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Abstract
In this paper, we start from a very natural system of cross-diffusion equations, which can be
seen as a gradient flow for the Wasserstein distance of a certain functional. Unfortunately,
the cross-diffusion system is not well-posed, as a consequence of the fact that the underlying
functional is not lower semi-continuous. We then consider the relaxation of the functional,
and prove existence of a solution in a suitable sense for the gradient flow of (the relaxed
functional). This gradient flow has also a cross-diffusion structure, but the mixture between
two different regimes, that are determined by the relaxation, makes this study non-trivial.

Mathematics Subject Classification 35A01 · 35A15 · 49J45

1 Introduction

The starting point of this paper is the following very natural system of PDEs{
∂tρ = �ρ + ∇ · (ρ∇μ), t > 0, x ∈ �,

∂tμ = �μ + ∇ · (μ∇ρ), t > 0, x ∈ �,
(1.1)
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complementedwith no-fluxboundary conditions in a boundeddomain�. This cross-diffusion
system describes the motion of two populations, each subject to diffusion and trying to avoid
the presence of the other, so that each density acts as a potential in the evolution equation
satisfied by the other.

This model was studied in [4], where it is obtained as a continuum version of a discrete
lattice model proposed in [1], to account for the territorial development of two competing
populations. Similar models appear in mathematical biology to describe the evolution of
interacting species that are under the influence of population pressure due to intra- and inter-
specific interferences (see e.g. [10, 16]). However, in these papers, the models considered
always enjoy some special structure that ensures some “convexity”, which is crucially not
verified by System (1.1), as we will explain later.

The existence of solutions for (1.1) is a very challenging problem. An easy computa-
tion shows that the system is parabolic when ρμ < 1 but has an anti-parabolic behavior
when ρμ > 1. Existence of solutions for short time is proven by the third author and her
collaborators in [4], under the assumption that the initial data satisfy ρ0μ0 < 1.

A noticeable property of system (1.1) is the following: it can be seen as a gradient flow
for a suitable functional in the Wasserstein space.

The usual notion of gradient flows applies to Hilbert spaces but in the last two decades
the interest has grown for gradient flows in metric spaces and in particular in the space of
probability measures endowed with the Wasserstein distance (see [3] and [15]), after the
seminal work by Jordan, Kinderlehrer and Otto [12], who found a gradient flow structure for
the Fokker–Planck equation. Applying the same ideas not to a single PDE but to a system of
PDEs, thus looking for gradient flows in the space of pairs of probability measures, is more
recent (see [7, 13]) and more delicate.

At a formal level, given a functional F defined on probabilities on a given domain �, its
gradient flow corresponds to the evolution PDE

∂tρ = ∇ ·
(
ρ∇

(δF

δρ

))
,

where δF/δρ is the first variation of the functional F (formally defined through the condition
F(ρ + εδρ) = F(ρ)+ ε

∫
δF
δρ

dδρ + o(ε)). This equation is endowed with no-flux boundary
conditions on ∂�. Analogously, given a functional F defined on pairs (ρ, μ) of probabilities
on the domain �, the gradient flow of F in W2(�) × W2(�) would be given by the system⎧⎨

⎩
∂tρ = ∇ ·

(
ρ∇

(
δF
δρ

))
,

∂tμ = ∇ ·
(
μ∇

(
δF
δμ

))
,

with again no-flux on the boundary. Of course, we formally define the two partial first
variations via the condition F(ρ + εδρ, μ + εδμ) = F(ρ, μ) + ε

∫
δF
δρ

dδρ + ε
∫

δF
δμ

dδμ +
o(ε).

Here, it turns out that (1.1) is the gradient flow of the following functional

F0(ρ, μ) =
{∫

�
f0(ρ(x), μ(x)) dx if ρ,μ ∈ L1+(�),

+∞ otherwise,
(1.2)

where the function f0 is given by f0(a, b) = a log a + b log b + ab, and ρ(x), μ(x) stand
for the densities of the two measures, which are supposed to be absolutely continuous and
identified with their L1 densities.
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The main problem in considering the function f0 is that it is not globally convex, as we
have, denoting D2 f0 the Hessian of f0,

D2 f0(a, b) =
( 1

a 1
1 1

b

)
,

and this matrix is only positive-definite if ab < 1. The non-convexity of f0 translates into
the non-parabolic behavior of the system outside the region where ρμ < 1.

Yet, in terms of the functional F0, the situation is even worse. Indeed, integral functionals
with a non-convex integrand are not lower semi-continuous for the weak convergence of
probability measures. This is a non-negligible issue when applying variational methods.
Indeed, one of the main tools to study gradient flows in a metric setting is the so-called
minimizing movementmethod (see [2, 8]). Let us quickly explain this tool in the general case
of a metric space, and we specify it to the case of interest here just after.

For a given functional F , acting on a metric space M endowed with a distance d , the
minimizing movement scheme consists in building an approximation of the gradient flow
(which is a curve x(t) in M) as follows: we fix a time step τ > 0 and look for a sequence xτ

k
such that

xτ
k+1 ∈ argminx F(x) + d(x, xτ

k )2

2τ
.

In the case where the metric space is the space of propability measures on � and the
distance d is the Wasserstein distance, this iterated minimization scheme is known under
the name of Jordan-Kinderlehrer-Otto (JKO) scheme. It produces a sequence of probability
measures which, when appropriately interpolated, would approximate the gradient flow of
F .

Here, we will consider the case of a gradient flow in M = W2(�) × W2(�) (and the
distance d is the natural product of the Wasserstein distance). The minimizing movement
method then consist in solving the following family of minimization problems:

(ρτ
k+1, μ

τ
k+1) ∈ argmin(ρ,μ)F(ρ, μ) + W 2

2 (ρ, ρτ
k ) + W 2

2 (μ,μτ
k )

2τ
. (1.3)

However, if F is not lower semi-continuous for the weak convergence, which is the case
when F = F0 defined above, while the terms in W 2

2 are continuous, the existence of a
minimizer in the above iterated minimization problem is not always guaranteed. From the
variational point of view, it is necessary to replace the functional F0 with its relaxation, or
lower semi-continuous envelope.

We stress that the relation between the gradient flow of a functional and its lower semi-
continuous envelope is not clear in terms of PDEs, but it is clearer at the level of the JKO
scheme. Indeed, if we fix τ > 0 and a tolerance parameter δ > 0, when facing a non-lower
semi-continuous functional F (whose lower semi-continuous envelope is denoted by F̄), we
could define a δ-approximated JKO scheme in the followingway: we denote by argminδ

xG(x)
the set of δ-almost minimizers of G, i.e. the set {x : G(x) < inf G + δ}, which is always
non-empty, and we pick any sequence xτ,δ

k satisfying

xτ,δ
k+1 ∈ argminδ

x F(x) + d(x, xτ,δ
k )2

2τ
.
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29 Page 4 of 41 R. Ducasse et al.

It can be proven, as an application of 	−convergence, that, for fixed τ and letting δ → 0,
any such sequence converges to a sequence satisfying

xτ
k+1 ∈ argminx F̄(x) + d(x, xτ

k )2

2τ
,

i.e. to the output of the JKO scheme for the lower semi-continuous relaxation F̄ .
The present paper is then devoted to the study of the system of PDEs representing the

gradient flow of a functional F obtained as the lower semi-continuous envelope of F0, and in
particular to an existence result. Let us detail the structure of the paper. As a first task, we need
to compute this lower semi-continuous envelope. The general theory about local functionals
on measures (see [9]) provides a clear answer: one just needs to replace the non-convex
function f0 with its convex envelope, that we will denote by f . We therefore compute the
convex envelope f of f0 and find that it has the following form: on a certain region B ⊂ R

2+
we have f = f0, and on the complement A = R

2+ \ B the function f only depends on the
sum of the two variables, i.e. there exists f̃ : R → R such that f (a, b) = f̃ (a + b) for
(a, b) ∈ A.

The fact that f partially agreeswith a function of the sumonly recalls some cross-diffusion
problems already studied in other papers using Wasserstein techniques, such as in [7, 13].
Cross-diffusion with a functional only depending on the sum is not difficult to study, as one
can first find an equation on the sum S = ρ + μ and then use the gradient of the solution
S as a drift advecting both ρ and μ. The difficulty in most of the cross-diffusion problems
involving the sum comes from the lower-order terms which differentiate the two species
(reaction, or advection), since the above strategy cannot be applied and in general it is not
possible to obtain compactness results on the two densities ρ and μ separately, but only on
their sum. However, when the functional involves the integral of a strictly convex function
of the two densities ρ and μ, it is indeed possible to obtain separate compactness: here the
challenge comes from combining the two regimes, one where f is strictly convex and one
where it only depends on the sum, but without extra terms differentiating the two species.

On the other hand, a remark is compulsory when looking at the precise definition of the
function f , since the region B where f = f0 is strictly included in the set {ab < 1}. Indeed,
one could think (and it would have been nice!) that the system we obtain is an extension of
the one with f0 (that is, (1.1)), in the sense that it allows to extend the solutions even after
touching the dangerous curve where ρμ = 1. Unfortunately, this interpretation is not correct
since there are initial data satisfying ρμ < 1 but (ρ, μ) /∈ B, for which the two systems
would have well-defined different solutions, at least for short time.

As a result, this paper will only be concerned with the gradient flow of the new functional
F (the lower semi-continuous envelope of F0, which is, in this case, its convexification as
well), without discussing its relation with the original PDE which motivated the study. For
this new gradient flow we will prove existence of solutions in a suitable sense.

The notion of solution we consider is inspired by the notion of EDI solution introduced in
[2, 3] in terms of the metric slope, but it is slightly different and more PDE-adapted. Given
our functional F , our goal is to find a solution of the following system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρ + ∇ · (ρv) = 0,

∂tμ + ∇ · (μw) = 0,

v = −∇
(

δF
δρ

)
ρ − a.e.,

w = −∇
(

δF
δμ

)
μ − a.e.,

(1.4)
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where the two continuity equations are satisfied in a weak sense with no-flux boundary
conditions on ∂� and the functions δF

δρ
and δF

δμ
are differentiable in a suitable weak sense.

In our particular case this means finding a pair (ρt , μt ) such that the gradients of fa(ρt , μt )

and fb(ρt , μt ) exist in such a sense, and the above equations are satisfied.
Formally, if the two first conditions of (1.4) are satisfied, then the last two conditions are

equivalent, on the interval [0, T ], to the following inequality

F(ρT , μT ) + 1

2

∫ T

0

∫
�

ρ

∣∣∣∣∇ δF

δρ

∣∣∣∣
2

+ 1

2

∫ T

0

∫
�

μ

∣∣∣∣∇ δF

δμ

∣∣∣∣
2

+ 1

2

∫ T

0

∫
�

ρ|v|2

+ 1

2

∫ T

0

∫
�

μ|w|2

≤ F(ρ0, μ0). (1.5)

Indeed, if we formally differentiate the function t �→ F(ρt , μt ) in time, we obtain

d

dt
F(ρt , μt ) =

∫
�

ρ∇ δF

δρ
· v +

∫
�

μ∇ δF

δμ
· w,

hence

F(ρ0, μ0) = F(ρT , μT ) −
∫ T

0

∫
�

ρ∇ δF

δρ
· v −

∫ T

0

∫
�

μ∇ δF

δμ
· w. (1.6)

This means that (1.5) can be re-written as

1

2

∫ T

0

∫
�

ρ

∣∣∣∣∇ δF

δρ
+ v

∣∣∣∣
2

+ 1

2

∫ T

0

∫
�

μ

∣∣∣∣∇ δF

δμ
+ w

∣∣∣∣
2

≤ 0,

and the only way to satisfy this condition is to satisfy the a.e. equality of the last two lines in
(1.4).

This trick to characterize the solutions comes from the Euclidean observation that x ′(t) =
−∇F(x(t)) is equivalent to d

dt F(x(t)) ≤ − 1
2 |x ′(t)|2 − 1

2 |∇F(x(t))|2, and hence to the
Energy Dissipation Inequality (EDI)

F(x(T )) + 1

2

∫ T

0
|x ′(t)|2 + 1

2

∫ T

0
|∇F(x(t))|2 ≤ F(x0).

The fact that gradients and derivatives cannot be defined in metric spaces (a vector structure
is needed) but their norms could be defined (using the so-called metric derivative and metric
slope) instead leads to the definition of a notion of EDI gradient flow in metric spaces. This
is what is done in [3] for general metric spaces (in particular for functionals F which are
geodesically convex) and then particularized to the case of the Wasserstein space.

However, this is not the strategy which is followed in our paper, even though what we do
is strongly inspired by the metric approach of [3]. Our precise procedure is the following:

• We define a class H consisting of pairs (ρ, μ) where ∇ fa(ρ, μ) and ∇ fb(ρ, μ) are
well-defined. We do this by requiring that some functions of the densities (ρ, μ) belong
to the H1 Sobolev space: in particular, we require that η(ρ, μ) is H1 for any smooth
function η supported in the set B where f has a strictly convex behavior, and we also
require

√
ρ + μ to be H1. The second requirement is not sharp, in the sense that other

functions of the sum could be used as well. We chose to use this one for simplicity, since
we guarantee this condition on the solutions which we build via extra arguments.
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29 Page 6 of 41 R. Ducasse et al.

• We define, on the class H, the slope functional SlopeF via

SlopeF(ρ, μ) :=
∫

�

ρ|∇ fa(ρ, μ)|2 + μ|∇ fb(ρ, μ)|2. (1.7)

Note that we do not pretend at all that this slope functional coincides with the metric
slope which could be defined by following the theory in the first part of the book [3].

• We say that a pair of curves (ρ, μ) is an EDI solution if (ρt , μt ) ∈ H for a.e. t and we
have

F(ρT , μT ) + 1

2

∫ T

0
SlopeF(ρ, μ) + 1

2

∫ T

0

∫
�

ρ|v|2 + 1

2

∫ T

0

∫
�

μ|w|2 ≤ F(ρ0, μ0),

(1.8)
for some velocity fields v,w solving the continuity equations ∂tρ +∇ · (ρv) = 0, ∂tμ+
∇ · (μw) = 0.

In order to prove the existence of anEDI solutionwe rely on the JKOscheme (1.3) andbuild
suitable interpolations in time of the sequence of solutions, thus obtaining an approximation
of (1.8). More precisely, we will have

F(ρT , μT ) + 1

2

∫ T

0
SlopeF(ρ̂, μ̂) + 1

2

∫ T

0

∫
�

ρ̃|ṽ|2 + 1

2

∫ T

0

∫
�

μ̃|w̃|2 ≤ F(ρ0, μ0)

for two different interpolations (ρ̂, μ̂) and (ρ̃, μ̃). We then pass to the limit as τ → 0 (τ is
the time step for the discretization in the JKO scheme) where the weak limits of the different
interpolations coincide. We prove that SlopeF is a lower semi-continuous functional for
the weak convergence, which allows us to conclude, combined with more standard semi-
continuity arguments.

