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1Université Grenoble Alpes,
CNRS, LIPhy, F-38000 Grenoble,
France
2Univ. Bordeaux, CNRS, LOMA,
UMR 5798, 33400 Talence,
France

(Dated: March 9, 2023)

Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects, and
are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and some specific
symmetry-breaking mechanism. In contrast, low-Reynolds-number flows are usually overdamped and
do not exhibit such peculiar and interesting features. However, the inclusion of boundary effects
qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies
have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or
surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order
to identify and unify the questioning within the associated communities, and pave the way towards
future research.
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I. INTRODUCTION

A. Context

We are all familiar with dynamically-induced lift forces in
hydrodynamics. These are typically observed for big and fast
objects, e.g. in aeronautics or ball sports, and result from
fluid inertia (i.e. large Reynolds numbers) and a symmetry-
breaking mechanism, such as wing shape or ball rotation. We
define here a lift force as a force acting perpendicularly to the
initial motion of the object, which is generally due to its initial
acceleration or to its advection by external flows.

While more discrete in everyday life, lift effects do also
exist in low-Reynolds-number flows, and often result from a
key role played by the flow boundaries. Indeed, the confined
hydrodynamic interaction between two objects (e.g. a particle,
a wall, etc.) or the bulk fluid-structure interaction may break
the flow symmetry. This was already understood by Reynolds
(1886) through his famous tilted slider. In the latter example,
a lift force exists due to a fore-aft geometrical asymmetry be-
tween two immersed rigid objects in sliding relative motion
(see Fig. 1). However, for a rigid sphere moving along a rigid
wall, the time reversal-symmetry of the steady Stokes equa-
tions coupled to the fore-aft symmetry of the contact warrants
the absence of any emergent normal force in the problem. To
overcome this impossibility, in the absence of any inertial ef-
fects, other symmetry-breaking mechanisms are thus required,
as schematized in Fig. 2.

A prominent example is that of the lift induced by elastic
deformations, for which we wish to bridge the gap between
two aspects of the phenomenon that were historically studied
by separate research communities. These are: on the one
hand, the small-gap limit where the key mechanism is the
deformation of elastic surfaces mediated by the fluid separating
the objects in relative motion; and, on the other hand, the
long-distance limit where the deformation is directly set by
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Figure 1 Reynolds’ slider. Despite the time-reversal symmetry of the steady Stokes equations, the fore-aft asymmetry of a tilted immersed slider
that moves tangentially to a neighbouring wall generates a difference in the hydrodynamic pressure magnitudes at the front and at the back of
the slider. As a consequence, the latter experiences a normal force. This seminal system conceived by Reynolds highlights the leitmotiv of this
review: at low Reynolds numbers, a symmetry breaking in transverse motion may generate normal forces. Figure taken from (Reynolds, 1886).

an externally applied flow. In the next subsection, we shall
give a flavour of these regimes, and of the transition between
them, through a qualitative description of some selected works,
before entering in the details in sections II and III. Interactions
between soft particles, that may be brought in close contact by
the flow, lead to situations where both short-range and long-
range effects come into play. This situation, which is relevant
to understand the structure and rheology of suspensions of soft
particles, is reviewed in section IV.

Among other mechanisms giving rise to the symmetry
breaking at the heart of lift forces at zero Reynolds num-
ber, electrokinetic effects are dominant in the literature and
are presented in section V. They involve ionic currents tak-
ing place when fluid-immersed rigid objects carrying surface
charges are in relative motion. Such phenomena are typically
of interest in microparticle-sorting applications, and embody
an illustration of cases where non-inertial lift forces emerge
between objects that are not necessarily deformable.

Those are important mechanisms since they demonstrate
that inertial-like effects can be triggered at microscopic and
biological scales through a smart role of boundaries. The
three mechanisms discussed so far will be the topic of the
three main sections of the present review, respectively. Other
mechanisms, unexplored yet or marginally explored, will be
also briefly mentioned in the perspectives of the concluding
section.

B. Prelude: from soft lubrication to bulk
elastohydrodynamics

Lipid vesicles, which are drops enclosed by a lipidic mem-
brane, have been studied both in the vicinity of a wall and far
from it, when deformed by a shear flow. We highlight here a
selection of studies on these objects that explored in particular
the transition between the near-wall and the far-wall regimes.

The lift force upon detachment acting on a heavy, quasi-

spherical, lipid vesicle lying on a substrate was determined
experimentally by Lorz et al. (2000) using an interferometric
technique, that allows one to accurately determine the gap pro-
file between a particle and a substrate, if it is on the order of
some hundreds of nanometers. A theoretical interpretation of
their results, displaying quantitative agreement with the exper-
imental data, was proposed by Seifert (1999), while in a letter
published simultaneously in the same journal Cantat and Mis-
bah (1999) also provided an expression for the lift force. Both
groups considered a vesicle pinned to a rigid substrate by an
adhesive potential, and determined, using similar approaches,
the lift force acting on the vesicle as it is pinned to the wall at a
given distance ℎ from it (given by the location of the potential
energy minimum), while being still able to deform and open
an asymmetric gap between its surface and the wall. Cantat
and Misbah considered a 2D vesicle whose asymmetry is es-
sentially described by its front and back curvatures (allowing
for feedback between gap shape and flow stress through the
curvature energy of the membrane), and found a ℎ−1/2 depen-
dence for the lift force. Seifert considered a 3D vesicle but
assumed a linearly increasing gap, and used the adhesion en-
ergy as a control parameter, rather than the curvature energy.
He found a ℎ−1 dependence for the lift force. In both models,
forces depend quadratically on the shear rate, a signature of
soft-lubrication-based mechanisms that will be described in
section II. Interestingly, Cantat and Misbah also ran numeri-
cal simulations of the lift force as a function of shear rate and
highlighted a transition between this quadratic regime, when
the vesicle is pinned, to a regime where the force is linear with
the shear rate, when the vesicle is detached. This points to the
fact that while the opening of an asymmetric gap is, in the near-
wall regime, the result of local balance between flow stress and
particle elasticity, the shape of the vesicle that is far from the
wall is governed by the sole interaction with the bulk flow. This
regime of shear-induced lift will be discussed in section III.
More recently, a similar case of coupling between adhesion
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(a) Inertial lift (b) Viscous lift
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Figure 2 Required symmetry-breaking mechanisms for inertial and viscous lift forces to arise, transversally to the main motion imposed by an
external flow or by a driving field acting on the particle (blue arrows), leading to tilted trajectories (green arrows). (a) Inertial lift: a bottom-up
asymmetry may suffice to create a pressure difference across the particle, leading to the apparition of the lift force (Matas et al., 2004).
Examples of such a symmetry breaking include (a1) asymmetry in shape as for an airplane wing or (a2) rotation-induced asymmetry, as for a
rotating ball sport experiencing a Magnus effect in free space (Dupeux et al., 2010), or a sphere in a channel according to the Segré-Silberberg
effect (Segre and Silberberg, 1961). Note that wings often exhibit a fore-aft asymmetry as well, for drag reduction requirements. (b) Viscous
lift: even in the presence of bottom-up asymmetry, a fore-aft symmetry prevents the apparition of a lift force. If it was not the case, let us
assume the particle has a velocity given by (i). A left-right reversal of the boundary conditions (e.g. external flow, gravity field,...) would lead,
by fore-aft symmetry of the particle, to the symmetric motion (ii). However, the time reversibility of the steady Stokes equations imposes also
that the motion would be according to (iii). Compatibility between (ii) and (iii) leads to the impossibility of the existence of a lift force. This
marks the strong difference with situations where fluid inertia is not negligible. The additional fore-aft asymmetry may be due to e.g. (b1) the
particle geometry/deformation or (b2) the boundary conditions at the surface of the particle, that can be linked to charge distribution or slip
properties, among others. In most situations, the presence of a wall warrants the bottom-up asymmetry, but we shall also explore cases where
lift occurs in the absence of nearby walls but with a vertical flow gradient.

Long distance regimeTransition zoneSoft lubrication

Figure 3 Transition between the long-distance regime and the near-
wall regime where the soft-lubrication framework applies: the lift
velocity 𝑈̂𝐿 of a lipid vesicle sheared above a wall is plotted against
its distance 𝑧 from the wall, located at 𝑧 = 0 (green dots). The scale is
set by the typical size 𝑅 of the particle. Blue triangles show the near-
wall correction Δ𝑈̂𝐿 that measures the difference between the ∼ 1/𝑧2
long distance contribution and the velocity 𝑈̂𝐿 . This contribution
scales as 1/𝑧4. Inset shows three shapes at three different positions.
Data from (Zhao et al., 2011), Fig.2, for a vesicle with reduced volume
of 0.95 and no viscosity contrast – see section III for definitions.

forces and shear-induced lift has been studied for drops on a
deformable polymer brush, leading to complex phase diagrams
(Leong and Le, 2021). We stress here that these shear-induced
lift phenomena require the considered object to be deformed,
which, in the vanishing-Reynolds-number context that we fo-
cus on, implies rather soft objects such as biological materials,
drops and artificial capsules. We will exclude here the partic-
ular case of filaments, which have generally a very complex
shape dynamics even in the absence of walls, thus rendering
difficult our quest for universal mechanisms.

The transition from the near-wall regime to the far-field
regime can also be illustrated through the work of Zhao et al.
who simulated a lipid vesicle of typical size 𝑅 whose center
of mass is placed at different positions 𝑧 above a wall, and
sheared by the flow (Zhao et al., 2011). As shown in Fig.
3, a vesicle sheared far from the wall adopts a tilted shape
characterized by a point-wise symmetry, which is reminiscent
of the symmetry of the imposed flow, if the presence of the
wall is omitted. The vesicle lifts away from the wall with a
velocity 𝑈̂𝐿 (𝑧) that scales like 1/𝑧2, which we will show to be
a generic behaviour. Here, the presence of the wall induces a
flow that repels the vesicle, whose shape is essentially dictated
by the shear flow. If the vesicle is placed closer to the wall,
a correction to the far-field lift velocity must be considered,
which we show here to scale like 1/𝑧4. This higher-order term
(with respect to the inverse distance 𝑧−1) comes together with
a change in shape of the vesicle, as a result of the interaction
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with the wall, mediated by the fluid. Indeed, as seen in the
inset of Fig. 3, the bottom surface of the vesicle is deformed.
In this regime, the wall not only induces a lift on the vesicle by
inducing a mean hydrodynamic stress on it, but it also modi-
fies its shape, which in turn modifies the way the flow pushes
away the vesicle. If, far from the wall, a description in terms
of center-of-mass-to-wall distance 𝑧 is relevant, considering
the near-wall regime (𝑧 ≃ 𝑅 and below) requires to carefully
study the shape of the gap between the particle and the wall.
The relevant parameter becomes ℎ, the minimal value of the
gap thickness. When ℎ/𝑅 ≪ 1, the relevant framework to
analyze the phenomenology is the lubrication theory, which
will allow one to solve the flow-structure interaction problem.
This strong elastohydrodynamic coupling becomes the domi-
nant mechanism giving rise to lift in the absence of imposed
flow that deforms the particles.

