrol region ωcon = (−b′,−a′) ∪ (a′, b′), we have the following.

Lemma 4.13. Let n ∈ N∗ and assuming (4.24) and (4.37). Then there exist positive constants C9, C12 > 0
such that the following inequality holds

|Kcon | ≤ C9sθ|∂xz|2 + C12s
3θ3|z|2. (4.39)

Proof. Let n ∈ N∗, then by Lemma 4.6, (4.24) and (4.37) we have

|Kcon | ≤
∣∣∣∣sθβ(4)

2
+ sθβ′

(
2n2 − 1

2

)
sinx

cos3 x
− sθ′′β

2
+ 2s2θβ′2(θ′ − sθ2β′′)

∣∣∣∣ |z|2 + |2sθβ′′||∂xz|2

≤ C9sθ|∂xz|2 + C11s
3θ3|z|2 +

C10T
4

8
n2sθ3|z|2,

where

C9 = C9(β) := 2 max{|β′′(x)| : x ∈ [−b′,−a′] ∪ [a′, b′]},

C10 = C10(β) := max

{∣∣∣β(4)(x)
∣∣∣+

∣∣∣∣ sinx

cos3 x
β′(x)

∣∣∣∣ : x ∈ [−b′,−a′] ∪ [a′, b′]

}
,

and

C11 = C11(β) :=
5R−2

0 ‖β‖∞
4

+ 2−5R−2
0 C10 + (R−1

0 + C9) max{|β′(x)|2 : x ∈ [−b′,−a′] ∪ [a′, b′]}.

Finally, due to (4.37), we complete the proof with C12 = C12(a′, b′, β) := C10 + C11/8R2
0.
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Thanks to (4.13), (4.21), Lemmas 4.12 and 4.13, we immediately obtain the following.

Lemma 4.14. Let n ∈ N∗. Then for all s ≥ R0 max(T + T 2, T 2n), one has

∫ T

0

∫
I\ωcon

(2sθ|∂xz|2 + C8s
3θ3|z|2)dQ

≤
∫ T

0

∫
ωcon

(C9sθ|∂xz|2 + C12s
3θ3|z|2)dQ+

1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (4.40)

In the following lemma, we come back to g.

Lemma 4.15. Let n ∈ N∗ and assume (4.40). Then there exist positive constants C13, C16 and C17 such that
for all s ≥ R0 max(T + T 2, T 2n), it holds

∫
Q

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ

≤
∫ T

0

∫
ωcon

(C16sθ|∂xg|2 + C17s
3θ3|g|2)e−2ϕdQ+

1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ. (4.41)

Proof. By (4.6), one has ∂xz = (∂xg − g∂xϕ)e−ϕ. So, we obtain for all ε > 0,

−2g∂xg∂xϕ ≥ −|∂xg|2/(1 + ε)− (1 + ε)|∂xϕ|2|g|2,

so that

2sθ|∂xg − ∂xϕg|2 + C8s
3θ3|g|2 ≥ 2sθε|∂xg|2/(1 + ε) + s3θ3(C8 − 2ε|β′(x)|2)|g|2.

Letting now ε = ε(β) := 2−2‖β′‖−2
∞ C8, we have for all s ≥ C0 max(T + T 2, T 2n),

∫ T

0

∫
I\ωcon

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ

≤
∫ T

0

∫
ωcon

(C14sθ|∂xg|2 + C15s
3θ3|g|2)e−2ϕdQ+

1

2

∫
Q

∣∣e−ϕPng∣∣2 dQ, (4.42)

where C13 = C13(β) := 2ε/(1 + ε), C14 = C14(β) := 2C9, and C15 = C15(β) := C12 + 2C9 max{|β′(x)|2 : x ∈
[−b′,−a′] ∪ [a′, b′]}. By adding the same quantity

∫ T

0

∫
ωcon

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ

to the both sides of (4.42), we complete the proof of lemma, with C16 = C16(β) := C13 + C14 and C17 =
C17(β) := C8/2 + C15.

Let us prove that terms similar to the second term of the right-hand side of (4.41) dominate the first one.
We achieve this by the use of a smooth cut-off function.
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Lemma 4.16. Let n ∈ N∗ and assume (4.41). Then there exists a positive constant C19 > 0 such that for all
s ≥ R0 max(T + T 2, T 2n), one has∫

Q

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤
∫ T

0

∫
ωa,b

C19s
3θ3|g|2e−2ϕdQ+

∫
Q

∣∣e−ϕPng∣∣2 dQ.

(4.43)

Proof. Recall that ωcon = (−b′,−a′) ∪ (a′, b′) ⊂ ωa,b = (−b,−a) ∪ (a, b) since 0 < a < a′ < b′ < b ≤ π/2.
Choosing a cut-off function ρ ∈ C∞(R) such that 0 ≤ ρ ≤ 1 and

ρ = 1 on ωcon
ρ = 0 on I\ωa,b,

(4.44)

we get ∫
Q

(Png)gρθe−2ϕdQ ≥
∫
Q

[
g∂tg − g∂2

xg −
1

2
|g|2
]
ρθe−2ϕdQ. (4.45)

Or, one has ∫
Q

g∂tgρθe
−2ϕdQ =

∫
Q

1

2
|g|2ρ(2θ∂tϕ+ (T − 2t)θ2)e−2ϕdQ,

and ∫
Q

−g∂2
xgρθe

−2ϕdQ =

∫
Q

ρe−2ϕθ|∂xg|2dQ−
∫
Q

|g|2

2
e−2ϕθ(ρ′′ − 4ρ′∂xϕ+ ρ(4|∂xϕ|2 − 2∂2

xϕ))dQ.