Organization of the paper After this introduction, Sect. 2 is devoted to the computation
of the convexification of f0, and to some properties of the function f we obtain, introducing
some relevant quantities. Section 3 is devoted to the precise definition of the slope SlopeF and
to the proof of its lower semi-continuity. Section 4 introduces the notion of EDI solutions and
proves their existence. In the proof, several interpolations of the sequence obtained via the
JKO scheme are needed, including the De Giorgi variational interpolation. Some estimates
on these solutions are required in order to prove that they belong to the class H and to
obtain the desired inequalities. Sects. 5 and 6 are not required to obtain the existence of EDI
solutions, but are required if one wants to come back to System (1.4). Indeed, we stated that
the notions are formally equivalent thanks to an easy computation for the derivative in time
of F(ρt , μt ). However, this computation is only formal if we do not face smooth solutions.
This explains the choice of the notion of EDI solutions: it is a definition which coincides with
solving the equation in a classical sense if functions are smooth, but the equivalence is in
general not granted. In Sect. 5, we then explain an approximation procedure (by convolution)
to obtain the differentiation property (i.e. the validity of (1.6)) for non-smooth solutions of
the continuity equation. Yet, the nonlinearity of the terms involved in fa and fb requires a
certain bound on the H1 norm of some functions of the regularized functions. This raises a
very natural question: suppose that a function u is such that its positive part u+ belongs to
H1, and let uε be its convolution with a certain mollifier ηε: when is it true that the sequence
(uε)+ is bounded in H1 (with, possibly, uniform bounds in terms of the kernel)? This is not
trivial and the answer could depend on the choice of the kernel. We provide in Sect. 6 a proof
of this fact in dimension 1 for a specific choice of the kernel shape. Note that the very same
result is false (even after changing the shape of the kernel) in higher dimensions (we thank
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Alexey Kroshnin for a refined counter-example in this direction). Nevertheless, this does not
prevent the approximation or the differentiation to be true.

2 Convexification

In this section, we characterize the function f which is the convex envelope of the function
f0, and f0 is defined by f0(a, b) = a log a + b log b + ab on R2+. The functional F defined
through

F(ρ, μ) =
{∫

�
f (ρ(x), μ(x)) dx if ρ,μ ∈ L1+(�),

+∞ otherwise,
(2.9)

will be the lower semi-continuous envelope of F0 (which is itself defined in a similar way
replacing f with f0) for the weak convergence of probability measures, thanks to standard
relaxation results (see, for instance, [9]).

As we underlined in the introduction, f0 is not convex since D2 f0(a, b) is not positive
semi-definite unless ab ≤ 1.

First, we look at the shape of f0 on diagonal lines where a + b is constant. We denote
s := a+ b and for a fixed s, we define a function g(a) := f0(a, s −a) which gives the value
of f0 over a segment for s fixed. Then we have

g′(a) = log(a) − log(s − a) + s − 2a,

g′′(a) = 1

a
+ 1

s − a
− 2.

We need to distinguish the cases where s ≤ 2 and where s > 2. In the first case, g is convex,
since 1

a + 1
s−a ≥ 4

s ≥ 2. In the second case, we can easily see that g has a double-well shape,
with three critical points on (0, s) (see Fig. 2) and the critical points are characterized by
(using b = s − a):

log(a) + b = log(b) + a,

a + b = s.

For s ≤ 2 only a = b = s/2 is a critical point, otherwise the same point is a local maximizer
and there are two global minimizers.

Due to the double-well shape of g and to the fact that g′′ vanishes only twice, the two
minimizers of g satisfy g′′ > 0 (and not only g′′ ≥ 0). Indeed, if this were not the case, then
on the interval between the two minimizers, g would be strictly concave and would have
vanishing derivative at the endpoints, which is impossible.

It will turn out that the convexification of f0 on the line a + b = s will coincide with the
1-dimensional convexification of g.

In order to construct such a function f , we first define two auxiliary functions α, β and
two sets A, B: indeed, there exist two functions α �= β ∈ C0([2,+∞)) characterized by

• α(2) = β(2) = 1,
• for every s > 2 we have α(s) < s/2 < β(s),
• for every s > 2 we have

log(α(s)) + β(s) = log(β(s)) + α(s),

α(s) + β(s) = s. (2.10)

123



29 Page 8 of 41 R. Ducasse et al.

Fig. 1 Partition of R2+

Fig. 2 Functions g and f̃

In Fig. 1,R2+ is divided into two subsets A and B which are shown in pink and yellow colors
respectively. The closed, convex set A corresponds to the set above the curve {(α(s), β(s)) :
s ≥ 2} ∪ {(β(s), α(s)) : s ≥ 2} and B = R

2+ \ A. In Fig. 2, g, which is the 1-dimensional
section of f0 and its convex envelope f̃ are drawn in orange and green colors respectively.

This means that for every s > 2, the points α(s) and β(s) are the two minimizers of g and
these conditions are enough to determine α, β in a unique way. They can also be obtained
using an Implicit Function Theorem, which also shows the smoothness of α, β. On the other
hand, we lose the smoothness at s = 2 where the IFT cannot be applied, but we have anyway
continuity due to the uniqueness of the minimizer.

We then define two sets A and B as those sets that partition R2+, with A being the closed,
convex set above the curve {(α(s), β(s)) : s ≥ 2}∪ {(β(s), α(s)) : s ≥ 2}, and B = R

2+ \ A
the open set below. The two sets A and B are represented in Fig. 1.

Then, the main goal of this section is to prove the following proposition:

Proposition 2.1 Define

f (a, b) =
{
f̃ (a + b) (a, b) ∈ A,

f0(a, b), (a, b) ∈ B,
(2.11)

where f0(a, b) := a log a+b log b+ab and f̃ (s) = f0(α(s), β(s)).Then, f̃ ∈ C1([2,+∞))

and the function f is the convex envelope of f0.
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We give the proof of this proposition at the end of this section. Next, we give some
technical results that will prove useful in the sequel. We define the “product” function P as
the following:

P(a, b) =
{

π(a + b) if (a, b) ∈ A,

ab if (a, b) ∈ B,
(2.12)

whereπ(s) := α(s)β(s) ∈ C0([2,+∞)).We gather some properties ofπ(s) in the following
lemma:

Lemma 2.2 The function π ∈ C0([2,+∞)), satisfies the following properties:

i. s − 2π(s) > 0 for s > 2.
ii. π ∈ C1((2,+∞)) and π ′(s) = −π(s) (s−2)

s−2π(s) .
iii. π(s) < 1 for s > 2.
iv. π is also differentiable at s = 2 and π ′(2) = −1/2.

Proof Recall that α(s) and β(s) are the minimizers of g, and that they satisfy g′′ > 0. Since
we have g′′(a) = 1

a + 1
s−a − 2 = s

a(s−a)
− 2, taking a = α(s) and s − a = β(s) we obtain

s
π(s) > 2, which proves i

Now we would like to compute π ′(s) for s > 2 (note that α and β are differentiable
because of the implicit function theorem): we have

π ′(s) = α′(s)(s − α(s)) + α(s)(1 − α′(s)) = α′(s)(s − 2α(s)) + α(s). (2.13)

Let us now compute α′(s) and β ′(s). We know from (2.10) that at the minima of f we have

α′(s)
α(s)

+ (1 − α′(s)) = 1 − α′(s)
s − α(s)

+ α′(s),

which gives

α′(s) = α(s)(1 − s + α(s))

s − 2π(s)
and β ′(s) = β(s)(1 − s + β(s))

s − 2π(s)
.

Plugging these in (2.13) we obtain

π ′(s) = α(s)(1 − s + α(s))

s − 2π(s)
(s − 2α(s)) + α(s) = α(s)(1 − β(s))

s − 2π(s)
(β(s) − α(s)) + α(s)

= α(s)

(
1 + (1 − β(s))(β(s) − α(s))

s − 2π(s)

)
= −π(s)

(s − 2)

s − 2π(s)
,

which proves ii
Since π ′(s) ≤ 0 for s > 2 (we use here s−2π(s) > 0), and π ∈ C0([2,+∞)), we obtain

that π has its maximum value at s = 2, then π(s) < π(2) = 1 for s > 2. This gives iii
Now, we want to prove that π is differentiable at s = 2 and compute its derivative. We

will consider the liminf and the limsup of the incremental ratio and bound it iteratively. We
recall that we have 0 ≤ π(s) ≤ 1, −1 < π ′(s) ≤ 0, π ∈ C0([2,+∞)), and

π ′(s) = −π(s)
1

1 − 2π(s)−1
s−2

.

We first note that we have

−1 <
π(s) − 1

s − 2
≤ 0.
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We then deduce

−1 ≤ lim inf
s→2+

π(s) − 1

s − 2
≤ lim sup

s→2+

π(s) − 1

s − 2
≤ 0.

We define two sequences (pn)n∈N and (qn)n∈N which are meant to satisfy

pn ≤ lim inf
s→2+

π(s) − 1

s − 2
≤ lim sup

s→2+

π(s) − 1

s − 2
≤ qn . (2.14)

We take p0 = −1 and q0 = 0. Supposing that we have defined pn and qn , we then note that
for any ε > 0, we have, for s in a neighborhood of 2+, that

pn − ε <
π(s) − 1

s − 2
< qn + ε.

This implies that we have, in the same neighborhood

π ′(s) <
−π(s)

1 − 2(pn − ε)
.

Since π(s) → 1 as s → 2, we can define qn+1 via

qn+1 := −1

1 − 2pn
,

and, analogously,

pn+1 := −1

1 − 2qn
.

In particular, we have p1 = −1 and q1 = −1/3. We can see that the new values pn+1 and
qn+1 also satisfy (2.14). From the definition of pn and qn we obtain

pn+2 = −1

1 − 2qn+1
= −1 − 2pn

3 − 2pn
, and qn+2 = −1 − 2qn

3 − 2qn
.

By induction, we can see that the sequence p2n is increasing and bounded above by −1/2.
If we denote its limit by L , we have L = − 1−2L

2−2L , which implies L = −1/2. The same holds
for p2n+1 = p2n .

Similarly, q2n and q2n+1 are decreasing and bounded from below by −1/2 and they
converge to −1/2 as well.

This gives lim infs→2+ π(s)−2
s−2 = −1/2 and iv is proven. ��

Lemma 2.3 The function f̃ : [2,+∞) → R (defined in Proposition 2.1) is convex and C1.

Proof We recall that we have

f̃ (s) := f0(α(s), β(s)) = α(s) log(α(s)) + β(s) log(β(s)) + α(s)β(s).

Then we compute

f̃ ′(s) = (log(α(s)) + 1 + β(s)) (α′(s) + β ′(s)) = log(α(s)) + 1 + β(s).

This allows to see f̃ ∈ C1 since the expression for f̃ ′ is made of continuous functions (as
we do have α, β ∈ C0([2,∞))). Moreover, we can go on differentiating and get

f̃ ′′(s) = α′(s)
α(s)

+ β ′(s) = α′(s) + β ′(s)
β(s)

= α(s)(1 − s + α(s))

s − 2π(s)
+ (1 − s + β(s))

s − 2π(s)
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= α(s) − sα(s) + α2(s) + 1 − α(s)

s − 2π(s)
= 1 + α(s)(α(s) − s)

s − 2π(s)
= 1 − π(s)

s − 2π(s)
.

Since we have π(s) ≤ 1 and s − 2π(s) ≥ 0, the second derivative of f̃ is non-negative, and
f̃ is convex. ��
Remark 1 For future use, we denote by r0 the number given by

r0 := inf
s>2

s f̃ ′′(s) = inf
s>2

s
1 − π(s)

s − 2π(s)
,

and we note that we have r0 > 0 since the function in the infimum is strictly positive, tends
to 1 as s → ∞, and tends to 2/(2 − 1/π ′(2)) = 1/2 > 0 as s → 2+.
Corollary 2.4 The function f : R2+ → R is convex.

Proof We notice that f0 is C1 in the interior of B and that f̃ is C1 on [2,+∞). Moreover
we have the following formula for the gradient of f , using s = a + b:

∇ f (a, b) =
{

( f̃ ′(s), f̃ ′(s)) = (log(α(s)) + 1 + β(s), log(β(s)) + 1 + α(s)) if (a, b) ∈ A,

∇ f0(a, b) = (log a + b + 1, log b + a + 1), if (a, b) ∈ B.

Since these two expressions agree on B ∩ A, then f is globally C1 in (0,+∞)2. This allows
us to prove that f is convex by considering separately its restrictions to A and B.

Indeed, convexity forC1 functions is equivalent to the inequality (∇ f (x)−∇ f (y)) · (x−
y) ≥ 0 for every x, y. If the segment connecting x and y is completely contained either in A
or in B then the convexity of the two restrictions is enough to obtain the desired inequality.
If not, we can decompose it into a finite number of segments (three at most) of the form
[xi , xi+1] with x0 = x and x3 = y and each [xi , xi+1] fully contained either in A or in B.
We then write

(∇ f (x) − ∇ f (y)) · (x − y) =
3∑

i=1

(∇ f (xi ) − ∇ f (xi+1)) · (x − y),

and the fact that x − y is a positive scalar multiple of each vector xi − xi+1 shows that the
convexity of each restriction is again enough for the desired result (note that we strongly use
here f ∈ C1, i.e. that the gradients of the two restrictions agree).

The convexity of f restricted to B comes from the positivity of the Hessian of f0 and that
of f restricted to A from the convexity of f̃ , and the result is proven. ��

Now, with the help of the above results, we prove Proposition 2.1.

Proof of Proposition 2.1 The function f has been built so that on each segment {(a, b) :
a + b = s} it coincides with the convexification of the restriction of f0 on such a segment.
So, the convexification of f0 cannot be larger than f . On the other hand, f is a convex
function smaller than f0, so it is also smaller than the convexification, which proves the
claim.

We conclude this sectionwith a remarkwhichwill be useful in the sequel (see Lemma 4.10
in Sect. 4).

Remark 2 If χ is a function which is compactly supported in the set B, then there exists a
Lipschitz continuous function g : R2 → R such that we have

χ(a, b) = g( fa(a, b), fb(a, b)).

This holds because the Jacobian of ( fa, fb) is invertible inside B.
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3 Lower semi-continuity of the slope

The goal of this section is to give a precise definition of the slope functional SlopeF(ρ, μ)

(introduced in (1.7)) and prove that it is lower semi-continuous with respect to the weak
topology on measures.