II. SOFT-LUBRICATION LIFT

A. Context

Soft and wet contacts are widespread in nature and tech-
nology. Their rich history in science and engineering in-
volves issues and scales as diverse as the lubrication of roller
bearings (Greenwood, 2020) after the industrial revolution, or
the catastrophic geological landslides (Campbell, 1989). The
properties of these contacts implicate the coupling between
the local hydrodynamic pressure induced by fluid flow and the
deformation of the confining solids. Often as well, for stiff
surfaces associated with industrial devices, non-Newtonian
lubricant effects (e.g. piezoviscous and thermoviscous be-
haviours) are expected to play an important role (Fillot et al.,
2011) and require multiscale numerical modeling (Ewen et al.,
2021). These interesting features for industrial lubricant flows
may be considered as more minor corrections in the context of
soft materials and small velocities at stake here, despite some
potential interest for sorting strategies (Yang et al., 2012), and
are thus not addressed in details in the following. In the same
spirit, if the fluid itself is non-Newtonian (e.g. a polymer
solution), the nonlinear rheology may introduce the necessary
symmetry breaking that gives rise to particle lift, even for rigid
boundaries (Leal, 1979). In such cases, particles would e.g.
migrate to regions of low normal-stress differences (low-shear-
rate regions). These forces will not be addressed in detail in
the present review.

Recently, such an elastohydrodynamic (EHD) coupling
gained attention in the context of confined, soft and biological
matter, where very compliant solids and tiny length scales are
common (Brochard-Wyart, 2003). In fact, this coupling could
conceivably play a crucial role in the motion of various phys-
iological and biological entities. Examples are numerous and
include e.g. the incredible frictional properties of mammalian
joints (Mow et al., 1984) through the fine interplay between
soft cartilage and viscous synovial fluid, or the crucial influ-
ence of vessel boundaries on the motion of deformable red

blood cells (Goldsmith, 1971). The normal motion towards a
soft wall was investigated in particular (Balmforth et al., 2010;
Karan et al., 2018; Leroy and Charlaix, 2011; Wang et al.,
2017a), with a special attention given to the collision (Davis
et al., 1986) and rebound (Gondret et al., 1999; Tan et al.,
2019) properties.

Furthermore, through surface-forces apparatus
(SFA) (Leroy and Charlaix, 2011; Leroy et al., 2012;
Villey et al., 2013; Wang et al., 2015; Wang and Frechette,
2018; Wang et al., 2017b) and atomic-force microscopy
(AFM) (Basoli et al., 2018; Chan et al., 2009; Guan et al.,
2017; Kaveh et al., 2015; Vakarelski et al., 2010; Wang et al.,
2018), the near-contact EHD (termed soft-lubrication in the
following) coupling offers an alternative strategy for micro
and nanorheology of fragile soft materials, with the key
advantage of avoiding any solid-solid adhesive contact that
could alter their properties. Indeed, as shown in Fig. 4, the
motion of a spherical probe in a viscous fluid, and near a soft
material, generates a lubrication pressure field that can in turn
deform the soft material. As a consequence, the lubrication
gap is altered as compared to the rigid case, and the impedance
response is directly affected, with the appearance of elastic
contributions.

B. The key mechanism

Despite the irrelevance of inertia, a soft-lubrication lift force
emerges for elastic bodies moving past each other within a vis-
cous fluid. Essentially, any fore-aft-symmetric object moving
within such a fluid and along a nearby soft wall is repelled
from the latter by a dynamically-generated emergent normal
force. This force intimately arises from a symmetry breaking
in the contact shape (see Fig. 5), and thus the associated flow
fields, due to the EHD coupling described above. Qualita-
tively, the elastic deformation induced by the hydrodynamic
pressure generates a self-sustained asymmetric contact simi-
lar to the one in Reynolds’ rigid slider (see Fig. 1), and thus
a normal force. This effect is well known at macroscopic
scales, for relatively rigid materials such as car tires undergo-
ing aquaplaning, or industrial roller bearings getting deformed
in operating motors and machines.

Moving on to the context of mesoscale physics and soft
matter, the earliest theoretical descriptions of such a soft-
lubrication lift effect are the ones by (Coyle, 1988), Dowson
and Jin (1992), Lequeux et al. (1992), as well as by Seki-
moto and Leibler (1993), to the best of our knowledge. The
underlying motivation behind these similar approaches is the
calculation of forces between soft curved surfaces undergo-
ing shear, which are important for the interpretation of SFA
measurements, the physics of cartilage, and the rheology of
a variety of complex fluids such as suspensions of colloidal
particles protected by grafted or adsorbed polymer chains,
suspensions of gel microparticles, or polymer emulsions and
alloys on certain time scales.

The general idea can be illustrated from e.g. (Sekimoto and
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We study the hydrodynamic interaction between a sphere and an elastic surface at a nanoscale with a

dynamic surface force apparatus. We show that the interplay between viscous forces and elastic

deformations leads to very rich scaling properties of the force response, providing a unique signature

of the surface elastic behavior. These properties are illustrated on three different examples: a thick

elastomer, a thin elastomer film, and a layer of micrometric bubbles. We show that this fluid probing

allows one to measure the Young’s modulus of surfaces and soft thin layers at distance, without any direct

solid-solid contact.

DOI: 10.1103/PhysRevLett.108.264501 PACS numbers: 47.15.G!, 68.08.!p, 68.60.!p

The nano-mechanics of soft, thin materials, such as poly-
mer coatings, has become an important issue with the
development of composite and nano-composite new mate-
rials and their applications in many industrial processes
(surface coatings, stability of structures used in microelec-
tronics, etc.) [1–4]. Direct characterization based on touch-
ing the surfacewith a solid probe does not always provide an
absolute determination of elastic moduli, since adhesion
and friction forces are intrinsically of the same magnitude
as the elastic forces [5–7]. In some extreme cases, such as
bubbles or biological systems, contact forces can even ruin
the sample. A naive idea would be to blow gently on these
soft surfaces to deform them without touching them. In this
Letter, we rather demonstrate that a liquid probe can be
an alternative to classical hard contact mechanics. More
precisely, we show that the nano-hydrodynamic interaction
between a sphere and a soft layer supported on a rigid
substrate can provide a new, precise, and faithful method
for measuring its absolute elastic properties. Indeed in the
past ten years, surface forces measurements and more gen-
erally very weak forces measurements have reached an
encompassed precision [8–11] and nano-hydrodynamic
forces have been used to probe the friction at a solid-liquid
interface. We extend here the use of nanoflows to measure
the mechanical properties of surfaces.

We use the nanoscale flow created by a sphere which is
oscillated at a very small amplitude in the direction normal
to the tested surface. We use to create this flow a surface
force apparatus (SFA) [12]. The fluid layer between the
sphere and the plane is forced to drain inward and outward
of the gap, generating a dynamic pressure at the excitation
frequency !=2!. More specifically, we define the dynamic
response ~G!ðDÞ ¼ ~F!=h0 as the ratio of the complex am-
plitude ~F! of the hydrodynamicforce to the amplitude h0 of
the oscillating motion [Fig. 1(a)]. If the probed surface is
perfectly rigid, the force applied by the flow is the so-called
Reynolds force of amplitude RðDÞ ¼ 6!"h0!R2=D, "

being the fluid viscosity andD the sphere—surface distance.
An important feature of the Reynolds flow is that the radial
extension of the applied pressure is of order

ffiffiffiffiffiffiffiffiffiffi
2RD

p
. Thus,

when the distance is varied, the hydrodynamic force and the
probed area vary in opposite ways, resulting in a great
flexibility of this mechanical essay. If the target surface is
not rigid but elastically compliant, the lubrication flow
couples to its elastic deformation. In a recent paper, we
have calculated theoretically the elasto-hydrodynamic
(EHD) linear response ~G!ðDÞ as a function of the
Young’s modulus E and the Poisson ration # of the material
[13]. In this Letter, we demonstrate that the precise mea-
surement of ~G!ðDÞ allows for an absolute determination of
the elastic modulus of the surface without further assump-
tion on adhesion properties. This experimental proof is
performed on three examples which illustrate the three
possible types of elasto-hydrodynamic interactions.

(a) (b)

FIG. 1 (color online). Principle of the experiment. (a) A sur-
face force apparatus creates a flow between a sphere and an
elastic film (the sphere oscillates with an amplitude h0 at a
frequency f ¼ !=2!). The typical distance over which the
flow probes the soft surface quotes

ffiffiffiffiffiffiffiffiffiffi
2RD

p
. (b) Spring-and-

dashpot model equivalent to the system. The dashpot character-
istic is given by the Reynolds force.

PRL 108, 264501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

0031-9007=12=108(26)=264501(5) 264501-1 ! 2012 American Physical Society

Related results by others : surface force apparatus

G0
!(D)

Figure 4 (left) In a surface-forces apparatus (SFA), a flow between an oscillating sphere and an elastic film is created. (right) Real (blue)
and imaginary (red) parts of the force-distance impedance response 𝐺𝜔 (𝐷) obtained for an elastomer (crosslinked PDMS) and compared to
soft-lubrication theory (dashed lines). Figure adapted from (Leroy et al., 2012).Viscous sliding + soft boundary = emergent lift

Integrating (4)–(6) leads to the dimensionless Reynolds
equation [5]:

0 ! @X"6H #H3@XP$: (7)

Since the gap pressure is much larger than the ambient
pressure, we may approximate the boundary conditions
on the pressure field as

P"1$ ! P"%1$ ! 0: (8)

Next, we consider the deformation of the elastic layer of
thickness Hl that rests on a rigid support. Balance of
stresses in the solid leads to

r & ! ! 0; (9)

with the stress given by

! ! G"ru#ruT$ # !r & uI; (10)

where u ! "ux; uz$ is the displacement field and G and !
are the Lamé constants for the solid, which is assumed to
be isotropic and linearly elastic. To calculate the increase
in gap thickness H"x$, we use the analog of the lubrication
approximation in the solid layer [6]. The length scale in
the z direction is Hl and the length scale in the x direction
is

!!!!!!!!!

h0R
p

. We take the thickness of the solid layer to be
small compared to the thickness of the contact zone,
!!!!!!!!!

h0R
p ' Hl, and consider a compressible elastic material,
G( !, to find the vertical force balance: @zzuz ! 0. The
boundary condition at the solid-fluid interface is ! & n !
%pn, so that "2G# !$@zuz"x; 0$ ! %p"x$. Using the zero
displacement condition at the interface between the soft
and rigid solid, uz"x;%Hl$ ! 0 leads to the following
expression for the displacement of the surface:

uz"x; 0$ ! % Hlp"x$
2G# !

: (11)

The dimensionless version of the gap thickness, h !
h0"1# x2

2h0R
% uz"x;0$

h0
$, is

H"X$ ! 1# X2 # "P"X$; (12)

where " ! !h=h0 ! "
!!!!!!