Thus, from (4.45), we obtain for all s ≥ R0 max(T + T 2, T 2n),∫ T

0

∫
ωcon

C16sθ|∂xg|2e−2ϕdQ ≤
∫
Q

C16sθρ|∂xg|2e−2ϕdQ

≤ 1

2

∫
Q

|e−ϕPng|2dQ+

∫ T

0

∫
ωa,b

C18s
3θ3|g|2e−2ϕdQ, (4.46)

where the positive constant,

C18 = C18(β, ρ) :=
C2

16

8R2
0

+ C16

[
4‖β′‖2∞ +

‖ρ′β′‖∞ + ‖β′′‖∞ + 4‖β‖∞
2R0

+
9 + ‖ρ′′‖∞

32R2
0

]
.

So we deduce from (4.41) and (4.46) that, for all s ≥ R0 max(T + T 2, T 2n), one has∫
Q

(C13sθ|∂xg|2 + (C8/2)s3θ3|g|2)e−2ϕdQ ≤
∫ T

0

∫
ωa,b

C19s
3θ3|g|2e−2ϕdQ+

∫
Q

∣∣e−ϕPng∣∣2 dQ,

and this completes the proof of lemma with C19 = C19(β, ρ) := C18 + C17.

We can now complete the proof of Carleman estimate (4.1).
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Proof of Proposition 4.1. It suffices to consider Lemma 4.16, and let

R1 = R1(β, ρ) :=
min(C13, C8/2)

max(1, C19)
.

5. Proof of Theorem 1.6

In this section, we present the proof of Theorem 1.6, along the following lines:

1. The proof of the negative statement, presented in Section 5.1, relies on the use of appropriate test function
(which concentrate at zero when n = l → +∞) to falsify uniform observability inequality (2.36) when
T ≤ log(1/ cos a);

2. The proof of the positive statement, presented in Section 5.2, relies on the uniform observability inequality
(2.36) in large time, by using the global Carleman estimate for system (2.16), proved in the previous section.

5.1. Proof of the negative statement of Theorem 1.6

The goal of this subsection is to prove.

Proposition 5.1. Let a, b ∈ R be such that 0 < a < b ≤ π/2 and T ≤ log (1/ cos a). Then system (2.16) is not
observable in (a, b) in time T uniformly with respect to n ∈ N∗.

Remark 5.2. Note that the not null observability result provided here remains true in (−b,−a) ∪ (a, b) by
symmetry and parity. However, this concerns only the cases n ∈ N∗ (see Rem. 3.5).

Proof. We use a particular function which solves (2.16) and for which the observability inequality (2.36) fails
under the condition T ≤ log (1/ cos a). More precisely, in what follows, we design a sequence of solutions of
(2.16) such that

∫ T

0

∫ b

a

|gn(t, x)|2 cosxdxdt∫ π
2

−π2
|gn(T, x)|2 cosxdx

−→ 0 as n −→ +∞. (5.1)

We recall that the highest weight spherical harmonics of degree n present extreme concentration around the
equator. These are defined by

Wn,n(x, y) =
(−1)n

2nn!

√
(2n+ 1)!

4π
einy cosn x, (5.2)

where n ∈ N∗, (x, y) ∈ [−π/2, π/2]× [0, 2π). Consider the function

wn(x) =
(−1)n

2nn!

√
(2n+ 1)!(cosx)n, n ∈ N∗, x ∈ [−π/2, π/2]. (5.3)

By Wallis’ formula, we have for every n ∈ N∗,
∫ π

2

0
cos2n+1 xdx = 22n(n!)2/(2n + 1)!. So for every n ∈ N∗, we

deduce ∫ π
2

−π2
w2
n(x) cosxdx =

(2n+ 1)!

22n(n!)2

∫ π
2

0

cos2n+1 xdx = 1.
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We check easily now that for every n ∈ N∗, the function

gn(t, x) = e−ntwn(x), t ∈ R, x ∈ [−π/2, π/2], (5.4)

solves the system (2.16) and
∫ π

2

−π2
|gn(T, x)|2 cosxdx = e−2nT . To get (5.1), it suffices to prove that

e2nT

2n

∫ b

a

wn(x)2dx→ 0 as n→ +∞. (5.5)

Since 0 < a < b ≤ π/2, we have

∫ b

a

(cosx/ cos a)2n+1dx ≤ (b− a). Then, we obtain

e2nT

2n

∫ b

a

wn(x)2 cosxdx ≤ e2n(T+ln cos a) (2n+ 1)!

n22n+1(n!)2
(b− a) cos a. (5.6)

By Stirling’s formula, we have n! ∼
√

2πnnne−n as n→ +∞. Thus, we deduce from (5.6) that

e2nT

2n

∫ b

a

wn(x)2 cosxdx ≤ (b− a)
cos a

2
√
π

(2n+ 1)

n3/2
−→ 0 as n −→ +∞,

since we are assuming T ≤ log (1/ cos a). This completes the proof of the proposition.