Notice that the formula (1.7) for SlopeF(ρ, μ) makes use of the gradients of ρ and μ, but
this expression is not well-defined for any arbitrary couple of measures (ρ, μ). This leads us
to consider the following space:

Definition 3.1 We define the classH as the set of all pairs of densities ρ,μ ∈ L1(�)∩P(�)

such that

i. For every η ∈ W 1,∞
c (B), we have η(ρ, μ) ∈ H1(�);

ii. We also have
√

ρ + μ ∈ H1(�).

The sets A, B above are those defined in Sect. 2 (and we keep this notation in the whole
presentation), and by W 1,∞

c (B), we denote the set of Lipschitz functions whose support is
compact inside B (it can touch the axes R × {0} and {0} × R, but not the separating curve
between A and B).

For (ρ, μ) ∈ H, we do not have necessarily ρ,μ ∈ H1(�). However, we can define for
couples (ρ, μ) ∈ H a suitable notion of “gradient” for certain functions of (ρ, μ). The notion
of gradient we want to define should satisfy at least some chain-rule in order to be useful in
the sequel, that is, we would like to have, for any (ρ, μ) ∈ H, that

∇(χ(ρ, μ)) = ∂aχ(ρ, μ)∇ρ + ∂bχ(ρ, μ)∇μ.

In particular, we need this to be true for some simple functions χ , such as affine functions
composed with suitable positive parts so that we have supp(χ) ⊂ B.

Hence, let us define, for (α, β, c) ∈ R
3+, the following function:

Tα,β,c(a, b) = max{c − αa − βb, 0}, (3.15)

which we will refer to as “triangle” sometimes. Owing to the convexity of the set A, for
every (a, b) ∈ B we can find (α, β, c) ∈ R

3+ such that Tα,β,c(a, b) > 0 and Tα,β,c is
compactly supported in B. Whenever supp Tα,β,c ⊂ B, then Tα,β,c(ρ, μ) ∈ H1(�) for every
(ρ, μ) ∈ H.

Definition 3.2 Let us fix a countable dense set E of parameters (α, β, c): for simplicity we
choose E = Q

3+. Given (ρ, μ) ∈ H, for each (α, β, c) ∈ E fix a representative of the weak
gradient of Tα,β,c(ρ, μ). Take x ∈ � such that (ρ(x), μ(x)) ∈ B and (α, β, c) ∈ E and
ε > 0, ε ∈ Q such that the supports of Tα,β,c, Tα−ε,β,c, Tα,β−ε,c are contained in B and
(ρ(x), μ(x)) ∈ supp Tα,β,c. Then we define the gradients of ρ(x) and μ(x) as the following:

(∇ρ(x),∇μ(x)) :=
(
∇

(1
ε
(Tα−ε,β,c(ρ, μ) − Tα,β,c(ρ, μ))

)
(x),

∇
(1

ε
(Tα,β−ε,c(ρ, μ) − Tα,β,c(ρ, μ))

)
(x)

)
.

Let us observe that the above definition of the gradients does not depend on the choices
of α, β, c, and ε, except possibly on a negligible set of points x . Indeed, for a.e. x such that
(ρ(x), μ(x)) ∈ supp Tα,β,c ∩ Tα̃,β̃,c̃, then the functions (Tα−ε,β,c(ρ, μ) − Tα,β,c(ρ, μ))/ε

and (Tα̃−ε,β̃,c̃(ρ, μ)−Tα̃,β̃,c̃(ρ, μ))/ε are in H1 and coincide, hence their gradients coincide
almost everywhere at these points, see [6].
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Let us also mention that, with such definition of the gradients, we have the following
chain-rule: for any χ ∈ W 1,∞

c (B), and for any (ρ, μ) ∈ H we have

χ(ρ, η) ∈ H1(�) and ∇(χ(ρ, μ)) = χa(ρ, μ)∇ρ + χb(ρ, μ)∇μ. (3.16)

To prove this fact, let us start with considering the case where χ is compactly supported
in supp Tα,β,c, for some α, β, c ∈ Q. Then, for ε small enough, we have, for x such that
(ρ(x), μ(x)) ∈ suppχ ,

χ(ρ, μ) = χ
(1

ε
(Tα−ε,β,c(ρ, μ) − Tα,β,c(ρ, μ)),

1

ε
(Tα,β−ε,c(ρ, μ) − Tα,β,c(ρ, μ))

)
.

As both the functions are in H1, their gradients coincide on the set where (ρ, μ) ∈ suppχ ,
and on this set, applying the chain rule on the right-hand side yields the desired equality.
Outside of this set, the chain rule is direct and everything is zero. We then conclude by
observing that any compact subset of B is contained in a finite union of supports of sets of
the form supp Tα,β,c for α, β, c ∈ Q, and then we use a partition of the unity to generalize
the result to general χ ∈ W 1,∞

c (B).
We note that, if ρ,μ ∈ H1(�), then the gradient defined above coincide with the usual

gradient.
To conclude these remarks on the gradients of (ρ, μ), we observe that our definition of

the spaceH does not allow us to define the gradients of ρ,μ properly when (ρ, μ) lies in the
set A. However, in this set, and this will be sufficient for our needs, the gradient of the sum
ρ + μ is well defined, i.e, it is measurable. Indeed, we know that

√
ρ + μ is in H1, hence,

we set ∇(ρ + μ) := 2(
√

ρ + μ)∇√
ρ + μ.

It follows from the above discussion that, for any Lipschitz function h = h(a, b) that
depends only on a + b, if (a, b) ∈ A, then ∇(h(a, b)) is well defined.

We now define the slope functional on the space H.

Definition 3.3 Let (ρ, μ) ∈ H. Then, we define the slope functional SlopeF as

SlopeF(ρ, μ) :=
∫

(ρ,μ)∈B

∣∣∣∣∇ρ

ρ
+ μ

∣∣∣∣
2

ρ +
∣∣∣∣∇μ

μ
+ ρ

∣∣∣∣
2

μ +
∫

(ρ,μ)∈A
( f̃ ′′)2(S)|∇S|2S,

where S := ρ + μ.

Note that the above formula for the slope has been obtained by expanding the expression

SlopeF(ρ, μ) :=
∫

|∇ fa(ρ, μ)|2ρ +
∫

|∇ fb(ρ, μ)|2μ.

We are now in a position to state the main result that we prove in this section.

Theorem 3.4 Let (ρn, μn) ∈ H be such that

(ρn, μn) −→
n→+∞ (ρ, μ) ∈ H,

where the above convergence is weak in the sense of measures. Then we have

SlopeF(ρ, μ) ≤ lim inf
n→+∞ SlopeF(ρn, μn).
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3.1 Preliminary results

In this section, we provide some preliminary results that will be used in the proof of Theo-
rem 3.4. We start with proving the following proposition:

Proposition 3.5 Assume that (ρn, μn) ∈ H converges weakly, as n → +∞, to (ρ, μ) ∈
P(�), and that SlopeF(ρn, μn) is bounded independently of n. Then, for any Lipschitz
continuous function χ(a, b) which is constant everywhere on A, we have

χ(ρn, μn) −→
n→+∞ χ(ρ, μ) strongly in L2.

The proof of Proposition 3.5 relies on two lemmas.

Lemma 3.6 Assume that (ρn, μn) and χ satisfy the hypotheses of Proposition 3.5. Assume
in addition that χ is constant outside a compact set contained in B. Then, the sequence
(χ(ρn, μn))n∈N is bounded in H1(�). In particular, it has a subsequence that converges
strongly in L2 and weakly in H1.

Proof We start by defining, for all points x such that (ρn(x), μn(x)) ∈ B, the following
vector fields:

Xn := ∇ρn

ρn
+ ∇μn, Yn := ∇μn

μn
+ ∇ρn . (3.17)

Note that Xn is only defined on {ρn > 0}, i.e. ρn−a.e., and Yn on {μn > 0}, i.e. μn−a.e.
Therefore, by the definition of SlopeF , for any function η compactly supported in B, we
have that ∫

�

(ρn |Xn |2 + μn |Yn |2)η(ρn, μn)

is bounded independently of n.
Again, for points x such that (ρn(x), μn(x)) ∈ B, we can write

∇ρn = ρn Xn − ρnμnYn
1 − ρnμn

, ∇μn = μnYn − ρnμn Xn

1 − ρnμn
.

Hence, remembering that ρnμn < 1 for (ρn, μn) ∈ B, we obtain

η(ρn, μn)|∇ρn |2 ≤ 2η(ρn, μn)
ρ2
n |Xn |2 + (ρnμn)

2|Yn |2
(1 − ρnμn)2

≤ 2η(ρn, μn)ρn
ρn |Xn |2 + μn |Yn |2

(1 − ρnμn)2
,

and

η(ρn, μn)|∇μn |2 ≤ 2η(ρn, μn)μn
ρn |Xn |2 + μn |Yn |2

(1 − ρnμn)2
.

Since (ρn, μn) ∈ H, we have that χ(ρn, μn) ∈ H1(�) (where χ is given as in the
statement of Proposition 3.5). Up to subtracting a constant, we can assume thatχ is compactly
supported in B. Now, let us prove that the H1 norm of χ(ρn, μn) is bounded independently
of n. ∫

�

|∇χ(ρn, μn)|2 ≤ 2
∫

�

|χa(ρn, μn)|2|∇ρn |2 + |χb(ρn, μn)|2|∇μn |2

≤ 4
∫

�

|χa(ρn, μn)|2ρn
(1 − ρnμn)2

(ρn |Xn |2 + μn |Yn |2)
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+ χb(ρn, μn)|2μn

(1 − ρnμn)2
(μn |Yn |2 + ρn |Xn |2).

The first line above is obtained by using the chain rule given by (3.16) for the composition
of Lipschitz functions and functions in H.

The quantities |χa(ρn, μn)|2ρn/(1 − ρnμn)
2 and |χb(ρn, μn)|2μn/(1 − ρnμn)

2 are
bounded because the support of χ is far from the set A, so that the product ρnμn is bounded
above by a constant strictly less than 1 on the set of points x such that (ρn(x), μn(x)) ∈
supp(χ). Hence the result follows. ��

Let us now improve the above lemma by showing that, for χ as above, the H1 weak and
L2 strong limit of χ(ρn, μn) is χ(ρ, μ), i.e. we can pass to the limit inside the function χ .
To do so, we start with considering the specific case were χ is of the form Tα,β,c, defined in
(3.15).

Lemma 3.7 Let (α, β, c) ∈ R
3+ be such that supp Tα,β,c ⊂ B. Then

Tα,β,c(ρn, μn) −→
n→+∞ Tα,β,c(ρ, μ),

and the convergence is strong in L2 and weak in H1.

Proof We assume that (α, β, c) are chosen as in the statement of the lemma, and we omit
writing them as subscripts of Tα,β,c in the proof.

By Lemma 3.6, there exists u ∈ H1, u ≥ 0, such that

T (ρn, μn) → u,

strongly in L2 and weakly in H1. Using

c − αρn − βμn ≤ T (ρn, μn),

and the weak converge of c − αρn − βμn to c − αρ − βμ, we find that c − αρ − βμ ≤ u.
Taking the maximum with 0, we get

T (ρ, μ) ≤ u. (3.18)

This already proves the equality T (ρ, μ) = u on {u = 0}.
Now, let δ > 0 be fixed and define the set ω := {u > δ} ⊂ �. Let ε > 0 be fixed as well.

Using Egoroff’s theorem, we can find E ⊂ ω such that |E | < ε and such that T (ρn, μn)

converges uniformly to u on ω\E . Taking n large enough, we have

T (ρn, μn)1ω\E = (c − αρn − βμn)1ω\E .

The term on the left-hand side converges to u1ω\E strongly in L2 and the term on the right-
hand side converges to (c − αρ − βμ)1ω\E weakly. Then,

u = c − αρ − βμ ≤ T (ρ, μ) on ω\E,

and this is actually an equality due to (3.18). Since the measure of E can be taken arbitrarily
small, and up to taking δ → 0, we obtain that u = T (ρ, μ) a.e. ��

We can now turn to the proof of Proposition 3.5.
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Proof of Proposition 3.5 If the function χ is of the form Tα,β,c, then Lemma 3.7 tells us that
the proposition is true. The strategy of the proof is to prove first that the proposition holds
true for any function χ whose support is contained in a triangle, itself contained in B, then
we show that it holds true for any function χ whose support does not touch A (but may not
be contained in a single triangle), and finally we consider the general case.

Step 1. The case where the support of χ is in a triangle. Assume that the support of χ is
compactly supported in the support of the triangle function Tα+ε,β+ε,c−ε and that (α, β, c)
and ε > 0 are chosen so that such a support is contained in B. We now define T1 := Tα+ε,β,c

and T2 := Tα,β+ε,c.Wewant to prove thatχ(ρ, μ) can be expressed as a Lipschitz function of
(T1(ρ, μ), T2(ρ, μ)). To do so, we observe that there exists an affine function L : R2 → R

2

such that (a, b) = L(c − (α + ε)a − βb, c − αa − (β + ε)b). We then define a function
g : L−1(R2+) ∩ (R2+) → R via the formula

g(t1, t2) :=
{
0 if t1t2 = 0,

χ(L(t1, t2)) if t1t2 > 0.

It is clear that χ(ρ, μ) equals to g(T1(ρ, μ), T2(ρ, μ)) since if either T1(ρ, μ) or T2(ρ, μ)

vanishes, then we have χ(ρ, μ) = 0, while in the other case we can express ρ and μ via the
affine function L , and of course we only need to apply g to values which are in R

2+ (since
T1, T2 ≥ 0) and in L−1(R2+) (since ρ,μ ≥ 0). We only need to prove that g is Lipschitz
continuous, which is not evident from its definition. To do so, we will prove that we have
g(t1, t2) = 0 if t1 < ε or t2 < ε.

Indeed, setting (a, b) = L(t1, t2), the condition g(t1, t2) > 0 implies that t1, t2 > 0 and
(α + ε)a + (β + ε)b + ε < c, i.e. εb + ε < t1, hence t1 > ε since b > 0. Analogously, we
also have εa + ε < t2, hence t2 > ε. This shows that we could define

g(t1, t2) :=
{
0 if t1 < ε or t2 < ε,

χ(L(t1, t2)) if t1t2 > 0,

and both expressions are Lipschitz continuous and they agree on the open set which is the
intersection of the two domains of definition.

Once we know that χ(ρ, μ) can be written as g(T1(ρ, μ), T2(ρ, μ)), the claim follows.
Step 2. The case where the support of χ does not touch A. Assume that the support of

χ is compactly supported in B. We use the fact, which is based on the convexity of A, that
the domain B is a union of triangles of the form supp T , even if functions supported in B are
not necessarily supported in one of such of triangles only. Hence, we can find a finite family
((αk, βk, ck))k such that

suppχ ⊂
⋃
k

supp Tαk ,βk ,ck .

Let (χk) be a family of functions compactly supported in supp Tαk ,βk ,ck , such thatχ = ∑
k χk .