2R
p

Hl#V$=)h5=20 "2G# !$* is the
dimensionless parameter governing the size of the de-
flection. Inspired by the some recent experiments [7]
in a similar geometry, we consider a cylinder of radius
R ! 10 cm coated with a rubber layer (Hl ! 0:1 cm,
G ! 1 MPa) moving through water (# ! 1 mPa s, V !
1 cm=s, h0 ! 10%3 cm). Then " ! 10%2 + 1, so that we
may use the perturbation expansion P ! P0 # "P1,
where P0 is the antisymmetric pressure distribution
corresponding to an undeformed layer, and P1 is the
symmetric pressure perturbation induced by elastic de-
formation. Substituting (12) into (7) leads to the following
equations for P0; P1:

"0:@X)6"1# X2$ # "1# X2$3@XP0* ! 0; (13)

"1:@X)6P0 # 3"1# X2$2P0@XP0 # "1# X2$3@XP1* ! 0;
(14)

subject to the boundary conditions P0"1$ ! P0"%1$ !
P1"1$ ! P1"%1$ ! 0. Solving (13) and (14) yields

P ! 2X
"1# X2$2 # "

3"3% 5X2$
5"1# X2$5 : (15)

Then the normal force is

F !
Z 1

%1
PdX ! 3$

8
"; (16)

In dimensional terms, F ! )"3
!!!

2
p

$$=4*f"#2V2HlR3=2$=
)h7=20 "2G# !$*g; whose scaling matches the result re-
ported in [8], but with a different prefactor. When " is
not small, we solve (7), (8), and (12) numerically. Figure 2
shows that as " increases the mean gap increases and its
profile becomes asymmetric, resembling the profile of a
rigid slider bearing, a configuration well known to gen-
erate lift forces [4]. In addition, this increase in the gap
size causes the peak pressure to decrease since p(
"#VR1=2$=h3=20 . These two competing effects produce a
maximum lift force when " ! 2:06.

The physical basis for the previous arguments can be
more easily understood using scaling and therefore allows
us to generalize these results to a variety of configurations
involving lubrication of soft contacts (Fig. 3; Table I).
Balancing the pressure gradient in the gap with the vis-
cous stresses yields

p
l
(#V

h2
! p(#VR1=2

h3=2
: (17)

Substituting h ! h0 # !h, with !h + h0, we find that
the lubrication pressure is

FIG. 1. A rigid cylinder moves at a velocity V a distance h0
above a rigid substrate coated with an elastic layer of thickness
Hl. Hl; h0 +

!!!!!!!!!

h0R
p ! l. We illustrate the steps of the pertur-

bation analysis. (b) An antisymmetric pressure distribution
pushes down on the gel in front of and pulls the gel up be-
hind the cylinder. (c) The fore-aft gap profile symmetry is
broken. (d) The new pressure field produces a normal force.
(a) and (b) correspond to an undeformed substrate, while (c)
and (d) correspond to solutions of (7), (8), and (12) for
" ! "!h$=h0 ! 10.

P H Y S I C A L R E V I E W L E T T E R S week ending
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Figure 5 Principle of the soft-lubrication lift force. For a non-
deformed wall (a), the classical lubrication pressure 𝑝(𝑥) induced in
the viscous fluid by the tangential motion of a sphere at velocity 𝑉 is
antisymmetric in the transverse direction 𝑥 (b), resulting in a null net
force (integral of the pressure along 𝑥) in the normal direction 𝑧. In
contrast, a soft surface is deformed by the pressure field (c). The latter
then loses its symmetry (d), which results in a finite emergent normal
force: the soft-lubrication lift force. Figure adapted from (Skotheim
and Mahadevan, 2004).

.

Leibler, 1993), through the calculation of the soft-lubrication
interaction between a cylindrical object of radius 𝑅 moving
at transverse velocity 𝑉 past and nearby a flat wall (as in Fig.
5), within a viscous fluid of dynamic viscosity 𝜇, both solids
being covered by polymer brushes. The latter are modeled as
identical thin linear-elastic compressible layers.

A thin linear-elastic compressible layer with Lamé coeffi-
cients of similar magnitudes can be mapped onto a Winkler’s
foundation, i.e. a mattress of independent springs with a local

This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 3669--3683 | 3671

where w is also the beam deflection, p is the applied (per unit
length along beam) lateral loading,† E and I are, respectively,
Young’s modulus and second moment of area of the beam about
its neutral axis, and k is the elastic foundation stiffness (force per
unit displacement per unit length of beam).

The complimentary solution of the GDE involves exponen-
tially varying, sinusoidal undulations of the form:

w(x) = C1e!lwx cos lwx + C2e!lwx sin lwx + C3elwx cos lwx

+ C4elwx sin lwx (2)

where C1, C2, C3, and C4 are the integration constants deter-
mined from problem-specific boundary and/or continuity con-
ditions. As can be seen in its definition given above, the
characteristic length scale lw

!1 represents the deformability
of the foundation relative to that of the beam. As one can see
from (2), the reciprocal length governs the decay rate (from the
point of load application) and the period of the oscillations.
It corresponds to the exponential decay length in a similar
manner that the shear lag distance is defined in the Volkersen
solution.4 The rapid decay rate relative to the oscillation period
means that the oscillations become negligible after several
characteristic lengths; 5lw

!1 is the traditional definition of a
‘‘short beam’’ for BoEF solutions.5 It is tacitly assumed here
that, during the deformation process, there is no separation

between the deformed beam and the foundation and that
neighboring particles of the foundation deform independently
of each other. Furthermore, the bending-induced axial dis-
placements at the beam surface are neglected in the Winkler
formulation (and most extensions, including all those dis-
cussed herein).

From its introduction, Winkler’s BoEF approach found
widespread applications as well as numerous extensions.
Biot6 took exception with Winkler’s solution in 1937, arguing
that the foundation model applicability was rather limited,
effectively because it applied to a layered system (beam atop a
foundation layer atop a rigid substrate). Biot’s interesting
development extended the solution to the case where the
foundation is a half-space and the applied load is sinusoidal,
resulting in a foundation stiffness that effectively became a
function of the spatial frequency of the applied load. His
analysis would later find widespread applications for surface
layer wrinkling analysis, where the surface layer thickness is
small compared to that of the underlying material.

Hetényi3 presented solutions for a very wide range of
BoEF geometries and loading cases, including applications to
cylindrical pressure vessels, torsion, and buckling, in his classic
1946 monograph. Apparently largely based on his dissertation
and postdoc tenure with Timoshenko a decade earlier, this
source remains a thorough and seminal work illustrating some
of the many outcomes of Winkler’s foundation predictions.

Winkler’s foundation is easily extended to a generalized
formulation for plates (shown in Fig. 1c) by using a similar,
spatially varying restoring force (per unit area):r4w = ( p ! q)/D,

Fig. 1 Illustrations of configurations and sign conventions for: (a) simple beam on elastic foundation subjected to lateral loading, (b) free body diagram of
a differential beam element including moment M and transverse shear V, (c) plate on elastic foundation, and (d) plate supported by a liquid of density rf.

† Note that here and elsewhere throughout the paper, p is the externally applied
mechanical loading. The zero deflection reference state is assumed to coincide
with any deflection resulting after the linear (for beam) or areal (for plate) self
weight is applied.
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Figure 6 Schematic involving a Winkler’s foundation, i.e. a model
and simple type of elastic substrate characterized by an assembly
of parallel, independent and identical springs, leading to a local
and linear response to the external pressure field 𝑝(𝑥). For thin
enough, compressible elastic layers, such a toy model even provides
a quantitative description of their elastic Green’s function. Figure
adapted from (Dillard et al., 2018).

.

and linear response to the external pressure field 𝑝(𝑥) (see
Fig. 6). Interestingly, the Winkler’s foundation was proven
to be of great modelling power (Dillard et al., 2018). In
such a description, the normal deformation field is given by
𝛿(𝑥) = −𝐿𝑝(𝑥)/(2𝐺), where we introduced an effective shear
modulus 𝐺 as well as an effective thickness 𝐿 of the mattress,
and where we assumed for simplicity a full compressibility (i.e.
vanishing Poisson ratio). Near its minimum ℎ0, the steady-
state fluid-gap profile ℎ(𝑥), along the transverse direction 𝑥 of
motion, is well approximated by a parabola (i.e. second-order
development of a spherical contact near the apex) corrected
by the elastic deformation of the elastic layer induced by the
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hydrodynamic pressure. It thus follows that:

ℎ(𝑥) ≃ ℎ0 +
𝑥2

2𝑅
+ 𝐿

2𝐺
𝑝(𝑥) . (1)

a. Scaling analysis The main idea is then based on a hierarchi-
cal scale separation, by considering that the elastic deformation
is small compared to the fluid-gap thickness, which is itself
small compared to the cylinder radius. By invoking the steady
Stokes equations in the lubrication approximation, it follows
that the leading-order pressure magnitude scales as∼ 𝜇𝑉ℓ/ℎ 2

0 ,
where ℓ =

√
2𝑅ℎ0 is the characteristic horizontal length scale,

given by the Hertz-like hydrodynamic radius emerging from
the parabolic approximation in Eq. (1). In such a framework,
and in addition to the lubrication parameter ℎ0/𝑅 ≪ 1, one
finds 𝜅 ∼ 𝜇

√
𝑅𝑉𝐿/(𝐺ℎ5/2

0 ) – the dimensionless compliance –
as a second natural small parameter of the problem. Then, an
expansion of the soft-lubrication flow problem is performed
at order 1 in 𝜅. The zeroth-order contribution corresponds to
the purely rigid case with gap profile ℎ (0) (𝑥) ≃ ℎ0 + 𝑥2/(2𝑅)
and a zeroth-order pressure field 𝑝 (0) (𝑥) that can be computed
analytically, and that is found to be antisymmetric in 𝑥 (Fig.
5(b)). This is expected in view of the time-reversal symmetry
of the steady-Stokes equations and the fore-aft symmetry of the
contact shape. As the normal force per unit length 𝐹𝑧 exerted
on the cylinder is dominated, in the lubrication approxima-
tion, by the pressure contribution (i.e. the ratio between the
viscous shear stress and the pressure is of order ℎ0/ℓ ≪ 1),
the latter antisymmetry of 𝑝 (0) (𝑥) implies to evaluate the first
correction 𝑝 (1) (𝑥) induced by the elastic deformation. The
magnitude of the latter scales as ∼ 𝜅(𝜇𝑉ℓ/ℎ 2

0 ). Therefore, the
resulting normal force per unit length reads, at order 1 in 𝜅:

𝐹𝑧 ≃
∫ ∞

−∞
d𝑥 𝑝 (1) (𝑥) ∼ 𝜇2𝑉2𝑅3/2𝐿

𝐺ℎ
7/2
0

. (2)

Interestingly, one sees that this soft-lubrication lift force in-
creases with the viscosity of the fluid, driving velocity, com-
pliance, contact area, and confinement. Then, Sekimoto and
Leibler (1993) confront the theoretical predictions with the
result of force measurements under shear between surfaces
covered with grafted polymer chains. While the observed nor-
mal forces in these experiments are often attributed to brush
swelling due to external flows, the authors quantitatively argue
here that the brush-deformation-induced soft-lubrication lift
force is instead the dominant mechanism behind the common
observations.