5.2. Proof of the positive statement of Theorem 1.6

This subsection is devoted to the prove of following proposition using the Carleman estimate (4.1) and
dissipation rate (2.33),

Proposition 5.3. Let a, b ∈ R be such that 0 < a < b ≤ π/2. Then there exists a positive time T ∗ > 0 such
that, for every T ≥ T ∗, system (2.16) is observable in ωa,b = (−b,−a) ∪ (a, b) in time T uniformly with respect
to n ∈ N.

Proof. We obtain the uniform observability inequality (2.36) in large time from observability inequality (3.8)
and Carleman estimate (4.1). Let n ∈ N∗ and g̃n = U gn ∈ C([0, T ];L2(−π/2, π/2)) ∩ C2((0, T ); D(Mn)) be the
solution of system (3.12), where gn is the Fourier component (2.17) and U, the unitary transformation introduced
in Section 3.2. Then by the Carleman estimate (4.1), one has

R1

∫
Q

θ3|g̃n(t, x)|2e−2ϕdQ ≤
∫ T

0

∫
ωa,b

θ3|g̃n(t, x)|2e−2ϕdQ, (5.7)

for all s ≥ R0 max(T + T 2, T 2n), and for some constants R0,R1 > 0 independent of n, T and g̃n. From now on
we set

s := R0 max(T + T 2, T 2n).

For t ∈ (T/3, 2T/3), we have owing to dissipation rate (3.12)

4

T 2
≤ θ(t) ≤ 9

2T 2
and

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ e− 2

3nT

∫ π
2

−π2
|g̃n(t, x)|2dx.
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Integrating over (T/3, 2T/3), we have using (5.7)

T

3

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

T 6

64

6

8s3β3
∗
e−

2
3nT e

9
T2 sβ

∗
∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt, (5.8)

where β∗ := min{β(x) : x ∈ [−π/2, π/2]} and β∗ := max{β(x) : x ∈ [−π/2, π/2]}. Then, the following two cases
may occur

First case: n < 1 + 1/T . Then s = R0(T + T 2), and thus (5.8) yields

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

T 5

64

18

8R3
0(T + T 2)3β3

∗
e

9
T2R0(T+T 2)β∗

∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt;

Second case: n ≥ 1 + 1/T . Then s = R0T
2n, and thus (5.8) yields

∫ π
2

−π2
|g̃n(T, x)|2dx ≤ 1

R1

1

64

18

8R3
0T (1 + 1/T )3β3

∗
e−

2
3nT e9nR0β

∗
∫ T

0

∫
ωa,b

|g̃n(t, x)|2dxdt.

It then suffices to observe that −2nT/3 + 9nR0β
∗ ≤ 0 as soon as T ≥ T ∗ := 27R0β∗/2.

So, in both cases, there exists a positive constant C ′0 > 0, which is independent of n ∈ N∗, such that

∫ π
2

−π2
|gn(T, x)|2 cosxdx ≤ C ′0

∫ T

0

∫
ωa,b

|gn(t, x)|2 cosxdxdt,

provided T ≥ T ∗. Then the above identity and (3.8) assure existence of a positive constant C := max(C0, C
′
0) > 0

independent on n ∈ N such that (2.36) holds true, provided T ≥ T ∗. This completes the proof of the proposition.
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de Sciences Physiques in Dangbo, Benin. The author would like to thank its thesis advisors, Yacine Chitour and Dario
Prandi, for bringing this problem to its attention and for interesting and fruitful discussions. He would like to thank also
the reviewers for the careful reading and for their valuable comments having enhanced the presentation of the paper.

References

[1] A.A. Agrachev, U. Boscain and M. Sigalotti, A gauss-bonnet-like formula on two-dimensional almost-Riemannian manifolds.
Discrete Contin. Dyn. Syst.-A 20 (2007) 801–822.
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2, Perturbations), recherches en mathematiques appliquées, Masson (1988).

[24] P. Martinez and J. Vancostenoble, Carleman estimates for one-dimensional degenerate heat equations. J. Evol. Equ. 6
(2006) 325–362.

[25] M. Morancey, Approximate controllability for a 2D Grushin equation with potential having an internal singularity. Ann.
Inst. Fourier 65 (2015) 1525–1556.

[26] M.A. Naımark, Linear differential operators. vol. II Ungar, New York (1968).

[27] B. Opic and A. Kufner, Hardy-Type Inequalities. Longman Scientific and Technical, Harlow, UK (1990).
[28] A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Applied Math. Sciences 44,

Springer, New York (2012).
[29] E. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton, NJ

(1971).
[30] R.S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983) 48–79.

[31] R.S. Strichartz, Sub-Riemannian geometry. J. Differ. Geom. 24 (1986) 221–263.
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