Then, we can apply the first step to conclude.
Step 3. The general case. Up to subtracting a constant, we assume that χ = 0 on A. Let

us start with assuming that χ is non-negative. We proceed by approximation. Let ε > 0 be
fixed, and define

χε(a, b) := [χ(a, b) − ε]+.

By Step 2 above, we have that

χε(ρn, μn) → χε(ρ, μ),
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and this convergence (up to a subsequence) holds strongly in L2 and weakly in H1. Then,

|χ(ρn, μn) − χ(ρ, μ)| ≤ |χ(ρn, μn) − χε(ρn, μn)| + |χε(ρn, μn)

− χε(ρ, μ)| + |χε(ρ, μ) − χ(ρ, μ)|
≤ 2ε + |χε(ρn, μn) − χε(ρ, μ)|.

Taking the limit as n → +∞ yields the result.
To treat the case where χ changes its sign, we can apply the argument on the positive and

negative parts of χ separately. ��
We conclude these preliminary results with the following lemma:

Lemma 3.8 Let (ρn, μn) ∈ H converges weakly, as n → +∞, to (ρ, μ) ∈ H and be such
that SlopeF(ρn, μn) is bounded independently of n. Then, for any χ compactly supported
in B, we have

χ(ρn, μn)∇ρn⇀χ(ρ,μ)∇ρ and χ(ρn, μn)∇μn⇀χ(ρ,μ)∇μ,

where the convergence is weak in L2.

Proof As usual, by possibly decomposing χ into a finite sum we can assume that the support
ofχ is included in a triangle.Wechoose twodifferent triangle functions T1 := Tα+ε,β,c, T2 :=
Tα,β,c such that their supports include that of χ . We use the weak H1 convergence of
T2(ρn, μn) to T2(ρ, μ) to deduce

1supp T2(ρn, μn)(α∇ρn + β∇μn)⇀1supp T2(ρ, μ)(α∇ρ + β∇μ).

This implies

χ(ρn, μn)(α∇ρn + β∇μn)⇀χ(ρ,μ)(α∇ρ + β∇μ)

since we just need to multiply the above weak converging sequence with χ(ρn, μn), which
is dominated and pointwisely converging a.e. to χ(ρ, μ). If we do the same for T1 we also
obtain

χ(ρn, μn)((α + ε)∇ρn + β∇μn)⇀χ(ρ,μ)((α + ε)∇ρ + β∇μ).

Subtracting the two relations and dividing by ε, we obtain

χ(ρn, μn)∇ρn⇀χ(ρ,μ)∇ρ.

We can now also deduce that χ(ρn, μn)∇μn⇀χ(ρ,μ)∇μ and the claim is proven. ��
We make use of these preliminary results to prove Theorem 3.4.

3.2 Lower semi-continuity in the region B

The goal of this section is to prove the following:

Proposition 3.9 Let (ρn, μn) ∈ H be such that (ρn, μn) converges weakly, as n → +∞,
to (ρ, μ) ∈ H and such that SlopeF(ρn, μn) is bounded independently of n. Let χ be a
Lipschitz function compactly supported in B. Then∫

�

(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ)
χ(ρ, μ)

≤ lim inf
n→+∞

∫
�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn
)
χ(ρn, μn).
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Proof By the definitions of f and χ , we have∫
�

(|∇( fa(ρn, μn))|2ρn + |∇( fb(ρn, μn))|2μn)χ(ρn, μn)

=
∫

�

( ∣∣∣∣∇ρn

ρn
+ ∇μn

∣∣∣∣
2

ρn +
∣∣∣∣∇μn

μn
+ ∇ρn

∣∣∣∣
2

μn

)
χ(ρn, μn)

=
∫

�

( |∇ρn + ρn∇μn |2
ρn

+ |∇μn + μn∇ρn |2
μn

)
χ(ρn, μn)

=
∫

�

( |(∇ρn + ρn∇μn)χ(ρn, μn)|2
ρnχ(ρn, μn)

+ |∇(μn + μn∇ρn)χ(ρn, μn)|2
μnχ(ρn, μn)

)
.

The latter expression is convex in the terms (∇ρn + ρn∇μn)χ(ρn, μn), ρnχ(ρn, μn)

(and same for the terms involving μn). Then the standard lower semi-continuity results (see
Chapter 4 in [11]) will prove the claim. We only have to note that Proposition 3.5 provides

ρnχ(ρn, μn) −→
n→+∞ ρχ(ρ, μ),

where the convergence is strong in L2 (and the same also holds true for μn) and Lemma 3.8
in turn provides

(∇ρn + ρn∇μn)χ(ρn, μn) −→
n→+∞ (∇ρ + ρ∇μ)χ(ρ, μ),

where the convergence is weak in L2. We used here many times that the functions (a, b) �→
aχ(a, b), bχ(a, b) are compactly supported in B and Lipschitz continuous. This concludes
the proof. ��

3.3 Lower semi-continuity in the region A

The goal of this section is to prove the following:

Proposition 3.10 Let (ρn, μn) ∈ H such that (ρn, μn) converges weakly, as n → +∞, to
(ρ, μ) ∈ H and such thatSlopeF(ρn, μn) is bounded independently of n. Letχ be a Lipschitz
function compactly supported in B such that 0 ≤ χ ≤ 1. Then∫

(ρ,μ)∈A

(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ)
≤ lim inf

n→+∞

∫
�

(|∇( fa(ρn, μn)|2ρn + |∇( fb(ρn, μn)|2μn
)
(1 − χ(ρn, μn)).

Let us define the function S := ρ+μ and consider the function P(ρ, μ) defined in (2.12).
We recall that (see Lemma 2.2), for s > 2, we have

f̃ ′′(s) = 1 − π(s)

s − 2π(s)
.

Remember that, if (ρ, μ) ∈ H, then the gradients of
√
S and P(ρ, μ) are well defined.

We can then state the following lemma:

Lemma 3.11 Consider (ρ, μ) ∈ H. Then we have

|∇(S + P(ρ, μ))|2
S

≤ |∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ.
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Proof We consider the cases where (ρ, μ) ∈ A and (ρ, μ) ∈ B separately. The inequality is
actually an equality in the set A.

We start with the set B. We have, by convexity, for (ρ, μ) ∈ B,

(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ) =
( ∣∣∣∣∇ρ

ρ
+ ∇μ

∣∣∣∣
2

ρ +
∣∣∣∣∇μ

μ
+ ∇ρ

∣∣∣∣
2

μ

)

≥ (ρ + μ)

∣∣∣∣ ρ

ρ + μ

(∇ρ

ρ
+ ∇μ

)
+ μ

ρ + μ

(∇μ

μ
+ ∇ρ

)∣∣∣∣
2

= 1

ρ + μ
|∇(ρ + μ) + ∇(ρμ)|2

= |∇(S + P(ρ, μ))|2
S

.

Now, let us consider the set A. For (ρ, μ) ∈ A we have

|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ = ( f̃ ′′)2(S)|∇S|2S.

We also have

∇(S + π(S)) = ∇S(1 + π ′(S)).

Owing to the relation π ′ = −π
(s−2)
s−2π , we obtain

∇(S + π(S)) = ∇S
S − 2π(S) − Sπ(S) + 2π(S)

S − 2π(S)
= S f̃ ′′(S)∇S.

This proves that the desired inequality is actually an equality when (ρ, μ) ∈ A. ��

Lemma 3.11 implies that, if (ρn, μn) ∈ H is such that SlopeF(ρn, μn) is bounded inde-
pendently of n, then so is the H1 norm of√

S(ρn, μn) + P(ρn, μn) ∈ H1(�).

Proposition 3.12 Let (ρn, μn) ∈ H be such that SlopeF(ρn, μn) is bounded, and suppose
that ρn⇀ρ and μn⇀μ as n → +∞. Let Sn := ρn + μn and let Pn := P(ρn, μn). Then,
we have the following convergence results:

• Sn → ρ + μ a.e.
• Pn → P(ρ, μ) a.e.

Proof We start by giving some bounds on ∇Sn . Recalling the definitions of Xn, Yn from
(3.17), we have (on the set {(ρn, μn) ∈ B} of points x ∈ � where (ρn(x), μn(x)) ∈ B),

∇ρn = ρn Xn − ρnμnYn
1 − ρnμn

, ∇μn = μnYn − ρnμn Xn

1 − ρnμn
.

Therefore, on {(ρn, μn) ∈ B}, we obtain

|∇Sn |2 ≤ 4

(
ρ2
n |Xn |2 + ρ2

nμ
2
n |Yn |2 + μ2

n |Yn |2 + ρ2
nμ

2
n |Xn |2

(1 − ρnμn)2

)

= 4

(
(ρn + (ρnμn)μn)ρn |Xn |2 + (μn + (ρnμn)ρn)μn |Yn |2

(1 − ρnμn)2

)
.

123



29 Page 20 of 41 R. Ducasse et al.

Since ρnμn ≤ 1 in the set B, we get

|∇Sn |2 ≤ 4

(
Snρn |Xn |2 + Snμn |Yn |2

(1 − ρnμn)2

)
.

Now, using (1 − ρnμn) ≥ (1 − S2n
4 ), we finally get, for (ρn, μn) ∈ B,

|∇Sn |2 (1 − S2n
4 )2

4Sn
≤ ρn |Xn |2 + μn |Yn |2.

For (ρn, μn) ∈ A, we use f ′′ ≥ r0
s , where r0 as in Remark 1, and we obtain∫
(ρn ,μn)∈A

1

Sn
|∇Sn |2 ≤ C,

for a constant C independent of n. Therefore, taking

h(s) := min

{
|1 − s2

4 |
2
√
s

,
1√
s

}
,

we find that ∫
�

h2(Sn)|∇Sn |2

is bounded independently of n. The function h is positive and vanishes only at s = 2. If we
denote by H any anti-derivative of h, characterized by H ′ = h, we deduce that H is strictly
increasing. Moreover, we obtain a uniform H1 bound on H(Sn). This implies that, up to a
subsequence, H(Sn) has an a.e. limit. Composing with H−1, the same is true for Sn . The
pointwise limit of Sn can only coincide with its weak limit, i.e. S.

Now, to prove the convergence of P(ρn, μn), it is sufficient to write

P(ρn, μn) = π(ρn + μn) + (P(ρn, μn) − π(ρn + μn))

for any extension of π toR+ (π is originally only defined on [2,+∞), but we can take π = 1
on [0, 2]).

The function P(a, b) − π(a + b) is constant, equal to zero, on the set A. Then, we can
apply Proposition 3.5 to obtain the desired convergence. In what concerns π(ρn + μn) we
just need to apply what we just proved on Sn . ��

We are now in the position to prove Proposition 3.10.

Proof of Proposition 3.10 Consider a sequence as in the statement of the proposition. Then,
we have ∫

�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn)(1 − χ(ρn, μn))

≥
∫

�

|∇(Sn + Pn)|2
Sn

(1 − χ(ρn, μn))

= 4
∫

�

|∇√
Sn + Pn |2 Sn + Pn

Sn
(1 − χ(ρn, μn)).
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Since
√
Sn + Pn is bounded in H1, it converges weakly in H1 up to extraction of a subse-

quence, and we know that its limit has to be
√
S + P . Using the standard semi-continuity

argument we obtain

lim inf
n→+∞

∫
�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn)(1 − χ(ρn, μn))

≥
∫

�

|∇(S + P)|2
S

(1 − χ(ρ, μ))

≥
∫

(ρ,μ)∈A
(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ).

��
Therefore, Theorem 3.4, that is, the lower semi-continuity of the functional SlopeF ,

follows from the previous results as an easy consequence:

Proof of Theorem 3.4 Let (ρn, μn) be a sequence satisfying the hypotheses of Theorem 3.4.
Let 0 ≤ χ ≤ 1 be a Lipschitz function compactly supported in B. Then

SlopeF(ρn, μn) =
∫

�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn)

=
∫

�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn)χ(ρn, μn)

+
∫

�

(|∇ fa(ρn, μn)|2ρn + |∇ fb(ρn, μn)|2μn)(1 − χ(ρn, μn)).

Applying separately the results of Propositions 3.9 and 3.10, we obtain

lim inf
n→+∞ SlopeF(ρn, μn) ≥

∫
�

(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ)
(
1A(ρ, μ) + χ(ρ, μ)

)
.

Since χ is arbitrary, we can select an increasing sequence of cut-off functions χk converg-
ing to 1B , and by monotone convergence we obtain

lim inf
n→+∞ SlopeF(ρn, μn) ≥

∫
�

(|∇ fa(ρ, μ)|2ρ + |∇ fb(ρ, μ)|2μ)
(
1A(ρ, μ) + 1B(ρ, μ)

)
= SlopeF(ρ, μ),

and this concludes the proof. ��

4 Existence of solutions in the EDI sense

In this section, we define the JKO scheme for the functional F and three different interpo-
lations (De Giorgi variational, piecewise geodesic, and piecewise constant) for this scheme.
We prove that these interpolations converge to the same limit curve and this limit curve is
a gradient flow for the functional F in a suitable sense (see Definition 4.2 below). More
precisely, we show that the Energy Dissipation Inequality (4.19) holds by using the estimates
we obtain via the three interpolations we define subsequently.

First, we define the space L2H as follows:

Definition 4.1 The space L2H is composed of all the curves ρ,μ : [0, T ] → P(�) such
that
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i. Both ρ and μ belong to AC2([0, T ];W2(�)) (see [3]);
ii. For a.e. t ∈ [0, T ] we have (ρt , μt ) ∈ H;
iii. For every η ∈ W 1,∞

c (B), we have
∫ T
0 ‖η(ρt , μt )‖2H1(�)

dt < +∞;

iv. We also have
∫ T
0 ‖√ρt + μt‖2H1(�)

dt < +∞.

Next we give the following definition:

Definition 4.2 A pair of curves (ρt , μt )t∈[0,T ] ∈ L2H is a gradient flow in the EDI sense for
the functional F , given by (2.9),with initial datum (ρ0, μ0) ∈ P(�)×P(�) and F(ρ0, μ0) <

+∞, if and only if

• There exist a pair of velocities (vt , wt ), associated with the curves (ρt , μt ), that satisfy
the continuity equations ∂tρt + ∇ · (ρtvt ) = 0 and ∂tμt + ∇ · (μtwt ) = 0 with no-flux
boundary conditions.

• The pairs (ρt , μt ) and (vt , wt ) satisfy the Energy Dissipation Inequality

F(ρT , μT ) + 1

2

∫ T

0

∫
�

ρt |vt |2 dx dt + 1

2

∫ T

0

∫
�

μt |wt |2 dx dt

+ 1

2

∫ T

0
SlopeF(ρt , μt ) dt ≤ F(ρ0, μ0). (4.19)

The main goal of this section is to prove the following theorem:

Theorem 4.3 For any initial datum (ρ0, μ0) such that F(ρ0, μ0) < +∞, there exists an EDI
gradient flow for the functional F.