b. Soft-lubrication theory Here, as an illustration of the typical
method for the readers, we aim at retrieving the scaling result
above quantitatively. We place ourselves in the rest frame of
the cylinder. We introduce the fluid velocity field 𝑢(𝑥, 𝑧) along
𝑥, and the dimensionless variables: 𝑧 = 𝑍ℎ0, ℎ = 𝐻ℎ0, 𝑥 = 𝑋ℓ,
𝑢 = 𝑈𝑉 , 𝑝 = 𝑃𝜇𝑉ℓ/ℎ2

0, and 𝐹𝑧 = F𝑍 𝜇𝑉ℓ
2/ℎ2

0. Hence, the

gap profile given by Eq. (1) is non-dimensionalized as:

𝐻 (𝑋) = 1 + 𝑋2 + 𝜅𝑃(𝑋) , (3)

where:

𝜅 =
𝐿𝜇𝑉𝑅1/2
√

2𝐺ℎ5/2
0

. (4)

In the lubrication approximation where ℎ0 ≪ 𝑅, the incom-
pressible steady Stokes equations reduce to (Batchelor, 1967;
Oron et al., 1997; Reynolds, 1886):

𝜕𝑍𝑍𝑈 = 𝜕𝑋𝑃 . (5)

with 𝜕𝑍𝑃 = 0, In addition, we impose no-slip boundary condi-
tions, through𝑈 (𝑋, 𝑍 = −𝜅𝑃) = −1 and𝑈 (𝑋, 𝑍 = 𝐻 − 𝜅𝑃) =
0. Solving Eq. (5) with these boundary conditions, and invok-
ing the condition of volume conservation yields the Reynolds
equation:

𝜕𝑋

(
𝐻3𝜕𝑋𝑃 + 6𝐻

)
= 0 . (6)

Solving the latter with vanishing pressure in the far field, one
can then calculate the dimensionless normal force (per unit
length) exerted on the cylinder, through:

F𝑍 =

∫ ∞

−∞
d𝑋 𝑃(𝑋) . (7)

Since 𝜅 ≪ 1, perturbation theory (Skotheim and Mahadevan,
2004) using 𝑃 ≃ 𝑃 (0) + 𝜅𝑃 (1) , allows one to integrate Eq. (6)
at first order in 𝜅, eventually leading to the dimensionless lift
force:

F𝑍 ≃ 3𝜋𝜅
8

, (8)

and thus providing Eq. (2) as well as the missing prefactor
therein.

C. Theoretical developments

Let us make a few comments about Eq. (2). This typical
asymptotic expression of the soft-lubrication lift force per unit
length relies on several assumptions: a 2D problem, a pure
linear and local compressible elastic rheology, a vanishing
compliance, a near-contact/confinement situation, a parabolic
contact shape, etc. It is thus expected to find important modifi-
cations of the lift force in more complex or realistic situations.
First of all, while the perturbative/asymptotic nature of the
approach is expected to hold at small elastic deformations,
through the explicit factor ∼ (𝜇𝑉)2/𝐺 in the force expres-
sion, dimensionality and geometry are expected to modify
the dependencies on the various length scales of the prob-
lem. Similarly, the exact elastic rheology (compressible vs
incompressible, thin vs thick) will modify the constitutive re-
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Table I Different scalings of the soft-lubrication lift force for a
sphere in 3D, for various geometries and rheologies of the elastic
substrate (Skotheim and Mahadevan, 2005). Here, 𝜇 is the shear vis-
cosity of the lubricant, 𝑉 the relative tangential speed, 𝜔 the angular
speed, 𝑛 the contact-degeneracy parameter, 𝐻l the elastic substrate
thickness, 𝑅 the sphere radius, 𝐺 the shear modulus of the elastic
substrate, ℎ0 the fluid-gap thickness (noted ℎ in this manuscript) and
ℎs the shell thickness.

sponse between the pressure 𝑝(𝑥) and the elastic deformation
𝛿(𝑥). Indeed, while a linear response is expected to hold at
small deformations, the simple Hookean proportionality rela-
tion 𝛿(𝑥)/𝐿 ∼ 𝑝(𝑥)/𝐺 may be replaced by a nonlocal relation
of the type:

𝛿(𝑥) ∼ 1
𝐺

∫ ∞

−∞
d𝑥′ 𝑔(𝑥 − 𝑥′)𝑝(𝑥′) , (9)

where 𝑔 is the dimensionless elastic Green’s function (in a
2D description here), that simply reduces to a Dirac distribu-
tion in the Winkler’s case discussed above. Qualitatively, 𝛿
is still the linear response to the source 𝑝(𝑥) with a magni-
tude set by the compliance 1/𝐺 (and even a proportionality in
Fourier space). Quantitatively, we expect differences depend-
ing on the exact Green’s function characterizing the response.
To go one step further along this line of thought, substrate
viscoelasticy and poroelasticity are expected to add one or

several new time scale(s) in the problem, rendering the re-
sponse time-dependent, including memory effects. Similarly,
large deformability and/or elastic nonlinearities may induce a
saturation or even a non-monotonic behaviour of the force with
gap distance, beyond the small-deformation scaling in Eq. (2).
Finally, adding non-Newtonian effects, or conservative surface
forces, such as van der Waals forces and screened electrostatic
interactions, is expected to lead to non-trivial effects and cou-
pling with the EHD picture above. One thus realizes that
there was room and need for further theoretical developments
around Eq. (2).

Perhaps the most emblematic example of such develop-
ments, is the series of work by Skotheim and Mahadevan
(2004, 2005). Therein, a systematic zoology of various non-
conforming and conforming contact geometries and elastic
responses, in 2D and 3D, was addressed analytically and nu-
merically. This is exemplified in Table I, with a collection
of asymptotic lift-force scalings that are valid at large-enough
distance (i.e. weak deformation) for the particular case of a 3D
sphere. This body of work applies the same soft-lubrication
framework as the one introduced above, and employs as well
numerical resolutions to go beyond the scaling expressions and
the small-compliance limit. Interestingly, thanks to the numer-
ical resolution, a maximum in the lift-force-vs-gap-distance
behaviour was found in some cases. Note that a capillary ver-
sion of soft lubrication, analogous to the elastic one at stake
here, was not addressed therein, but was studied previously in
the context of rising bubbles (Sugiyama and Takemura, 2010).

Nearly at the same time, and importantly, Beaucourt et al.
(2004) understood the interest of such a lift force in a biophys-
ical context. These authors addressed in particular the case
of vesicles, as model biological elastic microparticles, during
their motion in water near soft glycocalix layers. Putting num-
bers on the lift expression, they found forces with magnitudes
lying in the physiological range. This work thus highlights
the potential importance of such soft-lubricated couplings for
the dynamics of red blood cells, and thus biological processes
that are essential to life. Note that his article is one of the few
including both deformation of the substrate and deformation
of the particle by the shear flow (Fig. 7).

To go beyond scaling symbols in the soft-lubrication lift ex-
pression for a sphere in 3D is a more intricate task. An elegant
solution based on Lorentz’s reciprocal theorem was sketched
by Stone et al. during an oral communication at the 2004
APS-DFD meeting (Stone et al., 2004). It was later on sys-
tematically explored by Urzay et al. (2007) for the problem of
a sphere translating and rotating near a thin compressible elas-
tic layer. Later on, Urzay (2010) generalized the scope to the
added role of DLVO intermolecular interactions. There, the
competition of the hydrodynamic, intermolecular and defor-
mation effects leads to forces which do not scale linearly with
the velocity, and produce a non-additivity of the intermolecular
effects. Mainly, the intensity of the repulsive forces is reduced
while the intensity of the attractive forces is increased, col-
lectively leading to an effective and reversible EHD adhesion
scenario. Besides, a more exotic irreversible EHD adhesion
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Figure 7 A deformable particle in a shear flow is elongated and tilted,
resulting in a lift away from the wall. In the meantime, deformation
of the neighboring elastic wall also induces lift, as in Fig. 5. Figure
adapted from (Beaucourt et al., 2004).

regime was also found. Elastohydrodynamic corrections to the
DLVO framework for the critical coagulation concentration of
electrolytes were obtained too.

Beyond global quantities, such as the net normal lift force,
local details on the contact shape matter as well, such as the
fore-aft asymmetry in the space-dependent elastic deforma-
tion profile. Furthermore, in 2D, the self-similar properties of
the shape of the soft-lubricated contact zone in a high-loading
case was investigated by Snoeijer et al. (2013). Asymptotic
results for the liquid-gap thickness below a soft sphere in 3D
pressed against a hard wall were shown to agree with both ex-
perimental and numerical data. Later on, Essink et al. (2021)
managed to obtain analytical scaling laws in the high-loading
regime. In this work, the authors described various regimes
of soft lubrication for two-dimensional cylinders in lubricated
contact with compliant walls. They addressed and connected
the limits of small and large entrainment velocities, near thin
elastic coatings, both compressible and incompressible. The
analysis relies intimately on the introduction of an elastohy-
drodynamic boundary layer that appears at the edge of the
contact region. Importantly, in order to identify the proper
regime in a given experimental setting, this theoretical work
reveals the importance of correctly estimating the ratio be-
tween the elastic deformation and the fluid-gap thickness, as
well as the ratio between the thickness of the elastic material
and the hydrodynamic radius.

So far, the problems studied involved constant fluid-gap
thickness and transverse velocity. The case of a more general
but prescribed motion in 2D and 3D near a Winkler’s founda-
tion was addressed analytically and numerically by Weekley
et al. (2006). When the particle moves from rest towards the
wall, fluid trapping beneath the particle leads to an overshoot
in the normal force on the particle, with trapping at early times
and fluid draining at late times. When the particle is pulled
from rest away from the wall, a transient adhesive normal force
emerges. When a cylinder moves from rest transversely along
the wall, an overshoot in the transverse drag appears. However,

the case of a free particle immersed in a viscous fluid and near
a soft wall, with all degrees of freedom allowed, is relevant
to experiments and needed to be addressed. The associated
leading-order soft-lubrication interaction matrix was derived
by Salez and Mahadevan (2015) in 2D, and later on by Bertin
et al. (2022) in 3D. Interestingly, a counterintuitive zoology of
fluid-inertial-like solutions emerges at low Reynolds number.
These encompass: Magnus-like effects, enhanced sedimenta-
tion, adhesive-like EHD forces, roll reversal, oscillations, etc.
In addition, the existence of a spontaneous soft-lubrication
torque, at next (i.e. second) order in 𝜅, was revealed in 2D
by Rallabandi et al. (2017), for compressible and incompress-
ible settings.