4.1 The JKO scheme and the interpolations

Definition 4.4 (JKO scheme for F) For a fixed time step τ > 0 (of the form τ = T /N for
some N ∈ N), we define the JKO scheme as a sequence of probability measures (ρτ

k , μτ
k )k ,

with a given initial datum (ρτ
0 , μτ

0) = (ρ0, μ0) such that for k ∈ {0, · · · , N − 1} we have

(ρτ
k+1, μ

τ
k+1) ∈ argmin(ρ,μ)F(ρ, μ) + 1

2τ
W 2

2 (ρ, ρτ
k ) + 1

2τ
W 2

2 (μ,μτ
k ). (4.20)

This sequence ofminimizers exists since the functional F is lower semi-continuous for the
weak convergence and so is the sum we minimize. Such a sum is also strictly convex, since
the measures ρτ

k , μτ
k are necessarily absolutely continuous (which implies strict convexity of

the Wasserstein terms, see Proposition 7.19 in [14]): the minimizer is then unique at every
step.

Notice that (4.20) implies that, at each iteration, we have

F(ρτ
k+1, μ

τ
k+1) + 1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k ) + 1

2τ
W 2

2 (μτ
k+1, μ

τ
k ) ≤ F(ρτ

k , μτ
k ). (4.21)

An important consequence of (4.21) is the following inequality, which is obtained by
summing over k and using the fact that F is bounded from below:

1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k ) + 1

2τ
W 2

2 (μτ
k+1, μ

τ
k ) ≤ C := F(ρ0, μ0) − inf F . (4.22)

Our strategy to prove that Inequality (4.19) holds is to improve (4.21) by the help of some
interpolations for the sequence (ρτ

k , μτ
k )k for the functional F . Therefore, we define these

interpolations next.
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Definition 4.5 (DeGiorgi variational interpolation)We define theDeGiorgi variational inter-
polation (ρ̂τ

t , μ̂τ
t ) for the sequence (ρτ

k , μτ
k )k as follows: for any s ∈ (0, 1] and any k, take

t = (k + s)τ such that

(ρ̂τ
k+s, μ̂

τ
k+s) ∈ argmin(ρ,μ)F(ρ, μ) + 1

2τ s
W 2

2 (ρ, ρτ
k ) + 1

2τ s
W 2

2 (μ,μτ
k ). (4.23)

We notice that when s = 1, (4.23) is nothing but the JKO scheme (4.20). The main point
(which is now a classical idea in the study of gradient flows, see [3]), is that we can improve
(4.21) by

F(ρτ
k+1, μ

τ
k+1) + 1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k ) + 1

2τ
W 2

2 (μτ
k+1, μ

τ
k )

+
∫ 1

0

W 2
2 (ρ̂τ

k+s, ρ
τ
k )

2τ s2
ds +

∫ 1

0

W 2
2 (μ̂τ

k+s, μ
τ
k )

2τ s2
ds ≤ F(ρτ

k , μτ
k ). (4.24)

To obtain (4.24) we define a function g : [0, 1] → R such that

g(s) := min
(ρ,μ)

F(ρ, μ) + 1

2τ s
W 2

2 (ρ, ρτ
k ) + 1

2τ s
W 2

2 (μ,μτ
k ).

This function is decreasing and hence differentiable a.e. At differentiability points, we nec-
essarily have

g′(s) = −W 2
2 (ρ̂τ

k+s, ρ
τ
k )

2τ s2
− W 2

2 (μ̂τ
k+s, μ

τ
k )

2τ s2
.

On the other hand, for a monotone function we have an inequality by the fundamental
theorem of calculus, which gives here∫ 1

0
g′(s) ds ≥ g(1) − g(0) = F(ρτ

k+1, μ
τ
k+1) + 1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k )

+ 1

2τ
W 2

2 (μτ
k+1, μ

τ
k ) − F(ρτ

k , μτ
k ).

Combining the last two lines, we obtain (4.24). Moreover, we have, by the optimality condi-
tions, the following equalities

∇ fa(ρ̂
τ
k+s, μ̂

τ
k+s) + ∇ϕρ̂τ

k+s→ρτ
k

sτ
= 0 ρ̂k+s − a.e., ∇ fb(μ̂

τ
k+s , μ̂

τ
k+s)

+ ∇ϕμ̂τ
k+s→μτ

k

sτ
= 0 μ̂k+s − a.e., (4.25)

where ϕρ̂τ
k+s→ρτ

k
and ϕμ̂τ

k+s→μτ
k
are the Kantorovich potentials associated with the transports

from ρ̂τ
k+s to ρτ

k , and from μ̂τ
k+s to μτ

k respectively. Using (4.25) and Brenier Theorem (see
[5]), we obtain

W 2
2 (ρ̂τ

k+s, ρ
τ
k )

(sτ)2
=

∫
�

ρ̂τ
k+s

|∇ϕρ̂τ
k+s→ρτ

k
|2

(sτ)2
dx =

∫
�

ρ̂τ
k+s |∇ fa(ρ̂

τ
k+s, μ̂

τ
k+s)|2 dx,

W 2
2 (μ̂τ

k+s, μ
τ
k )

(sτ)2
=

∫
�

μ̂τ
k+s

|∇ϕμ̂τ
k+s→μτ

k
|2

(sτ)2
dx =

∫
�

μ̂τ
k+s |∇ fb(ρ̂

τ
k+s, μ̂

τ
k+s)|2 dx . (4.26)

Using (4.26), Inequality (4.24) re-writes

F(ρτ
k+1, μ

τ
k+1) + 1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k ) + 1

2τ
W 2

2 (μτ
k+1, μ

τ
k )
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+ τ

2

∫ 1

0

∫
�

ρ̂k+s |∇ fa(ρ̂
τ
k+s, μ̂

τ
k+s)|2 dx ds

+ τ

2

∫ 1

0

∫
�

μ̂k+s |∇ fb(ρ̂
τ
k+s, μ̂

τ
k+s)|2 dx ds ≤ F(ρτ

k , μτ
k ). (4.27)

Definition 4.6 (Piecewise constant interpolation) We define the piecewise constant inter-
polation as a pair of piecewise constant curves (ρ̄τ

t , μ̄τ
t ) and a pair of velocities (v̄τ

t , w̄τ
t )

associated with these piecewise constant curves such that for every t ∈ (kτ, (k + 1)τ ] and
k ∈ {0, · · · , N − 1}, N ∈ N, they satisfy

(ρ̄τ
t , μ̄τ

t ) = (ρτ
k+1, μ

τ
k+1),

(v̄τ
t , w̄τ

t ) = (vτ
k+1, w

τ
k+1) =

( id − T τ
ρk+1→ρk

τ
,
id − T τ

μk+1→μk

τ

)
(4.28)

where T τ
ρk+1→ρτ

k
and T τ

μk+1→μk
are the optimal transport maps from ρτ

k+1 to ρτ
k and from

μτ
k+1 to μτ

k respectively. We define the momentum variables by Ēτ (t) := (Ēτ
ρ(t), Ēτ

μ(t)) =
(ρ̄τ

t v̄τ
t , μ̄τ

t w̄
τ
t ).

Definition 4.7 (Piecewise geodesic interpolation) We define the piecewise geodesic inter-
polation as a pair of densities (ρ̃τ

t , μ̃τ
t ) that interpolate the discrete values (ρτ

k , μτ
k )k along

Wasserstein geodesics: for each k we define

(ρ̃τ
t , μ̃τ

t ) = ((
id − (kτ − t)vτ

k

)
# ρτ

k ,
(
id − (kτ − t)wτ

k

)
# μτ

k

)
, for t ∈ ((k − 1)τ, kτ ].

(4.29)

We also define some velocity fields (ṽτ
t , w̃τ

t ) as follows

ṽτ
t = vτ

k ◦
(
id − kτ − t

τ
vτ
k

)−1

, w̃τ
t = wτ

k ◦
(
id − kτ − t

τ
vτ
k

)−1

, for t ∈ ((k − 1)τ, kτ).

In this way we can check that we have

∂t ρ̃t
τ + ∇ · (ρ̃t

τ ṽτ
t ) = 0, ∂t μ̃

τ
t + ∇ · (μ̃τ

t w̃
τ
t ) = 0,

and, for t ∈ ((k − 1)τ, kτ), we also have

‖ṽτ
t ‖L2(ρ̃τ

t ) = |(ρ̃τ
t )′|(t) = W2(ρ

τ
k−1, ρ

τ
k )

τ
, and ‖w̃τ

t ‖L2(μ̃τ
t )

= |(μ̃τ
t )

′|(t) = W2(μ
τ
k−1, μ

τ
k )

τ
.

We also define the momentum variables by Ẽτ (t) = (Ẽτ
ρ(t), Ẽτ

μ(t)) := (ρ̃τ
t ṽτ

t , μ̃τ
t w̃

τ
t ).

Now that we have defined the three interpolations above and that we have improved
(4.21) into (4.27), we would like to replace the terms involving the De Giorgi variational
interpolation (ρ̂τ

k+s, μ̂
τ
k+s) in (4.27) by the slope functional SlopeF(ρ̂τ

k+s, μ̂
τ
k+s). To be able

to do that, first we prove two technical lemmas (Lemmas 4.8 and 4.9 below) and then by using
them we prove that the pair of curves obtained via the De Giorgi variational interpolation
belongs to the space H.

Lemma 4.8 For every ρ,μ ∈ C∞(�) strictly positive densities we have∫
�

(∇ρ∇ fa(ρ, μ) + ∇μ∇ fb(ρ, μ)) ≥ r0

∫
�

|∇S|2
S

, (4.30)

where S := ρ + μ and r0 > 0 is defined in Remark 1 in Sect. 2.
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Proof We consider the sets A and B separately. For (ρ, μ) ∈ A, we have

∇ρ∇ fa(ρ, μ) + ∇μ∇ fb(ρ, μ) = |∇S|2 f̃ ′′(S) = |∇S|2 1 − π(S)

S − 2π(S)
≥ r0

|∇S|2
S

.

For (ρ, μ) ∈ B, we have

∇ρ∇ fa(ρ, μ) + ∇μ∇ fb(ρ, μ) = |∇ρ|2
ρ

+ 2∇ρ∇μ + |∇μ|2
μ

.

We want to show that the inequality

|∇ρ|2
ρ

+ 2∇ρ∇μ + |∇μ|2
μ

≥ r0
|∇ρ + ∇μ|2

S

is always satisfied. This means we want to have

|∇ρ|2
( 1

ρ
− r0

S

)
+ |∇μ|2

( 1

μ
− r0

S

)
+ 2∇ρ∇μ

(
1 − r0

S

)
≥ 0.

We now look at the matrix (
1
ρ

− r0
S 1 − r0

S

1 − r0
S

1
μ

− r0
S

)
,

and prove that it is positive definite. Using r0 ≤ 1 and ρ,μ ≤ S we easily see that the terms
on the diagonal are non-negative. We then compute the determinant and obtain

1

ρμ
− r0

S

(
1

ρ
+ 1

μ
− 2

)
− 1 = 1 − r0

ρμ
− 1 + 2r0

S
.

For fixed sum S = ρ + μ this last expression is minimal if the product ρμ is maximal. If
S > 2 we can then bound this from below by 1−r0

π(S)
− 1 + 2r0

S . This quantity is non-negative
as a consequence of the definition of r0 since we have

r0 ≤ s
1 − π

s − 2π
⇔ 1 − r0

π
− 1 + 2r0

s
≥ 0.

If S ≤ 2 we just use ρμ ≤ S2/4 ≤ S/2 and bound the same quantity from below by
21−r0

S − 1 + 2r0
S = 2

S − 1 ≥ 0. ��

Lemma 4.9 Let us consider the auxiliary energy functional G(ρ, μ) = ∫
�
g(ρ, μ) where

g(a, b) := a log a+ b log b (defined as equal to +∞ if measures are not absolutely continu-
ous). Suppose that ρ0, μ0 are given absolutely continuous measures and let us call (ρ1, μ1)

the unique solution of

(ρ1, μ1) = argmin(ρ,μ)F(ρ, μ) + W 2
2 (ρ, ρ0)

2τ
+ W 2

2 (μ,μ0)

2τ
.

Then, setting S1 := ρ1 + μ1, we have

G(ρ0, μ0) − G(ρ1, μ1) ≥ r0τ
∫

�

|∇S1|2
S1

,

where the number r0 > 0 is defined in Remark 1 in Section 2.
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Proof We prove this result via a flow-interchange inequality and a regularization argument.
We fix ε > 0 and define Fε(ρ, μ) := F(ρ, μ) + εG(ρ, μ). For a given sequence of smooth
measures ρ0,ε, μ0,ε ∈ C∞ we consider the sequence of minimizers

(ρ1,ε, μ1,ε) = argmin(ρ,μ)Fε(ρ, μ) + W 2
2 (ρ, ρ0,ε)

2τ
+ W 2

2 (μ,μ0,ε)

2τ
.

If we write the optimality conditions for the above minimization problem we have
ρ1,ε, μ1,ε > 0 (the argument is the same as in the proof of Lemma 8.6 in [14]) and

fa(ρ1,ε, μ1,ε) + ε log ρ1,ε + ϕρ1,ε→ρ0,ε

τ
= C, fb(ρ1,ε, μ1,ε) + ε logμ1,ε + ϕμ1,ε→μ0,ε

τ
= C̃,

where C, C̃ are some positive constants. Since (a, b) �→ ( fa(a, b) + ε log a, fb(a, b) +
ε log b) is the gradient of a strictly convex function it is a diffeomorphism and we deduce
that ρ1,ε and μ1,ε have the same regularity of the Kantorovich potential, and are Lipschitz
continuous. They are also bounded from below because of the logarithm in the optimality
conditions and Caffarelli’s theory (see Sect. 4.2.2 in [17]) implies that the Kantorovich
potentials are C2,α (we assumed that we are in a convex domain). Iterating these regularity
arguments gives that ρ1,ε and μ1,ε are C∞ functions.

We then use the geodesic convexity of the entropy to deduce that we have

G(ρ0,ε, μ0,ε) − G(ρ1,ε, μ1,ε) ≥ d

ds
G(ρs , μs)

∣∣∣∣
s=0

=
(∫

�

∂sρs log ρs +
∫

�

∂sμs logμs

) ∣∣∣∣
s=0

,

where (ρs, μs) is a pair of geodesic curves in W2(�) × W2(�) connecting the densities
(ρ1,ε, μ1,ε) to the densities (ρ0,ε, μ0,ε) (pay attention that, in a JKOscheme, this interpolation
starts from the new points and go back to the old points).We then use the continuity equations
∂sρs + ∇ · (ρsvs) = 0, and ∂sμs + ∇ · (μsws) = 0, together with the fact that the initial
velocity fields v0 andw0 can be obtained as the opposite of the gradient of the corresponding
Kantorovich potentials. Hence we have

G(ρ0,ε, μ0,ε) − G(ρ1,ε, μ1,ε) ≥ −
∫

�

∇ · (ρ0v0) log ρ0 −
∫

�

∇ · (μ0w0) logμ0

=
∫

�

∇ρ0 · v0 +
∫

�

∇μ0 · w0

= −
∫

�

∇ρ1,ε · ∇ϕρ1,ε→ρ0,ε −
∫

�

∇μ1,ε · ∇ϕμ1,ε→μ0,ε .