We have focused on purely elastic materials in the descrip-
tion above. In such a framework, the softer the material, the
larger the effect, until an optimum or saturation eventually
occurs. This suggests to employ rather soft materials in prac-
tice. However soft gels and elastomers are inevitably prone
to poroelastic and viscoelastic effects. While the former have
been sketched in the lift context (Feng and Weinbaum, 2000;
Skotheim and Mahadevan, 2004, 2005), the latter needed to
be incorporated in details. Pandey et al. (2016) thus analyzed
soft-lubricated contacts with viscoelastic walls. In particular,
the authors focused on three canonical viscoelastic descrip-
tions, namely: Kelvin-Voigt, standard linear, and power-law
rheologies. They showed how viscoelasticity modifies the
contact properties when the time scales of both the substrate
and the driving become comparable. Mainly, they found mod-
ified asymptotic scaling laws for the lift force, indicating a
decrease of the magnitude of the EHD effect due to inner vis-
cous contributions within the viscoelastic material. Later on,
Kargar-Estahbanati and Rallabandi (2021) employed Lorentz’s
reciprocal theorem to derive a general integral relation between
the soft-lubrication lift force and the linear response function of
the soft substrate. They first analyzed the lift force as a func-
tion of Poisson’s ratio and thickness of the elastic material.
Moreover, they found a superposition of steady and oscillat-
ing modes for a lubricated object moving near a viscoelastic
material. The amplitudes and phases of these modes contain
information about the elastic and viscous components of the
material response, thus opening the way to the fine character-
ization of the mechanical properties of materials via lift force
measurements. Compared to normal mode excitations (Basoli
et al., 2018; Chan et al., 2009; Guan et al., 2017; Kaveh et al.,
2015; Leroy and Charlaix, 2011; Leroy et al., 2012; Vakarelski
et al., 2010; Villey et al., 2013; Wang et al., 2015; Wang and
Frechette, 2018; Wang et al., 2017b, 2018), the interest of the
transverse mode for such a purpose is rooted in Eq. (2), where
a ∼ 𝑉2 dependence appears. Therefore, with a sinusoidal ex-
citation, a frequency doubling is expected, thus enabling the
use of a region of the spectrum that is distinct from the one at
the driving frequency.

As introduced above, Winkler’s foundation is the simplest
linear and local elastic model (see Fig. 6) (Dillard et al., 2018).
Since it avoids the complication of nonlocal responses asso-
ciated with elastic materials, it is often used as a simplified
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model for thought. A natural question emerging from that is
how valid such a model is to describe actual physical systems,
with a particular focus on the lift problem. In particular, in
the limit of strictly incompressible and thin elastic layers, one
expects an infinite resistance to deformation, and hence the
Winkler’s approach breaks down. Chandler and Vella (2020)
provided an answer to such a question by formally deriving
a lift force that interpolates between the Winkler and incom-
pressible limits for thin elastic layers. They found that the
applicability of the Winkler model is not determined by the
value of the Poisson ratio alone, but by some compressibility
parameter that combines the Poisson ratio with a measure of
the layer slenderness, which depends on the problem under
consideration. Essentially, for Poisson ratios strictly smaller
than 0.5, the crossover to Winkler’s model as the thickness is
reduced is rooted in the elastic Green’s function itself (Kargar-
Estahbanati and Rallabandi, 2021; Leroy and Charlaix, 2011).

Finally, the effective compliance of a material, and the
lift force as a consequence, can be increased tremendously
by using slender geometries, such as membranes and plates.
The EHD coupling in such systems was addressed by Daddi-
Moussa-Ider and collaborators (Daddi-Moussa-Ider et al.,
2017, 2018). In the first article, the authors computed
the leading-order frequency-dependent translational and ro-
tational mobilities of an axisymmetric particle immersed in a
viscous fluid and moving near an elastic cell boundary allowed
to stretch and bend. The authors found that the translation-
rotation coupling mobility is primarily determined by bend-
ing, whereas shearing (i.e. wall-bounded shear flow) mostly
affects the rotational mobility. In the second article, the au-
thors derived the lift force exerted on a rigid spherical particle
translating parallel to a finite-sized membrane. Specifically,
the Lorentz reciprocal theorem was employed, as well as a
perturbative expansion for small deformations of the mem-
brane. The authors reported interesting attractive and repul-
sive regimes depending on the dominant elastic mode (i.e.
shearing vs bending) at play.

As a concluding remark, we expect no qualitative difference
between the two dual situations of: i) a rigid particle near
a soft wall; and ii) a soft particle near a rigid wall. This is
reminiscent of the situation in dry elastic contacts (Johnson,
1985; Maugis, 2000).

D. Experimental pieces of evidence

Despite the above abundant theoretical literature, experi-
mental evidence for such a soft-lubrication lift force in soft
matter is recent and scarce.

A possible preliminary qualitative observation may have
been reported in the context of smart lubricants and adsorbed
polyelectrolytes by Bouchet et al. (2015). The authors inves-
tigated the lubricant properties of a strong polyelectrolyte, in
aqueous solutions of different salt concentrations. They first
studied how the morphology of the adsorbed layer could be
modified by increasing the salt concentration. Then, a com-

Figure 8 Shear stress as a function of driving velocity measured
with a SFA covered by strongly adhesive polyelectrolyte layers and in
presence of a lubricant. Figure taken from (Bouchet et al., 2015).

plex velocity dependence of the friction was observed, with
a maximum value at intermediate velocities and even some
hysteresis. A progressive increase in separation between the
rubbing surfaces with velocity was also observed (see Fig. 8).
These observations were qualitatively discussed in terms of an
hypothetical indication of the presence of a soft-lubrication lift
force.

A first quantitative study, by Saintyves et al. (2016),
showed an effective reduction of friction induced by the soft-
lubrication lift force. The authors employed a fluid-immersed
negatively buoyant macroscopic cylinder moving along a soft
inclined wall. They observed a steady-state sliding regime
with an effective friction that was significantly reduced rel-
ative to the rigid case (see Fig. 9). The observations were
rationalized by invoking the soft-lubrication lift. This study
was followed up by a work dedicated to the rotational motion
of the cylinder (Saintyves et al., 2020). The authors exper-
imentally quantified the steady spinning of the cylinder and
theoretically showed that it is due to an aspect-ratio dependent
combination of a soft-lubrication torque generated by the flow
and the viscous friction on the edges of the finite-length cylin-
der. We note that the contribution of edge effects within the
lubricated motion of a cylinder moving near flat rigid walls
was then revisited in more details (Teng et al., 2022). The
experimental results of (Saintyves et al., 2020) were consis-
tent with a transition from an edge-effect dominated regime
for short cylinders to a gap-dominated soft-lubrication regime
when the cylinder is very long. A puzzling feature about these
two studies is the fact that the Winkler’s foundation describes
best the observations, despite the rather incompressible char-
acter of the elastomers used. The answer to that puzzle might
be given Chandler and Vella (2020) in the lift context. Indeed,
for Poisson’s ratios strictly smaller than 1/2, an incompress-
ible layer will eventually behave as a compressible one for
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Figure 9 (left) A rigid cylinder immersed in a viscous bath slides along an inclined plane covered with a thin elastic layer. Fluorescent
particles embedded in the latter make it possible to observe its deformation using a laser and a camera. (right) Sliding speed 𝑉 as a function
of normalized time 𝑇 = 𝑡/𝑡tot = 𝑡𝑉∞/𝐿, for several shear moduli of the elastic coating. Here, 𝑉∞ is the time-averaged steady-state sliding
speed, 𝐿 is the total length of the substrate, and 𝑡 is the time. The dotted line corresponds to the case of a bare glass substrate. Figure adapted
from (Saintyves et al., 2016).

small-enough film thicknesses.
Subsequently, an experimental study by Davies et al. (2018)

revealed the significance of the soft-lubrication lift force in
biological and microscopic settings. The authors addressed
the motion of glass microbeads in a linear shear flow close to
a wall bearing a thin soft biomimetic polymer brush. Com-
bining microfluidics and optical tracking, they demonstrated
that the steady-state bead-to-surface distance increased with
the imposed shear rate (see Fig. 10). The article is concluded
by physiological estimates, indicating the potential relevance
of the effect for the transport of red blood cells – and thus for
life processes.

The same year, a macroscopic study by Rallabandi et al.
(2018) demonstrated the large amplification of the soft-
lubrication lift for very compliant boundaries associated with
slender geometries (see Fig. 11). The authors combined theory
and experiments in order to show that a small particle moving
along an elastic membrane through a viscous fluid is repelled
from the membrane due to soft-lubrication forces. An ana-
lytic expression for the particle trajectory is derived, including
a normal migration velocity of the particle that is quadratic
in speed and depends on a combination of the tension and
bending resistances of the membrane. The quantitative agree-
ment with the theoretical predictions with no fitting parameter
indicates once again the presence and relevance of the soft-
lubrication lift force. Furthermore, due to the slenderness of
the membrane, the effective compliance is large and the effect
is strong enough for separation and sorting of particles on the
basis of both their size and density. Once again, the relevance
for biology – where membranes are widespread – is discussed.

The above recent experimental literature provides confi-
dence in the existence of the soft-lubrication lift force, as

well as in its importance at small scales and for biology.
However, in these works, the quantitative evidence for the
soft-lubrication lift is only indirect since only trajectories and
effective friction coefficients are typically measured. A di-
rect measurement was thus needed. The first SFA and AFM
direct force measurements of the soft-lubrication lift force at
the nanoscale were performed by Vialar et al. (2019) and by
Zhang et al. (2020b), respectively. On the one hand, in the for-
mer SFA study, the authors investigated the behavior of mica
surfaces coated with microgels under shear and compression.
The emergence of velocity-dependent, shear-induced normal
forces was observed and quantified (see Fig. 12). Moreover,
the data are in agreement with the soft-lubrication lift force but
revealed a counterintuitive value of the microgel elastic mod-
ulus. On the other hand, Zhang et al. employed an AFM col-
loidal probe near an horizontally-oscillated elastomeric layer
and measured the average lift force as a function of the gap
size (see Fig. 13), for various driving velocities, viscosities,
and stiffnesses. The results are in agreement with a quantita-
tive model developed from the soft-lubrication theory for small
compliances (Bertin et al., 2022). For larger compliances, or
equivalently for smaller confinement length scales, an empir-
ical scaling law for the observed saturation of the lift force is
proposed and discussed. This high-loading conjecture should
be compared in future to recent theoretical developments (Es-
sink et al., 2021).

III. ELASTOHYDRODYNAMIC LIFT IN EXTERNAL FLOW

Even when not directly deformed by the presence of a wall,
deformable particles will exhibit a specific dynamics when
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Figure 10 (left) A glass microbead is advected in an aqueous environment within a microfluidic chamber whose walls are decorated by a
biomimetic polymer brush. (right) The distance to the wall is measured versus the imposed shear rate, for three brush elastic moduli (increasing
from orange to pink). Theoretical lines including the soft-lubrication lift contribution are fitting the data. Figure adapted from (Davies et al.,
2018).

Figure 11 Gravitational sedimentation of a macroscopic sphere immersed in a viscous fluid, along a vertical membrane under tension, exhibits
an important normal drift induced by the soft-lubrication lift. Figure taken from (Rallabandi et al., 2018).

interacting with flow velocity gradients. This will in turn create
an additional flow which is often compatible with the top-
bottom asymmetric boundary conditions only if the particle
has a normal motion relatively to the flow direction.

A reference situation is that of a particle in a simple shear
flow above a wall (Sec. III.B), but other configurations give
also rise to lift, among which the flow of a particle in a channel
(Sec. III.C). The interaction between two flowing particles is

also an example of lift, whose study is often of interest because
it is the fundamental mechanism of non-Brownian diffusion in
a suspension (Sec. IV). Other, more marginal, situations for
the lift of a single particle are examined in Sec. III.D.

Before going further, a quick overview on the dynamics of
soft particle under simple shear flow is needed here, with the
aim to focus on the main information needed to understand
the dependence of the amplitude of the lift force with the
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Figure 12 (left) Shear-induced force as a function of driving velocity measured with a SFA covered by microgel layers and in presence of a
lubricant, for various gap thicknesses increasing from brown (130 nm) to grey (300 nm) symbols. (right) Measured lift force as a function of
lubricant thickness. Figure adapted from (Vialar et al., 2019).

Figure 13 (left) A soft substrate is fixed atop a rigid piezo stage that is transversally oscillated along time 𝑡, at angular frequency 𝜔 and
with amplitude 𝐴. A rigid sphere is glued to an AFM cantilever and immersed in a viscous liquid lubricant near the substrate. The normal
force 𝐹N exerted on the sphere at a given distance from the surface is directly measured from the deflection of the cantilever along 𝑧. (right)
Temporal average 𝐹 of 𝐹N as a function of the gap distance 𝑑 to the substrate, for both rigid (silicon wafer) and soft polydimethylsiloxane
(PDMS) substrates. The inset shows a log-log representation of the data for the soft substrate where the solid line indicates a −5/2 power law
characteristic of an EHD lift force in the case of a semi-infinite incompressible elastic substrate (Skotheim and Mahadevan, 2005). Figure
adapted from (Zhang et al., 2020b).

mechanical properties of the considered particle.

A. Dynamics of deformable particles under simple shear flow

A non-spherical rigid particle cannot maintain a steady ori-
entation under shear flow, due the rotational component. By
contrast, particles with liquid cores can maintain a fixed shape
under shear flow while accommodating the rotational stresses
by a rotation of their inner fluid. The way they do so depends
on the detail of their mechanical properties, and a combined
motion with whole rotation at fixed shape, coupled with shape
oscillations, can be met.

In this review, the term vesicle will be used to designate a

drop of liquid encapsulated by an incompressible elastic layer.
The sole elastic deformation energy of this layer is thus asso-
ciated to bending. In particular, initially spherical vesicles are
non-deformable, by virtue of incompressibility of the mem-
brane and of the encapsulated fluid. Vesicles have long been
considered as model systems to mimic the main behaviour of
more complex cells such a red blood cells. By neglecting
the elastic shear contribution of the underlying cytoskeleton,
researchers have gained simplicity, that was needed for theo-
retical modeling purposes and to reduce cost and complexity
of numerical simulations. In parallel, models for extensible
shells — which are often named capsules — have been devel-
oped. Finally, The last ten years have seen the development
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of more accurate models to describe membranes of cells, that
includes the possibility for shear at constant surface in the
membrane plane.

The literature on the dynamics under shear flow of liq-
uid drops (Rallison, 1984; Stone, 1994), vesicles (see the
(Vlahovska et al., 2009) review and some subsequent arti-
cles (Biben et al., 2011; Farutin et al., 2012, 2010; Farutin
and Misbah, 2012; Zabusky et al., 2011)), capsules (see the
(Barthès-Biesel, 2011) review and also (Barthès-Biesel, 2016;
Dupont et al., 2016, 2013; Foessel et al., 2011; Skotheim and
Secomb, 2007; Walter et al., 2011; Zhang and Graham, 2020)),
or (models of) red blood cells (see a thorough introduction
in (Minetti et al., 2019) and some subsequent articles (Gallen
et al., 2021; Guglietta et al., 2020; Mignon and Mendez, 2021))
is extended and is still being enriched by studies of increasing
refinement in the modeling and in the experimental approach.
Adding more complexity to the rheological properties of the
membrane leads in general to more complexity in the diagrams
of dynamical states. The parameters of the system are usually
combined in a set of dimensionless numbers such as reduced
volume 𝜈 (characterizing initial deflation of the object), viscos-
ity ratio 𝜆 between the inner and the outer fluid, and capillary
number(s) 𝐶𝑎, that compare hydrodynamic shear with either
surface tension or bending rigidity or shear elasticity of the
membrane.

An oversimplified picture is that for low 𝜆 and high𝐶𝑎, par-
ticles adopt a drop-like behaviour, called tank-treading (TT),
where the particle keeps a constant angle 𝜃 (see Fig. 14 for
notation) relatively to flow direction. For high 𝜆 or low 𝐶𝑎,
particles behave more like solids and tumble under flow, with a
periodic evolution of 𝜃. In between, a rich zoology of motions
has been described, from small oscillations around a given
angle to off-plane orbital motion. The oscillations of the main
axis of the particle is often accompanied by shape oscillations
of more or less important amplitude. For ellipsoidal rigid par-
ticles, orbits have been exactly described by Jeffery (1922);
this description is also a good proxy for tumbling motion of
not too deformable particles like red blood cells (Minetti et al.,
2019) or capsules (Dupont et al., 2013) under moderate shear
flow.

B. Particle in a simple shear above a wall

Once the dynamics of particle in unbounded flow is solved,
the flow produced in presence of the wall can be calculated, and
the resulting lift velocity determined. A question that arises
naturally is what is the domain of validity of this approxima-
tion in the particle-to-wall distance domain ? To understand
how the correction terms emerge, it is convenient to introduce
the boundary integral formalism to solve the Stokes flow due
to the force distribution on the particle surface. From this
formalism will also naturally emerge the notion of stresslet,
the key ingredient to quantify far-field lift. In order to focus
on the underlying physics we leave the technical details to the
appendix.

To facilitate the notations and summations, we introduce the
position vector x = (𝑥1, 𝑥2, 𝑥3), where 𝑥1 corresponds to the
flow direction, and 𝑥3 to the direction perpendicular to the wall
(located at 𝑥3 = 0), i.e. to 𝑧 in Fig. 2.

We consider particles made of a 2D interface delimiting
their interior, filled with a fluid of viscosity 𝜇′ ≡ 𝜆𝜇. In that
case, the flow field at any point x0 outside the particle reads
(Pozrikidis, 1992)

𝑢 𝑗 (x0) = 𝑢∞𝑗 (x0) −
1

8𝜋𝜇

∫
𝑆

Δ 𝑓𝑖 (x)𝐺𝑖 𝑗 (x, x0)𝑑𝑆

+ 1 − 𝜆
8𝜋

∫
𝑆

𝑢𝑖 (x)𝑇𝑖 𝑗𝑘 (x, x0)𝑛𝑘 (x)𝑑𝑆. (10)

The imposed flow is u∞ and Δf = f𝑒𝑥𝑡 − f𝑖𝑛𝑡 = (𝜎𝑒𝑥𝑡 −
𝜎𝑖𝑛𝑡 ) ·n is the discontinuity in the interfacial surface force. The
tensors 𝜎 are the fluid stress tensors; in order to account for the
presence of body forces, they can be replaced by the modified
stress tensors such that 𝜎𝑀𝑂𝐷

𝑖 𝑗
= 𝜎𝑖 𝑗 + 𝜌g · x𝛿𝑖 𝑗 (Pozrikidis,

1992). Here, g is the acceleration field, like gravity, and 𝜌

is the associated quantity, like fluid density. Keeping this in
mind, we will drop the𝑀𝑂𝐷 superscript from now on. Finally
Δf can be written as Δf = (𝜌𝑒𝑥𝑡 − 𝜌𝑖𝑛)g · x n + Δ𝜉, where Δ𝜉

is the discontinuity in the surface force that depends only on
the interface mechanical properties. For a given model of
particle (e.g. a drop, a vesicle, a capsule), and in the absence
of significant inertia of the membrane, it can be calculated
according to the chosen constitutive law for the surface, as it
must equal the opposite of the membrane load.

G is the Green’s function that is adapted to the boundary
condition of the problem and T is the associated stress tensor.

Regarding numerical simulations, Eq. (10) can be imple-
mented to compute the particle dynamics according to a two-
step process where first the displacement of the particle mem-
brane is calculated according to Eq. (10), after what the force
𝜉 can be calculated in this new configuration, and so on. This
so-called boundary integral method has given rise to several
developments regarding numerical schemes be used, follow-
ing the seminal work of Pozrikidis (2001). In particular, it
has successfully been used to describe the motion of drops
(Uijttewaal et al., 1993), vesicles (Coupier et al., 2008; Farutin
and Misbah, 2013; Meßlinger et al., 2009; Sukumaran and
Seifert, 2001; Zhao et al., 2011) or capsules (Nix et al., 2016,
2014; Walter et al., 2011) in the vicinity of walls. To do this,
Green’s function that are adapted to the considered boundary
conditions must be used, which we describe below. Note that
Eq. (10) does not provide a direct expression for the velocity
as it appears on both sides of the equation, when 𝜆 ≠ 1. This
requires to implement adapted numerical schemes to ensure
convergence.

For an unbounded domain, the Green’s function G∞ (x, x0)
is called the Stokeslet and describes the flow field created at
position x0 by a point force located at position x. This flow
field is anisotropic and decreases as the inverse of the distance
to the point force.
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The Green’s function we need here is that satisfying the
no slip condition on the wall. Blake (1971) proposed a cal-
culation of this semi-infinite Green’s function, using Fourier
transform. It can be thought as the Green’s function asso-
ciated with other point singularities located at the reflection
point x𝐼𝑀 = (𝑥1, 𝑥2,−𝑥3) of the initial force. Interestingly,
in Blake (1971), this interpretation in terms of singularities is
obtained a posteriori, after the direct calculation is lead. An
alternative, more intuitive construction of the fundamental so-
lutions of Stokes flow in a half-space have been proposed by
Gimbutas et al. (2015).

The semi-infinite Green’s function reads G = G∞ + G𝑤 ,
where the wall Green’s function G𝑤 (x, x0) is a function of
x𝐼𝑀 − x0. It introduces a velocity field in x0 that has sev-
eral contributions that depend on the inverse of the distance
|x𝐼𝑀 − x0 | to the power 1,2 and 3 (see Appendix). Similar
decomposition exist for the stress tensor 𝑇𝑖 𝑗𝑘 = 𝑇∞

𝑖 𝑗𝑘
+ 𝑇𝑤

𝑖 𝑗𝑘
.

The lift velocity 𝑈𝐿 can be then thought as the averaged
velocity in the 𝑥3 = 𝑧 direction over the particle volume, which
can be transformed into a surface integral for incompressible
particles, noting that ®∇ · (𝑥3u) = 𝑢3:

𝑈𝐿 =
1
𝑉

∫
𝑉

𝑢3𝑑𝑉 =
1
𝑉

∫
𝑆

𝑥3u · n 𝑑𝑆, (11)

where n is the unit vector normal to the surface.

a. Far-field contribution and corrections In the absence of walls,
the dynamics of the particle is governed by Eq. (10) where
G = G∞ and T = T∞. This leads to the dynamics described
in section III.A.

The semi-infinite Green’s function and the associated stress
tensor introduce a dependence of the velocity field with the
distance to the wall. This velocity field may induce a displace-
ment of the particle far or towards the wall, but also modify its
shape dynamics. Therefore, the velocity field created by the
presence of the particle will be modified, hence possibly the
lift velocity.