(4.31)

Using the optimality conditions we obtain

G(ρ0,ε, μ0,ε) − G(ρ1,ε, μ1,ε) ≥ τ

∫
�

∇ρ1,ε · ∇ fa(ρ1,ε, μ1,ε) + ετ

∫
�

∇ρ1,ε · ∇ log(ρ1,ε)

+ τ

∫
�

∇μ1,ε · ∇ fb(ρ1,ε, μ1,ε) + ετ

∫
�

∇μ1,ε · ∇ log(μ1,ε).

Dropping the positive terms with the gradients of the logarithms and applying Lemma 4.8
we then obtain

G(ρ0,ε, μ0,ε) − G(ρ1,ε, μ1,ε) ≥ r0τ
∫

�

|∇S1,ε|2
S1,ε

,

where S1,ε = ρ1,ε + μ1,ε. It is then enough to let ε → 0 if we choose an approximation
ρ0,ε, μ0,ε s.t. G(ρ0,ε, μ0,ε) → G(ρ0, μ0). Note that the terms in G(ρ1,ε, μ1,ε) and S1,ε
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are lower semi-continuous for the weak convergence (and the sequence (ρ0,ε, μ0,ε) weakly
converges to (ρ1, μ1) by 	−convergence of the minimized functionals and uniqueness of
the minimizer at the limit). ��

Lemma 4.10 Let (ρ̂τ
t , μ̂τ

t ) be the pair of curves obtained by the De Giorgi variational inter-
polation. Then (ρ̂τ

t , μ̂τ
t ) ∈ H for every t.

Proof First, we note that the optimality conditions provide Lipschitz continuity, for fixed τ ,
for fa(ρ̂τ

t , μ̂τ
t ) and fa(ρ̂τ

t , μ̂τ
t ), and hence for χ(ρ̂τ

t , μ̂τ
t ) (see Remark 2 in Sect. 2). Therefore

Property i of Definition 3.1 is satisfied.
For Property ii of Definition 3.1, we apply Lemma 4.9 with sτ instead of τ , which guar-

antees the H1 behavior of the square root of the sum. ��

Remark 3 Note that the very same argument implies that the curves obtained by the piecewise
constant interpolation also belong to the space H.

4.2 Existence of solutions

The goal of this section is to prove Theorem 4.3. We start by proving the following lemma:

Lemma 4.11 The pair of curves (ρ̂τ
t , μ̂τ

t ), (ρ̄τ
t , μ̄τ

t ) and (ρ̃τ
t , μ̃τ

t ) given by Definitions 4.5,
4.6 and 4.7 respectively converge up to subsequences, as τ → 0, to the same limit curve
(ρt , μt ) uniformly in W2 distance. Moreover, the vector-valued measure Ẽτ corresponding to
the momentum variable of the piecewise geodesic interpolations, also converges weakly-* in
the sense of measures on [0, T ]×� to a limit vector measure E along the same subsequence.

Proof Recall that the geodesic speed is constant on each interval (kτ, (k + 1)τ ), and this
implies

‖ṽτ
t ‖L2(ρ̃τ

t ) = |(ρ̃τ
t )′|(t) = W2(ρk+1, ρk)

τ
= 1

τ

∫
�

|id − T τ
k+1|2ρτ

k+1 = ‖vτ
k+1‖L2(ρτ

k+1)
,

and similar for w̃τ
t . Then we obtain

‖ṽτ
t ‖L2(ρ̃τ

t ) = ‖vτ
k+1‖L2(ρτ

k+1)
= ‖v̄τ

t ‖L2(ρ̄τ
t ) and ‖w̃τ

t ‖L2(μ̃τ
t )

= ‖wτ
k+1‖L2(μτ

k+1)
= ‖w̄τ

t ‖L2(μ̄τ
t )

.

Let us note that we have∫ T

0
|(ρ̃τ

t )′|(t)2 dt =
∫ T

0
‖ṽτ

t ‖2L2(ρ̃τ
t )
dt =

∑
k

τ

(
W2(ρk+1, ρk)

τ

)2

≤ C, (4.32)

where the inequality is a consequence of (4.22).
We first use this inequality to estimate the momentum variables, since we have∫ T

0

∫
�

|Ẽτ
ρ(t)| dt =

∫ T

0
‖ṽτ

t ‖L1(ρ̃τ
t ) dt ≤ √

T
∫ T

0
‖ṽτ

t ‖2L2(ρ̃τ
t )
dt ≤ C .

Analogous estimates can be obtained for Ẽτ
μ. Thismeans that Ẽτ is bounded in L1([0, T ]×

�) and we obtain the weak-* compactness in the space of measures on space-time.
It is now classical in gradient flows, as a consequence of the estimate on the L2 norm of

the velocities (4.32), to obtain Hölder bounds on the geodesic interpolations. Indeed, the pair
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(ρ̃τ
t , μ̃τ

t ) is uniformly 1
2−Hölder continuous since by using the previous computations we

can show that, for s < t ,

W2(ρ̃
τ
t , ρ̃τ

s ) ≤ √
t − s

(∫ t2

t1
|(ρ̃τ )′|(t)2 dt

)1/2

≤ C
√
t − s,

and an analogous estimate holds for μ̃τ . Since the domain of the curves ρ̃, μ̃ : [0, T ] →
W2(�) is compact and so is the image domain W2(�), we can pass to the limit by using
Ascoli-Arzelà theorem. Therefore there exists a subsequence τ j → 0 such that

Ẽ
τ j
ρ → Eρ and Ẽ

τ j
μ → Ẽμ weakly-* as measures,

ρ̃
τ j
t → ρt and μ̃

τ j
t → μt uniformly in W2. (4.33)

Moreover the curves (ρ̄τ
t , μ̄τ

t ) obtained from the piecewise constant interpolation converge
uniformly to the same limit curve (ρt , μt ) as the ones obtained from the piecewise geodesic
interpolation since we have that

W2(ρ̄
τ
t , ρ̃τ

t ) ≤ C
√

τ and W2(μ̄
τ
t , μ̃

τ
t ) ≤ C̃

√
τ ,

where C, C̃ are some positive constant. This is shown by using that (ρ̃τ
t , μ̃τ

t ) and (ρ̄τ
t , μ̄τ

t )

coincide at every t = kτ and (ρ̄τ
t , μ̄τ

t ) are constant in each interval (kτ, (k+1)τ ]. The details
of these computations can be found in Sect. 8.3 of [14].

For the pair of curves (ρ̂τ
t , μ̂τ

t ) defined by De Giorgi variational interpolation we have

W2(ρ̂
τ
t , ρ̃τ

t ) ≤ W2(ρ̂
τ
k+s, ρ̄

τ
t ) + W2(ρ̄

τ
t , ρ̃τ

t ) = W2(ρ̂
τ
k+s, ρ

τ
k+1) + W2(ρ̄

τ
t , ρ̃τ

t )

≤ W2(ρ̂
τ
k+s, ρ

τ
k ) + W2(ρ

τ
k , ρτ

k+1) + W2(ρ̄
τ
t , ρ̃τ

t ) ≤ C
√

τ ,

and similarlyW2(μ̂
τ
t , μ̃

τ
t ) ≤ C̃

√
τ for some positive constants C, C̃ . This implies as τ → 0,

ρ̂τ
t → ρt and μ̂τ

t → μt uniformly in W2.

This means that the pair (ρ̂τ
t , μ̂τ

t ) also converges to the limit curves (ρt , μt ) uniformly in
[0, T ]. Therefore we showed that the three interpolations that are defined for (4.20) converge
to the same limit curves (ρt , μt ). ��

By Lemma 4.10, we know that, for the curves obtained by the De Giorgi intepolation we
have (ρ̂τ

t , μ̂τ
t ) ∈ H, for all t . Then we have the following:∫

�

ρ̂k+s |∇ fa(ρ̂
τ
k+s, μ̂

τ
k+s)|2 +

∫
�

μ̂k+s |∇ fb(ρ̂
τ
k+s, μ̂

τ
k+s)|2 = SlopeF(ρ̂τ

k+s, μ̂
τ
k+s).

Using the above equality, (4.27) re-writes as

F(ρτ
k+1, μ

τ
k+1) + 1

2τ
W 2

2 (ρτ
k+1, ρ

τ
k ) + 1

2τ
W 2

2 (μτ
k+1, μ

τ
k )

+ τ

2

∫ 1

0
SlopeF(ρ̂τ

k+s, μ̂
τ
k+s) ds ≤ F(ρτ

k , μτ
k ). (4.34)

On the other hand since we have

W 2
2 (ρk+1, ρk)

τ
=

∫ (k+1)τ

kτ

∫
�

ρ̃τ
t |ṽτ

t |2 dx dt and
W 2

2 (μk+1, μk)

τ

=
∫ (k+1)τ

kτ

∫
�

μ̃τ
t |w̃τ

t |2 dx dt,
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we can re-write (4.34) as

F(ρτ
k+1, μ

τ
k+1) + 1

2

∫ (k+1)τ

kτ

∫
�

ρ̃τ
t |ṽτ

t |2 dx dt + 1

2

∫ (k+1)τ

kτ

∫
�

μ̃τ
t |w̃τ

t |2 dx dt

+ τ

2

∫ 1

0
SlopeF(ρ̂τ

k+s, μ̂
τ
k+s) ds ≤ F(ρτ

k , μτ
k ).

and, up to a change of variable, we obtain

F(ρτ
k+1, μ

τ
k+1) + 1

2

∫ (k+1)τ

kτ

∫
�

ρ̃τ
t |ṽτ

t |2 dx dt + 1

2

∫ (k+1)τ

kτ

∫
�

μ̃τ
t |w̃τ

t |2 dx dt

+ 1

2

∫ (k+1)τ

kτ
SlopeF(ρ̂τ

t , μ̂τ
t ) dt ≤ F(ρτ

k , μτ
k ). (4.35)

Next, we prove the following two results which will be helpful in the proof of Theorem 4.3:

Proposition 4.12 Suppose that a sequence of curves (ρn
t , μn

t ) satisfies (ρn
t , μn

t ) ∈ H for
every n and a.e. t , and

• ∫ T
0 SlopeF(ρn

t , μn
t ) dt ≤ C for all n.

• (ρn
t , μn

t )⇀(ρt , μt ) for each t, where ρt and μt are curves in AC2([0, T ];W2(�)).

• ∫ T
0 ‖√ρt + μt‖2H1(�)

dt < +∞.

Then we have (ρt , μt ) ∈ L2H and SlopeF(ρt , μt ) ≤ lim inf
n→∞ SlopeF(ρn

t , μn
t ).

Proof First, we consider the function t �→ lim infn SlopeF(ρn
t , μn

t ). Fatou’s lemma implies
that ∫ T

0
lim inf
n→+∞ SlopeF(ρn

t , μn
t ) dt ≤ lim inf

n→+∞

∫ T

0
SlopeF(ρn

t , μn
t ) dt ≤ C < +∞.

In particular, the liminf of the slope is finite for a.e. t . If we take a function χ ∈ W 1,∞
c (B),

then we have
‖χ(ρn

t , μn
t )‖2H1(�)

� SlopeF(ρn
t , μn

t ). (4.36)

Using Proposition 3.5 we have

χ(ρn
t , μn

t ) −→
n→+∞ χ(ρt , μt ) strongly in L2and weakly in H1.

Hence, we can pass to the limit as n → +∞ and deduce for a.e. t that we have χ(ρt , μt ) ∈
H1(�), i.e. Property i for being in H. Moreover, the assumption on

√
ρt + μt provides

Property ii for a.e. t . Hence, we know (ρt , μt ) ∈ H for a.e. t . We now use the lower semi-
continuity of the slope on H together with Fatou’s lemma to deduce∫ T

0
SlopeF(ρt , μt ) dt ≤

∫ T

0
lim inf
n→+∞ SlopeF(ρn

t , μn
t ) dt ≤ lim inf

n→+∞

∫ T

0
SlopeF(ρn

t , μn
t ) dt ≤ C .

Using again (4.36) we also obtain∫ T

0
‖χ(ρn

t , μn
t )‖2H1(�)

dt �
∫ T

0
SlopeF(ρn

t , μn
t ) dt ≤ C,

which, combined with the L2 integrability of the H1 norm of the square root, provides
(ρ, μ) ∈ L2H. ��
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Lemma 4.13 Let St := ρt + μt where (ρ, μ) is the limit of the piecewise constant interpo-
lation of the JKO scheme. We then have

∫ T
0 ‖√St‖2H1(�)

dt < +∞.

Proof We iterate the estimate of Lemma 4.9, which guarantees

G(ρτ
k , μτ

k ) − G(ρτ
k+1, μ

τ
k+1) ≥ r0τ

∫
�

|∇Sτ
k+1|2

Sτ
k+1

,

where Sτ
k := ρτ

k + μτ
k , and where G is defined in Lemma 4.9. Summing over k, we obtain,

for N = T /τ ,

G(ρ0, μ0) ≥ G(ρτ
N , μτ

N ) + r0

∫ T

0

∫
�

|∇ S̄τ |2
S̄τ

,

where S̄τ := ρ̄τ + μ̄τ , and ρ̄τ , μ̄τ are the curves obtained from the piecewise constant
interpolation. It is then enough to pass to the limit τ → 0 and apply the semi-continuity of
the terms on the right hand side above to obtain

r0

∫ T

0

∫
�

|∇ S̄|2
S̄

≤ G(ρ0, μ0) − G(ρT , μT ),

which proves the claim since |∇√
S|2 = |∇S|2

4S . ��

Now we have the necessary tools to prove Theorem 4.3.

Proof of Theorem 4.3 Let (ρ̂τ
t , μ̂τ

t ), (ρ̄τ
t , μ̄τ

t ) and (ρ̃τ
t , μ̃τ

t ) be the curves obtained by the
De Giorgi variational interpolation, the piecewise constant interpolation and the geodesic
interpolation respectively. Summing (4.35) over k we obtain

F(ρτ
T , μτ

T ) + 1

2

∫ T

0

∫
�

ρ̃τ
t |ṽt τ |2 dx dt + 1

2

∫ T

0

∫
�

μ̃τ
t |w̃t

τ |2 dx dt

+ 1

2

∫ T

0
SlopeF(ρ̂τ

t , μ̂τ
t ) dt ≤ F(ρτ

0 , μτ
0). (4.37)

Lemma 4.11 gives that the curves obtained by the three interpolations, defined above,
for the JKO scheme (4.20), converge to the same limit curve (ρt , μt ). Lemma 4.13 uses
the convergence of the piecewise constant interpolation to deduce

√
ρt + μt ∈ L2

t H
1
x and,

together with (4.37) (which provides the uniform bound on SlopeF) and Proposition 4.12
we obtain (ρ, μ) ∈ L2H and

∫ T
0 SlopeF(ρt , μt ) ≤ lim infτ

∫ T
0 SlopeF(ρ̂τ

t , μ̂τ
t ).

Let us now look at the momentum variables Ẽt . We consider the Benamou-Brenier func-
tional

B(ρ, E) :=
{∫

�
ρ|v|2 dx if E = ρv, v ∈ L2(ρ),

+∞ otherwise.

This functional, see Chapter 5 in [14], is lower semi-continuous for the weak convergence
of both variables. Hence, we can write

1

2

∫ T

0

∫
�

ρ̃τ
t |ṽt τ |2 dx dt + 1

2

∫ T

0

∫
�

μ̃τ
t |w̃t

τ |2 dx dt = B(ρ̃τ , Ẽτ
ρ) + B(μ̃τ , Ẽτ

μ),
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and pass to the limit as τ → 0, thus deducing Eρ = ρv with v ∈ L2(ρ) and Eμ = μw with
w ∈ L2(μ) (all these integrabilities being meant in space-time) and

1

2

∫ T

0

∫
�

ρt |vt |2 dx dt + 1

2

∫ T

0

∫
�

μt |wt |2 dx dt

≤ lim inf
τ→0

1

2

∫ T

0

∫
�

ρ̃τ
t |ṽt τ |2 dx dt + 1

2

∫ T

0

∫
�

μ̃τ
t |w̃t

τ |2 dx dt .

We then combine this with the lower semi-continuity of F which is implied by the convexity
of f , and we see that the limit curves (ρ, μ) together with the velocity fields (v,w) is indeed
an EDI solution of our PDE. ��
An additional estimate. We conclude this section by showing an additional estimate on S,
which is actually not needed for our analysis.

Lemma 4.14 Assume that the problem we consider is in dimension 1 or 2, that is, � ⊂ R
d

with d = 1 or d = 2. Then, for T > 0, we have
∫ T
0 ‖St‖2L2(�)

dt < +∞.

Proof We treat the cases d = 1 and d = 2 separately.
ByLemma4.13,we have that

√
S ∈ L2

t H
1
x and this implies

√
S ∈ L2

t L
∞
x , thus S ∈ L1

t L
∞
x .

Moreover, since S = ρ + μ and ρ and μ have unit mass, we also have S ∈ L∞
t L1

x . Then, we
have ∫ T

0
‖St‖2L2(�)

dt =
∫ T

0

∫
�

|St (x)|2 dx dt ≤
∫ T

0
‖St‖L∞(�)‖St‖L1(�) dt < +∞.

This proves the result for d = 1.
Now, we consider a function φ(b) = b (log b − c), and notice that the Legendre transform

φ∗ of φ is given by φ∗(a) = ea+c−1. Then we have the following inequality for every a, b, c
(with b > 0):

b(log b − c) + ea+c−1 ≥ ab. (4.38)

Let us define h(t) := ‖√St‖2H1(�)
< +∞ and notice that h(t) ∈ L1([0, T ]). Taking

b(t, x) = St (x)h(t) and a(t, x) = St (x)
h(t) , together with a function c = c(t) to be chosen in

(4.38), we obtain∫ T

0
‖St‖2L2(�)

dt =
∫ T

0

∫
�

|St (x)|2 dx dt =
∫ T

0

∫
�

St (x)h(t)
St (x)

h(t)
dx dt

≤
∫ T

0

∫
�

St (x)h(t) (log(St (x)h(t)) − c(t)) + e
St (x)
h(t) +c(t)−1 dx dt . (4.39)

Now let us recall the Moser–Trudinger inequality in dimension d = 2. There exist positive
constants α and C such that for every u ∈ H1(�) with ‖u‖H1(�) ≤ 1 we have∫

�

eα|u|2 dx ≤ C . (4.40)

The sharp value of the constant α is 4π , but we will just use α = 1. Taking c(t) = log h(t)

and denoting u(t, x) =
√

St (x)
h(t) in (4.39) we obtain that

∫ T

0
‖St‖2L2(�)

dt ≤
∫ T

0
h(t)

∫
�

St (x) log(St (x)) dx dt
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+ e−1
∫ T

0
h(t) dt

∫
�

eu
2
dx � ‖h‖L1([0,T ]) < +∞.

The very last inequality also relies on the fact that S has uniformly bounded entropy, i.e.∫
�
St log St dx ≤ C . This is a consequence of the bound on F(ρt , μt ) ≤ F(ρ0, μ0). Using

F ≥ G we have a uniform bound on
∫

ρ log ρ + μ logμ and, by convexity, on
∫ S

2 log(
S
2 ),

which in turn gives a bound on the entropy of S. This gives the result for d = 2 and finishes
the proof. ��

5 Differentiation properties

The goal of this section is to prove a statement similar to the following one:
Let (ρ, μ) be a curve in L2H (see Definition 4.1) and let v and w be two velocity fields

for ρ and μ, respectively, i.e. we have ∂tρ + ∇ · (ρv) = 0 and ∂tμ + ∇ · (μw) = 0.
If g : R2+ → R is a “nice enough” function, we have∫
�

g(ρT , μT ) =
∫

�

g(ρ0, μ0) +
∫ T

0

∫
�

ρt∇ga(ρt , μt ) · vt + μt∇gb(ρt , μt ) · wt . (5.41)

In particular, we would like this to be true for g = f and for (ρ, μ) the solution that we
found in Sect. 4.

The main idea behind the above computation is that (5.41) holds if the densities of ρ and
μ are smooth, by just using a differentiation under the integral sign and an integration by
parts. Hence, we will prove the result by regularization, relying on a suitable convolution
kernel (in space only). We will suppose that � is either the torus or a regular cube. In the
second case, after symmetrizing, the functions ρ and μ can be extended by periodicity and
it is exactly as if � were the torus.

We first choose a convolution kernel η > 0 with
∫

η = 1 (some assumptions on it will be
made precise later) and define ηε to be its rescaled version ηε(z) := ε−dη(z/ε). We define
ρε and vε via

ρε(t, ·) = ηε ∗ ρt , and (ρεvε)(t, ·) = ηε ∗ (ρtvt ). (5.42)

Analogously, we define με and wε with the same convolution kernel.
We first observe the following property.

Lemma 5.1 If ρ ∈ L1([0, T ] × �) and we have
∫ T
0

∫
�

ρ|v|2 < +∞, and ρε and vε are
defined as (5.42), then we have

√
ρεvε → √

ρv in L2([0, T ] × �).

Proof It is well known (see Chapter 5 in [14]) that we have∫ T

0

∫
�

ρε|vε|2 ≤
∫ T

0

∫
�

ρ|v|2,

which proves that
√

ρεvε is bounded in L2. Moreover, it is clear that its pointwise limit is√
ρv on the set {ρ > 0} as a consequence of the standard properties of the convolution

and of ρε → ρ and ρεvε → ρv. We then use Lemma 5.2 below to deduce the strong L2

convergence. ��
Lemma 5.2 Suppose that a sequence un ∈ L2(X;Rd) weakly converges in L2 to a function
v, and that we have un(x) → u(x) for a.e. x ∈ A ⊂ X. Then we have u = v on A.

Suppose that a sequence un satisfies lim supn
∫ |un |2 ≤ ∫ |u|2 and un(x) → u(x) for a.e.

x ∈ A with A = {u �= 0}; then we have un → u in L2(X).
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Proof Let φ ∈ L∞(X) be a test function vanishing on Ac.We have
∫
un ·φ → ∫

v ·φ because
of weak convergence. Yet, for an arbitrary R > 0, if we denote by πR the projection onto
the closed ball of radius R, we also have

∫
πR(un) · φ → ∫

πR(u) · φ because of dominated
convergence. Moreover∫

X
|un − πR(un)||φ| ≤ ||φ||L∞

∫
{|un |>R}

|un | ≤ ||φ||L∞||un ||2L2

R
≤ C

R
,∫

X
|u − πR(u)||φ| ≤ C

R
.

Using∫
X
(un − u) · φ ≤

∫
X

|un − πR(un)||φ| +
∫
X

|u − πR(u)||φ| +
∫
X
(πR(u) − πR(un)) · φ,

we obtain ∣∣∣∣lim sup
n

∫
X
(un − u) · φ

∣∣∣∣ ≤ 2C

R
,

i.e. limn
∫
X (un − u) · φ = 0 since R is arbitrary. We then obtain

∫
(u − v) · φ = 0 for any

L∞ function φ vanishing outside A, i.e. u = v a.e. on A.
For the second part of the statement, since un is bounded in L2 we first extract a sub-

sequence weakly converging to some v ∈ L2. From the previous part of the claim and our
assumptions, we know that v = u on A = {u �= 0}. We then use∫

X
|v|2 ≤ lim inf

n

∫
X

|un |2 ≤ lim sup
n

∫
X

|un |2 ≤
∫
X

|u|2 =
∫
A

|u|2 =
∫
A

|v|2 ≤
∫
X

|v|2.

Since all the inequalities must be equalities, we deduce v = 0 = u on Ac and hence u = v

a.e. on X , as well as ||un ||L2 → ||u||L2 . Thus, un weakly converges to u with convergence of
the norm, which implies strong convergence. The limit does not depend on the subsequence
we extracted, so it holds on the full sequence. ��

With this convergence result in mind we can first prove the following:

Proposition 5.3 Equality (5.41) holds when g(a, b) = f̃ (a + b), provided that f̃ (which
is a priori only defined on [2,+∞)) is extended to a function bounded from below on R+
satisfying 0 ≤ f̃ ′′(s) ≤ C/s.

Proof We first regularize by convolutions the densities ρ and μ into ρε and με . We define

Sε := ρε + με = S ∗ ηε,

where S = ρ + μ. Note that
√
S ∈ L2

t H
1
x implies ∇(

√
Sε) → ∇(

√
S) in L2 in space-time.

Indeed, a simple convexity argument proves that ||∇(
√
Sε)||L2 ≤ ||∇(

√
S)||L2 . This proves

that ∇(
√
Sε) is bounded in L2 and has, hence, a weak limit. This limit can only be ∇(

√
S)

since
√
Sε → √

S pointwise. Yet, this alsomeans that the limit of the L2 normwill be smaller
than the norm of the limit, which implies strong convergence (even if, actually, in this context
weak convergence would have been enough).

Since, for the regularized densities, formula (5.41) is true, we just have to pass to the limit
each term as ε → 0. The convergence∫

�

g(ρε, με) →
∫

�

g(ρ, μ)
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is true for any convex function g which is bounded from below by combining a Fatou’s
lemma giving the lower bound on the liminf and a Jensen inequality giving an upper bound
(indeed, we use the fact that every convex functional invariant by translations decreases by
convolution).

We then just need to pass to the limit the integral in space-time. The part concerning ρ

can be written as∫ T

0

∫
�

ρε f̃
′′(Sε)∇Sε · vε =

∫ T

0

∫
�

√
ρεSε f̃

′′(Sε)
∇Sε√
Sε

· (
√

ρεvε).

In the last expression, we notice that
√

ρεSε f̃ ′′(Sε) is bounded (since
√

ρεSε ≤ Sε and
f̃ ′′(s) ≤ C/s) and pointwisely converges to

√
ρS f̃ ′′(S). This implies that, if we multiply

by ∇Sε√
Sε

= 2∇(
√
Sε), we still have a strong L2 convergence to

√
ρS f̃ ′′(S) ∇S√

S
. Together with

the strong L2 convergence
√

ρεvε → √
ρv, the result is proven. ��

The next step requires to discuss the following property.

Definition 5.4 We say that a convolution kernel η satisfies PropertyH1 conv if the following
holds: There exists a constant C such that, for every function u ∈ L1 with u+ ∈ H1 ∩ L∞
and every positive constant c > 0 we have

||∇((u ∗ ηε − c)+)||L2 ≤ C
||u+||L∞

c
||∇(u+)||L2 .

Proposition 5.5 Suppose that there exists a convolution kernel η satisfying PropertyH1conv.
Then, Equality (5.41) holds when g ∈ C2 is compactly supported in B ⊂ R

2+.

Proof We will proceed as above by convolution, but we choose a convolution kernel η

satisfying Property H1 conv.
The proof of this proposition will recall a lot the different steps in that of Proposition 3.5.

Let us take a “triangle” function Tα,β,c, as defined in (3.15), whose support {(a, b) ∈ R
2+ :

αa + βb ≤ c} is contained in the open set B. We can assume that there exists another such
triangle contained in B with coefficients α, β, c′ with c′ > c.

We set u = c′ − (αρ + βμ) and we observe that u+ ∈ L2
t H

1
x because (ρ, μ) ∈ L2H. We

also have u ≤ c′ which shows that u+ also belongs to L∞. We then deduce that the functions
(c − αρε − βμε)+ = (u ∗ ηε − (c′ − c))+ are bounded in L2

t H
1
x because of Property H1

conv.
We deduce that

∇((c − αρε − βμε)+) = −1{αρε+βμε<c}(α∇ρε + β∇με)

weakly converges to

∇((c − αρ − βμ)+) = −1{αρ+βμ<c}(α∇ρ + β∇μ).

If we fix a continuous function χ , supported in the support of Tα,β,c, we have the pointwise
convergence

χ(ρε, με) → χ(ρ, μ),

and this implies the weak L2 convergence

χ(ρε, με)(α∇ρε + β∇με)⇀χ(ρ,μ)(α∇ρ + β∇μ).
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This is true for any continuous function χ supported in the triangle which is the support of
Tα,β,c. Yet, χ is also supported in different triangles, that we can obtain as supports of other
functions of the form Tα,β,c, by slightly changing the values of α, β, c. Therefore, we deduce
that, for each such continuous function χ , we have

χ(ρε, με)∇ρε⇀χ(ρ,μ)∇ρ and χ(ρε, με)∇με⇀χ(ρ,μ)∇μ.

Following the argument of the proof of Lemma 3.8, i.e., summing up many such functions
χ and using partition of the unity, we can deduce that the same result finally holds for any
continuous functionχ supported in B (again, since the domain B is a union of such triangles).

We now proceed in the usual way with the approximation by convolution, since we just
need to observe that we have∫ T

0

∫
�

ρε∇ga(ρε, με) · vε =
∫ T

0

∫
�

√
ρε(gaa(ρε, με)∇ρε + gab(ρε, με)∇με) · √

ρεvε,

and then use the strong convergence of
√

ρεvε and the weak convergence of the other term,
since gaa and gab are continuous and compactly supported in B.