We discuss below how these potential contributions scale
with the distance 𝑧 of the particle to the wall, in view of
identifying the domains of validity of the far-field formalism
and of the soft-lubrication regime.

Following Nix et al. (2014) who proposed it in the case
𝜆 = 1, we decompose the flow velocity 𝑢3 into two contribu-
tions: (a) a self term 𝑈𝑠 that arises (through Eq. (11)) from
the flow created us by the particle, obtained from Eq. (10)
by considering only G∞ and T∞, and a wall-term term 𝑈𝑤 ,
obtained when considering G𝑤 and T𝑤 .

In an infinite simple shear flow, the whole configuration has
a point symmetry with respect to the centre of the particle.
Considering two opposite points on the membrane, one can
see that the us · n terms are equal while the 𝑥3 term has oppo-
site sign, whence𝑈𝑠 = 0, as expected. Note that this argument
holds only in the absence of some symmetry-breaking mecha-
nism, like buckling, which we are not aware of in unbounded

simple shear flow, unless the particle itself presents some het-
erogeneities (Liu et al., 2017a). The self term 𝑈𝑠 can be non
zero if point symmetry is lost, in particular if the particle is
deformed by the wall.

We now consider the leading order of the wall term, which
is often the only one considered in models. Far from the wall,
this velocity𝑈𝑤 may be approximated by that of its center, that
we set to be located at position x0 = (0, 0, 𝑧). This far-field
velocity𝑈𝑤, 𝑓 𝑓 thus reads

𝑈𝑤, 𝑓 𝑓 = − 1
8𝜋𝜇

∫
𝑆

Δ 𝑓𝑖 (x)𝐺𝑤
𝑖3 (x, x0) 𝑑𝑆

+1 − 𝜆
8𝜋

∫
𝑆

𝑢0
𝑖 (x)𝑇𝑤

𝑖3𝑘 (x, x0)𝑛𝑘 (x)𝑑𝑆, (12)

where u0 is the leading order term in the velocity on the
particle surface. For |x − x0 | ≪ 𝑧, one can expand 𝐺𝑤 (x, x0)
and 𝑇𝑤 (x, x0) around x0. In the absence of external forces and
torque and considering symmetry properties of the tensors
as well as fluid incompressibility, one eventually finds (see
Appendix for details):

𝑈𝑤, 𝑓 𝑓 = − 9
64𝜋𝜇

Σ33

𝑧2 =
𝐴𝑅3 | ¤𝛾 |
𝑧2 , (13)

where

Σ𝑖𝑘 =
∫
𝑆

[
1
2 (Δ 𝑓𝑖 (𝑥 − 𝑥0)𝑘 + Δ 𝑓𝑘 (𝑥 − 𝑥0)𝑖) − 1

3Δ 𝑓 𝑗 (𝑥 − 𝑥0) 𝑗𝛿𝑖𝑘
]
𝑑𝑆

+(𝜆 − 1)𝜇
∫
𝑆
(𝑢0

𝑖
(x)𝑛𝑘 (x) + 𝑢0

𝑘
(x)𝑛𝑖 (x)) 𝑑𝑆 (14)

is called the stresslet, while the second expression in Eq. (13)
provides a convenient dimensionless form to discuss results ob-
tained for different particles. It should be noted that the second
term vanishes not only for particles with no viscosity contrast
but also for rigid particles (Batchelor, 1970). Equation (13)
was proposed following a more straightforward approach by
Smart and Leighton (1991). By coherence with the leading
order approximation we made here, one must keep in mind that
the stresslet Σ33 is that created by the interaction with the exter-
nal flow, in the absence of wall. Checking the validity of this
approximation (and the associated domain in the 𝑧-axis) can
be made through full numerical simulations or experiments.
Doing so, one must keep in mind that while the theoretical
approach of Eq. (13) through the determination of the stresslet
will provide the lift velocity at a given position for a particle
in its stationary dynamics, simulations or experiments provide
full trajectories along which the shape at given position might
not be the stationary one. Comparing both approach requires
to ensure that the typical time needed for shape change is much
smaller than the migration time. A priori , this will be achieved
for sufficiently high capillary numbers. In practice, this con-
ditions holds in the situations we will describe below. Also, in
simple shear flow, the shape depends only weakly on the po-
sition. The situation will be more complex in quadratic flows,
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which will be shown to trigger more complex couplings be-
tween shape and lift direction. An agreement between direct
numerical simulations and Eq. (13) using an independently
calculated stresslet was found for vesicles in (Farutin and Mis-
bah, 2013; Zhao et al., 2011) and for capsules in (Nix et al.,
2014).

An explicit discussion on the domain of validity of the far-
field expression, as well on the scaling for the next order terms,
was carried out by Nix et al. (2014), through numerical simula-
tions of a capsule in a quite narrow range of capillary numbers
(of order 0.1-1), and 𝜆 = 1.

They first showed that the self term 𝑈𝑠 is negative (that
is, the particle is attracted towards the wall), and decays as
(𝑧/𝑅)−4, on a large range 𝑧/𝑅 ≳ 1.2. This shows that the
modification of the lift velocity due to shape distortion under
the influence of the flow created by the stresslet in interac-
tion with the wall, which exhibits contributions scaling like
(𝑧/𝑅)−2 as in Eq. (13), is not of the same order as the direct
stresslet contribution. We make the remark here that, to our
knowledge, this result has never been derived formally and
generalised to a larger class of particles.

Regarding the wall term, Nix et al. (2014) highlighted that
the far-field expression can be corrected by two terms; first,
replacing the stresslet by its value at the considered distance
from the wall enhances the lift velocity. Second, the overall
contribution of the wall is shown to be smaller, due to the asym-
metric deformation (with respect to the point-wise symmetric
shape) that has a negative contribution to the lift velocity, as
for the self term. It has been shown that these two corrections
of the wall term also varies like (𝑧/𝑅)−4 and that their overall
contribution added to the self term is negative.

We re-analyzed some results of the literature, which points
to a potential generality of this result. As shown already in
Fig. 3, the correction to the far-field expression is also negative
for moderately deflated vesicles, with a (𝑧/𝑅)−4 scaling. It
becomes significant for 𝑧/𝑅 ≲ 3. These features seem to
hold also for drops, as we found by revisiting the data from
(Uijttewaal et al., 1993), Fig. 5.

These results help identifying the transition zone between
the far field regime and the soft lubrication regime, where
the lift results from modified flow due to the deformation of
the interface because of the flow between the particle and the
wall. We discuss in next sections how this transition depends
on the mechanical parameters involved. Noteworthy, the soft
lubrication correction seems to be always negative for sheared
particles.

We propose a geometrical interpretation of this negative
contribution, based on the observed shape sequences upon un-
binding, which are illustrated in Figs. 3 or 14 but also seen
in (Nix et al., 2014; Sukumaran and Seifert, 2001). Far from
the wall, the particle adopts an orientation that roughly fol-
lows that of the elongational component of the flow, i.e. 45◦
relatively to the flow direction. So does its bottom membrane,
on average. Closer to the wall, the shape of the bottom end
of the particle, which is close to the wall, is controlled by the
local interaction with the wall, which creates, as in the soft-

lubrication framework depicted in Fig. 5, a quasi-horizontal
gap with a small opening angle. Compared to the high open-
ing angle induced by the bulk flow, this reduces the fore-aft
asymmetry of the particle, hence a negative correction to the
lift velocity. In future works, it would be interesting to exam-
ine this hypothesis by comparing the amplitude and scaling of
this negative contribution to the lift force of a similar particle
moving along the wall without external shear flow (i.e., in the
typical soft-lubrication configuration).

In the soft lubrication framework, results are often presented
in terms of lift force; on the other hand, for particles deformed
under external flow, lift velocities is the usual output. This
probably relates to the main motivation of these studies, which
is to calculate flux of particles. These two quantities can be
related through the drag acting on the particle. It is insightful
to examine how this can be achieved in practice. To that aim,
we first review the case of vesicles, which is interesting for
comparing results from different studies as there are only few
parameters involved. Furthermore, results focusing on either
lift force or lift velocity are available.

b. Lift velocity and lift force, the vesicle case For large enough
capillary numbers such that the hydrodynamic stress over-
comes bending forces, the dynamics of vesicles depends only
on their initial deflation and on the viscosity contrast (Farutin
et al., 2010). In the range of parameters where tank-treading
motion occurs, the shape and angle of inclination of the vesicle
are therefore independent of the shear rate, so is the prefactor
𝐴 in Eq. (13). We are not aware of studies on lift of vesi-
cles at small capillary numbers, when wrinkles appear due
to hydrodynamic forces or Brownian fluctuations and modify
the nature and the transition between dynamical regimes in
unbounded shear flow (Abreu and Seifert, 2013; Deschamps
et al., 2009; Noguchi and Gompper, 2005).

Two different sets of experiments are available in the lit-
erature that describe the lift of vesicles of radius of order 10
microns: Callens et al. (2008) studied the lift velocity of vesi-
cles in the absence of gravity, while Abkarian et al. (2002) and
Abkarian and Viallat (2005) examined the close wall lift force
by balancing it by the vesicle weight.

Experiments for lift velocity were performed in parabolic
flights, allowing for successions of normal gravity phases and
low gravity phases. In the first phase, sedimentation of vesicles
on the bottom plate of a shear chamber allowed for the creation
of a well-defined initial condition, while the lift velocity of the
vesicle could be measured in the low gravity phase, without
being screened by sedimentation. Thanks to this, distances to
the wall of up to 7 times the vesicle radius could be explored.
Vesicles with inner fluid having the same viscosity inside and
outside were studied in (Callens et al., 2008) while more vis-
cous inner fluids were considered in (Bureau et al., 2017). In
the range 3 ≲ 𝑧/𝑅 ≲ 7, the distance to the wall is found to
scale with time to the power 1/3, indicating agreement with
the far-field scaling. They also found a prefactor 𝐴 that is
independent from the shear rate, that was varied by a factor
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10. Eventually, the prefactor 𝐴(𝜈, 𝜆) has been determined for
reduced volumes 𝜈 ≳ 0.95 and 𝜆 = 1 (Callens et al., 2008),
4 and 6.5 (Bureau et al., 2017). The reduced volume 𝜈 ≤ 1
characterizes the deflation of the vesicle, therefore its ability
to get deformed, and reads 𝜈 = 3V/4𝜋(A/(4𝜋))3/2, where V
and A are the vesicle volume and surface area, respectively.
They are both constant due to the inner fluid and membrane
incompressibility.