We also need to pass the terms
∫
g(ρε(0), με(0)) and

∫
g(ρε(T ), με(T )) to the limit, but

this can be easily done by dominated convergence since g is bounded. ��
The next results extend the above proposition to the case which is of interest for us. For

δ > 0, we set

Bδ = {(a, b) ∈ B : (a + δ, b + δ) ∈ B}.
Proposition 5.6 Suppose that there exists a convolution kernel η satisfying PropertyH1conv.
Then, Equality (5.41) holds when g ∈ C1,1 is compactly supported in the open set B ⊂ R

2+,
with g ∈ C2(Bδ) and g = 0 on B \ Bδ .

Proof The proof is obtained by approximation using a cut-off function χr with the following
properties:

• 0 ≤ χr ≤ 1,
• χr (a, b) = 1 if the distance between (a, b) and B \ Bδ is larger than 2r and χr (a, b) = 0

if this same distance is smaller than r ,
• χr ∈ C2, with |∇χr | ≤ Cr−1 and |D2χr | ≤ Cr−2.

We then apply Proposition 5.5 to gχ , which isC2, and pass to the limit. The convergence of the
boundary terms (in time) is obtained by pointwise convergence and dominated convergence.
For the convergence of the integral terms in space-time we need to dominate the second
derivatives

(gχr )i j = gi jχr + gi (χr ) j + g j (χr )i + g(χr )i j .

In the above sum, the first term is bounded. The second and the third terms are also bounded
since |∇χr | ≤ Cr−1 but |∇g| ≤ r on {∇χr �= 0}, which is a consequence of the C1,1

behaviour of g. Similarly, for the last term we use |D2χr | ≤ Cr−2 with |g| ≤ r2 on
{D2χr �= 0}. ��

In order to conclude, we now take the function f and write it as f (a, b) = ḡ(a, b) +
f̃ (a + b), with ḡ ∈ C1,1 and ḡ = 0 on A. It is not yet possible to apply Proposition 5.6
to g = ḡ since ḡ is supported on B = B ∪ ∂A and not on B, but we will obtain this by
approximation.
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Proposition 5.7 Suppose that there exists a convolution kernel η satisfying PropertyH1conv.
Then, Equality (5.41) holds when g = ḡ, and hence for g = f , provided that the curve (ρ, μ)

is such that
∫ T
0 SlopeF(ρ, μ) dt is finite.

Proof We first apply Proposition 5.6 to g(a, b) := ḡ(a + δ, b + δ) and obtain∫
�

ḡ(ρT + δ, μT + δ) −
∫

ω

ḡ(ρ0 + δ, μ0 + δ)

=
∫ T

0

∫
�

ρv · (ḡaa(ρ + δ, μ + δ)∇ρ + ḡab(ρ + δ, μ + δ)∇μ)

+
∫ T

0

∫
�

μw · (ḡab(ρ + δ, μ + δ)∇ρ + ḡbb(ρ + δ, μ + δ)∇μ) . (5.43)

We have the following formulas for the second derivatives of ḡ:

ḡaa(a, b) =
(
1

a
− f̃ ′′(a + b)

)
1B(a, b),

ḡab(a, b) =
(
1 − f̃ ′′(a + b)

)
1B(a, b),

ḡbb(a, b) =
(
1

b
− f̃ ′′(a + b)

)
1B(a, b).

We need to prove that all the terms computed in (ρ +δ, μ+δ) converge to the corresponding
terms in (ρ, μ). To do so, we consider the difference between the terms with δ and those
without δ. Since v ∈ L2(ρ), we just need to prove that the following terms converge to 0 in
L2(ρ):

∇ρ

(
1

ρ + δ
− 1

ρ

)
1Bδ , ∇S

(
f̃ ′′(S + 2δ) − f̃ ′′(S)

)
1Bδ , ∇ fa(ρ, μ)1B\Bδ ,

(we only consider the terms in the first integral, the second integral in (5.43) is treated
similarly, using w ∈ L2(μ)). The last term is easy to handle, since it converges pointwise
to 0 and it is dominated by |∇ fa(ρ, μ)| which is in L2(ρ) (owing to the assumption on the
slope).

For the term involving f̃ ′′, we observe that f̃ ′′ is a Lipschitz function on [2,+∞) and its
extension to [0, 2] can be chosen to be Lipschitz as well. In particular, we can impose

| f̃ ′′′(S)| ≤ C min{S−2, 1},
so that we have

f̃ ′′(S + 2δ) − f̃ ′′(S) ≤ Cδmin{S−2, 1}.
The L2(ρ) norm of the desired term is thus smaller than Cδ||min{S−2, 1}∇S||L2(S), and the

condition
√
S ∈ L2

t H
1
x is more than enough to guarantee the finiteness of the norm which

multiplies δ.
We are now left with the term involving ∇ρ. We recall that, setting X = ∇ρ

ρ
+ ∇μ and

Y = ∇μ
μ

+ ∇ρ, we have X ∈ L2(ρ), Y ∈ L2(μ) and ∇ρ = ρX−PY
1−P , where P = ρμ < 1 on

B. Hence, the term we are interested in can be re-written as

δ∇ρ

ρ(ρ + δ)
= δ(ρX − PY )

ρ(ρ + δ)(1 − P)
.
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By distinguishing the case where (ρ, μ) is close to (1, 1) (the only point in B where P = 1)
or far from it we can prove that we have

δ

(ρ + δ)(1 − P)
1Bδ ≤ C .

Indeed, if (ρ, μ) is far from (1, 1) then 1− P is bounded from below and we use ρ+δ ≥ δ. If
instead (ρ, μ) is close to (1, 1), then (ρ + δ) is bounded from below, and, moreover, we use
(ρ, μ) ∈ Bδ to deduce (ρ+δ)(μ+δ) < 1, which implies P+δS < 1, hence 1−P ≥ δS ≥ δ

(in the last inequality we use again the fact that (ρ, μ) is close to (1, 1) to bound S from below
by 1 < 2). So, we can bound the term we are interested in by |X − μY |1B . The vector field
X is supposed to belong to L2(ρ), while Y ∈ L2(μ) implies μY ∈ L2(ρ) since its squared
norm is given by

∫
ρμ2|Y |2 and ρμ ≤ 1 on B. This proves that the term involving ∇ρ is

dominated by a term in L2(ρ) and its pointwise convergence to 0 shows that it converges to
0 in L2(ρ).

This proves that we can take the limit δ → 0 in the first part of the integral. For the second
part, one has to do the same estimates in L2(μ), and the computations are the same. ��

6 An H1 estimate on the positive part

The goal of this section is to prove that, in dimension d = 1, there indeed exists a convolution
kernel satisfying the H1 conv property. In order to avoid boundary issues, the result will be
proven on the 1−dimensional torus S1. As we already explained in the previous section, this
implies a similar result on a segment, after one reflection.

Before going to dimension one, we would like to explain why this very part of the paper
unfortunately requires us to restrict ourselves to dimension one: the reason lies in the very dif-
ferent behavior of H1 functions in terms of pointwise bounds. Indeed, in the one-dimensional
case H1 functions are continuous, so that the “bad” region where u < 0 (i.e. the region where
we only have an L1 control on the function) has to be far away from regions where u > c;
this is not the case in higher dimension. We note that it would be possible to obtain some
estimates similar to the ones definingH1 conv in any dimension if we added the assumption
that u ∈ L∞ but it is not possible to obtain such estimates if we stick to the the L1 assumption
that we required which, by density, is actually equivalent to working with measures.

Unfortunately, for the sake of the applications of H1 conv to Sect. 5, we cannot assume
u ∈ L∞ as this would be equivalent to ρ,μ ∈ L∞, and L∞ bounds are unknown in our
cross-diffusion system.

Our 1−dimensional result will be proven by considering the kernel

η̃(x) = 2

(m − 1)(1 + |x |)m ,

for m > 2. We have η̃ ∈ L1(R),
∫

η̃(x) dx = 1, and η̃ has a finite first moment. We then
define a kernel on the torus using

η(x) =
∑
k∈Z

η̃(x − k).

An easy computation shows that, for x �= 0, we have

η̃′(x) = − m

1 + |x | η̃(x) sign(x),
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which implies in particular
|η̃′| ≤ mη̃. (6.44)

Moreover, we have in the distributional sense,

η̃′′ = m(m + 1)

(1 + |x |)2 η̃ − 2m

m − 1
δ0,

hence the positive part of the second derivative satisfies

(η̃′′)+ = m(m + 1)

(1 + |x |)2 η̃.

In particular, we also obtain

(η̃′′)+η̃ ≥
(
1 + 1

m

)
|η̃′|2.

All these properties can be translated in terms of the kernel η on S1, since we have uniform
convergence of the series defining η together with its first and second derivatives. Moreover

|η′(x)| ≤
∑
k

|η̃′(x − k)| ≤
(
1 + 1

m

)−1/2 ∑
k

|(η̃′′)+(x − k)1/2η̃(x − k)1/2|

≤
(
1 + 1

m

)−1/2
(∑

k

(η̃′′)+(x − k)

)1/2 (∑
k

η̃(x − k)

)1/2

,

=
(
1 + 1

m

)−1/2

(η′′)+(x)1/2η(x)1/2.

which proves that also η, which is a C2 function except at 0 where η′′ is a negative Dirac
mass, satisfies

(
η′′)

+ η ≥
(
1 + 1

m

)
|η′|2.

In order to approximate the identity on the torus, we define

η̃ε(x) = 1

ε
η̃

( x
ε

)
,

and ηε(x) := ∑
k∈Z η̃ε(x − k). Observe that ηε is of mass 1 on the torus and that it satisfies

|η′
ε| ≤ ε

η ε

,

(
1 + 1

m

)
|η′

ε|2 ≤ (η′′
ε )+ηε.

As a consequence of the properties of ηε we do have, for any L1 functionw ≥ 0, denoting
wε := ηε ∗ w, (

1 + 1

m

)
|w′

ε|2 ≤ wε (η′′
ε )+ ∗ w. (6.45)

This can be, indeed, obtained from the Cauchy–Schwartz inequality:

|η′
ε ∗ w|2 ≤

(∫
w(x − y)|η′

ε(y)| dy
)2

≤
(∫

w(x − y)

(
1 + 1

m

)−1/2 √
ηε(y)(η′′

ε )+(y) dy

)2

≤
(
1 + 1

m

)−1 ∫
w(x − y)ηε(y) dy

∫
w(x − y)(η′′

ε )+(y) dy.
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Proposition 6.1 There exists K > 0 (depending only on m) such that, for any u ∈ L1 whose
positive part u+ is in H1 ∩ L∞, and for every c > 0, we have

‖((uε − c)+)′‖L2 ≤ K
‖u+‖L∞

c
‖(u+)′‖L2 .

Proof Let u be as in the statement of the proposition. For notational simplicity, let us denote
v = u+ and w = u− the positive and negative parts of u respectively. Hence u = v − w. We
have∫

|(uε − c)′+|2 =
∫

1vε−wε>c|(vε − wε)
′|2

≤ 2
∫

1vε−wε>c(|v′
ε|2 + |w′

ε|2) ≤ 2
∫

|v′|2 + 2
∫

1vε>wε+c|w′
ε|2.
(6.46)

Note that the desired inequality is straightforward if c > ‖v‖L∞ (since in this case (uε−c)+ =
0), so we can assume ‖v‖L∞ ≥ c and estimate the term

∫ |v′|2 with ‖v‖2L∞
c2

‖v′‖2
L2 .

We now handle the last term∫
1vε>wε+c|w′

ε|2 =
∫

1vε>wε+c
|vε−v|> c

2

|w′
ε|2 +

∫
1vε>wε+c

|vε−v|≤ c
2

|w′
ε|2. (6.47)

First, observe that, on the set where wε + c < vε , we have wε ≤ ‖v‖L∞ . Moreover, by the
definition of ηε, we have, on the same set,

|w′
ε|2 ≤ m2

ε2
w2

ε ≤ m2

ε2
‖v‖2L∞ ,

where the first inequality is a consequence of (6.44), after scaling by ε. Observe also that we
have ∣∣∣{|vε − v| >

c

2

}∣∣∣ ≤ K (m)
4

c2
ε2‖v′‖2L2 .

The last inequality is readily obtained by using
∣∣{|vε − v| > c

2

}∣∣ ≤ 4
c2

∫ |vε − v|2, together
with ||vε − v||L2 ≤ C ||v′||2L , an inequality which is a consequence of the characterization of
H1 functions in terms of the norms of the difference between the function and its translations,
as soon as the convolution kernel has finite first moment (which leads, hence, to a constant
depending on m appear).

Combining the last two estimates we obtain∫
1vε>wε+c

|vε−v|> c
2

|w′
ε|2 ≤ K (m)

c2
‖v′‖2L2‖v‖2L∞ .

Now, observe that we have∫
1vε>wε+c

|vε−v|≤ c
2

|w′
ε|2

≤
∫

1wε≤‖v‖L∞
v≥ c

2

|w′
ε|2 ≤

∫ (
2v

c

)2 (‖v‖L∞

wε

)2

|w′
ε|2 = 4‖v‖2L∞

c2

∫
v2

1

w2
ε

|w′
ε|2.

Thus, (6.47) finally re-writes as∫
1vε>wε+c|w′

ε|2 ≤ K (m)
‖v′‖2

L2‖v‖2L∞

c2
+ 4‖v‖2L∞

c2

∫
v2

1

w2
ε

|w′
ε|2. (6.48)
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Let us now treat the following term of (6.48):∫
v2

1

w2
ε

|w′
ε|2.

We have

−
∫

v2
1

w2
ε

|w′
ε|2 =

∫
v2

(
1

wε

)′
w′

ε = −2
∫

vv′ w′
ε

wε

−
∫

v2
1

wε

w′′
ε

≤ 1

2m

∫
v2

1

w2
ε

|w′
ε|2 + 2m

∫
|v′|2 −

∫
v2

1

wε

(η′′
ε )+ ∗ w. (6.49)

In the last line we omitted the term with (η′′
ε )− ∗ w since it is equal to a multiple of w, and

vw = 0 (since v and w are the positive and the negative parts of the same function).
Let us handle the last term on the right-hand side of the above inequality. We have∫

v2
1

wε

(η′′
ε )+ ∗ w =

∫
v2

1

w2
ε

(w ∗ ηε)
(
(η′′

ε )+ ∗ w
) ≥ 1 + m

m

∫
v2

1

w2
ε

|w′
ε|2,

where we used (6.45) to establish the last inequality. Putting this in (6.49), we get∫
v2

1

w2
ε

|w′
ε|2 ≤ 4m2

∫
|v′|2.

Now, putting this into (6.48) and into (6.46) yields the final relation. ��
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