In the experiments by Abkarian et al. (2002) and Abkarian
and Viallat (2005), vesicles with no viscosity contrast but with
density contrast, and 𝜈 ≳ 0.92, are sheared close to the wall,
with shear rates varying by a factor 5 such that different equilib-
rium positions can be scanned. It is found that at equilibrium
the gap ℎ between the vesicle and the wall scales linearly with
the shear rate, suggesting the following expression the lift force
𝐹𝐿:

𝐹𝐿 = 𝐵(𝜈)𝜇𝑅3 ¤𝛾/ℎ. (15)

Simulations of vesicles with no viscosity contrast were pro-
posed in several studies by using boundary integral method
(Farutin and Misbah, 2013; Sukumaran and Seifert, 2001;
Zhao et al., 2011). All simulations, as well as far-field theo-
retical calculations led in (Vlahovska and Serral Gracia, 2007)
or (Farutin and Misbah, 2013), consider mostly vesicles with
reduced volumes higher than 0.95. This corresponds, e.g., to
a prolate ellipsoid of long axis 1 and short axis 0.63.

Using both the results of Callens et al. (2008) and Abkarian
et al. (2002) to make comparisons with these existing simula-
tions and theories requires first to establish a link between lift
velocity and lift force, which we did not find in the literature.

In presence of a body force (which is often, in practical
cases, gravity), the lift motion is modified and can even vanish
if this body force acts opposite to the lift force. Regarding
boundary integral framework, the presence of the body force
induces an additional term 𝑈𝑔 in the migration velocity 𝑈𝑔 =
1
𝑉

∫
𝑆
𝑥3u𝑔 · n 𝑑𝑆, where

𝑢
𝑔

𝑗
(x0) = − 1

8𝜋𝜇

∫
𝑆

(𝜌𝑒𝑥𝑡 − 𝜌𝑖𝑛)g · x 𝑛𝑖𝐺𝑖 𝑗 (x, x0) 𝑑𝑆 (16)

is the flow field created by the particle due to the presence of a
density difference across its membrane. For a sphere of radius
𝑅 in an unbounded flow, with a gravity field in the direction
−𝑥3, solving Eq. (16) would lead to the well-known Stokes law
6𝜋𝜇𝑅𝑈𝑔 = −𝑃, where 𝑃 = 4

3𝜋𝑅
3 (𝜌𝑖𝑛 − 𝜌𝑒𝑥𝑡 ) is the weight

of the particle minus the Archimedes force. In presence of a
wall at 𝑥3 = 0, the expression of 𝐺𝑤

𝑖 𝑗
shows that the first order

correction to the velocity would scale like 1/𝑧. For a sphere
settling towards a wall, the full correction for the modified
drag force as a function of distance to the wall has been solved

Figure 14 Sequence of shapes taken by a vesicle as it unbinds
and lift away from the wall under simple shear flow. Figure taken
from (Abkarian et al., 2002).

by Brenner (1961).

6𝜋𝜇𝑅𝑈𝑔Λ(cosh−1 [𝑧/𝑅]) = −𝑃, with

Λ(𝜉) =
4
3

sinh(𝜉)
∞∑︁
𝑛=1

𝑛(𝑛 + 1)
(2𝑛 − 1) (2𝑛 + 3) (17)[ 2 sinh((2𝑛 + 1)𝜉) + (2𝑛 + 1) sinh(2𝜉)

4 sinh2 ((𝑛 + 1/2)𝜉) − (2𝑛 + 1)2 sinh2 (𝜉)
− 1

]
.

The first order of this correction is given by

Λ(cosh−1 [𝑧/𝑅]) ≃ 1 + 9
8
𝑅

𝑧
, (18)

indicating, in agreement with the intuition, that the presence
of the wall increases the drag on the particle. We hypothesize
that for deformable particles, this expression of the drag force
could be considered as a first approximation.

In the presence of a body force that acts against lift, an
equilibrium position in the 𝑧 direction is found by the particle,
corresponding to 𝑈𝑔 +𝑈𝐿 = 0. Defining the lift force 𝐹𝐿 as
the force that balances the weight 𝑃, one eventually finds, that

𝐹𝐿 ≃ 6𝜋𝜇𝑅𝑈𝐿Λ(cosh−1 [𝑧/𝑅]), (19)

where the lift velocity is given by the appropriate expression,
and the correction on drag is assumed to be that for a sphere.
This expression will serve us as a basis for discussion.

We can now address the question of the comparison of
simulations, theory and experiments, while also considering
the question of the link between lift force and lift velocity. To
that aim, we focus on vesicles with no viscosity contrast and a
reduced volume of 0.97, which is documented in experiments
(Abkarian et al., 2002; Callens et al., 2008), simulations by
Zhao et al. (2011), an historical far-field model by Olla (1997)
that assumes an ellipsoidal shape and the far-field model by
Farutin and Misbah (2013) that makes no assumption on the
shape and calculate directly the stresslet 1. For all above
mentioned studies, but that of Abkarian et al. (2002), the lift
velocity as a function of distance 𝑧 between the vesicle centroid

1 Under the same hypothesis as Farutin and Misbah (2013), Vlahovska and
Serral Gracia (2007) proposed an expression for the stresslet whose numer-
ical prefactor differs by some 20%. Since the model by Farutin and Misbah
(2013) is more recent and is in perfect agreement with their own numerical
simulation, we hypothesize that their result is more likely to be correct.
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Figure 15 Dimensionless lift force 𝐹̂𝐿 = 𝐹𝐿/(𝜇 ¤𝛾𝑅2) on a vesicle
characterized by 𝜈 = 0.97 and 𝜆 = 1 sheared above a wall, as a
function of reduced gap size ℎ̂ = ℎ/𝑅 between the vesicle and the
wall. 𝑅 is the radius of a sphere having the same volume as the
vesicle. Lines and dots extend on a range where the law has been
established in the different studies. ■: 𝐹̂𝐿 = 1.1/ℎ̂ according to the
close-wall experiments of Abkarian et al. (2002), Fig. 8. Other data
are obtained through 𝐹̂𝐿 = 𝐷𝑈̂𝐿 where 𝑈̂𝐿 is the dimensionless lift
velocity 𝑈𝐿/( ¤𝛾𝑅) and 𝐷 the dimensionless drag coefficient, which
is taken either as 𝐷0 = 6𝜋 (unbounded domain), 𝐷1 = 6𝜋(1 +
9/[8( ℎ̂+1)]) (first order approximation of Brenner’s drag), or 𝐷∞ =

6𝜋Λ(cosh−1 [ℎ̂ + 1]) (Brenner’s drag). •: 𝐷 = 𝐷∞ and 𝑈̂𝐿 =

𝐴(0.97)/( ℎ̂ + 1)2 with 𝐴(0.97) = 0.11 according to the far-field
experiments of Callens et al. (2008), Fig. 7; Red line: the same with
𝐴(0.97) given by Olla’s model (Olla, 1997) (ellipsoid of aspect ratio
0.705); Orange line: the same with 𝐴(0.97) given by the theoretical
model of Farutin et al. (Eq. 5 in (Farutin and Misbah, 2013),
for Γ = 0.021, Γ being defined in the referred article). Note that
in (Callens et al., 2008), the volume and reduced volumes of the
vesicle are known only indirectly through the measurement of its
short axis in the vorticity direction and of the projection of its long
axis parallel to the 𝑧 direction. These data are converted into volume
and reduced volume through the direct calculation of Farutin and
Misbah (2013), which have shown excellent agreement with these
experiments (Bureau et al., 2017). Blue lines: 𝐹̂𝐿 = 𝐷𝑈̂𝐿 , where the
lift velocity is obtained from direct simulation in (Zhao et al., 2011),
Fig. 2 and 𝐷 = 𝐷0 (dotted line), 𝐷1 (dashed line), or 𝐷∞ ( full line).

and the wall is given, in the absence of gravity. For the sake
of comparison with the results of Abkarian et al. (2002), we
make the assumption that 𝑧 = ℎ + 𝑅 (see Fig. 2) and calculate
the lift force through Eq. (17). In order to support discussion,
the lift force arising from the simulations of Zhao et al. is
also calculated using the 1st order approximation of the drag
coefficient (Eq. (18)) as well as 0th order, i.e. the drag of a
sphere in an unbounded flow. The results are presented in Fig.
15.

Regarding far-field behaviour, simulations by Zhao et al.
(2011), modeling by Farutin and Misbah (2013) and exper-
iments by Callens et al. (2008) show very good agreement.
By contrast, the lift velocity predicted by Olla (1997) is about
30% larger. Comparison between Fig. 7 in (Callens et al.,

2008) and Fig. 1 in (Farutin and Misbah, 2013) shows that a
vesicle whose shape is not prescribed a priori has a (long axis)
/ (short axis) ratio that is smaller than that given by the prolate
ellipsoid assumption, made by Olla. This may qualitatively
explain why, for a given reduced volume, the lift predicted by
Olla is larger than that measured in other studies.

Remarkably, the far field measurements of the lift force by
Abkarian et al. (2002) are perfectly described by the gravity-
free simulations of Zhao et al., who scanned the same range
of particle-to-wall distance, providing the drag contribution is
that of Brenner for a sphere of equal volume. This agreement
is far from being reached if one considers only the 0th (as used
in (Sukumaran and Seifert, 2001)) or 1st order of the drag
force.

The conclusion of this aggregation of data is that the 1/ℎ̂
scaling for the drag force, proposed by Abkarian et al., is
therefore recovered, in the close-wall range, by multiplying
the multipolar drag coefficient of Brenner with a lift veloc-
ity that is composed of a repulsive stresslet contribution that
scales as ( ℎ̂ + 1)−2 and of an attractive contribution that is the
consequence of wall-induced deformation. This contribution
scales like ( ℎ̂ + 1)−4.

Zhao et al. (2011) also ran simulations including gravity and
found good agreement with the experimental data of Abkarian
et al. (2002). In the same article, they compared their simula-
tions of the lift force with that calculated from the lift velocity
times a first order expression for the drag (as in Eq. (18)). Un-
fortunately, we are not able to comment on this approach by
lack of definition of some parameters and of detail of calcula-
tion by the authors. Other direct simulations of vesicles under
gravity have been performed in by Meßlinger et al. (2009),
but they consider a 2D system. On a quite narrow range of
distances, the authors found that the force scales like 1/𝑧2 even
for 𝑧/𝑅 close to 1.

As a conclusion, our review highlights the necessity to better
understand interactions in the crossover zone 𝑧 ∼ 𝑅 between
soft-lubrication effects and shear-induced lift. While the main
contribution to lift, the stresslet created by the unperturbed
particle, has been widely commented, the correction terms did
not benefit from such an attention. We have also highlighted
the difficulty in comparing results focused on the velocity with
that focused on the force. While using Brenner’s drag for a
rigid sphere seems satisfactory, studies focused on the drag
exerted on a deformed particle whose dynamics is imposed by
the external flow would certainly be helpful.

c. Dependence with mechanical properties The relative contri-
bution of each of the 1/𝑧2 and 1/𝑧4 terms depends on the detail
of shape and dynamics of the particle.

Increasing the viscosity contrast seems to always make the
lift velocity decrease, for vesicles (Bureau et al., 2017; Farutin
and Misbah, 2013; Meßlinger et al., 2009; Zhao et al., 2011)
or for capsules, for which Singh et al. (2014) showed that this
is the direct result of the increase of the absolute value of the
second term in the stresslet expression (Eq. (14)), although the
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absolute value of the first term decreases. It should be noted
that for capsules, we have not found any experimental study
regarding their lift under simple shear flow.

At least for vesicles, the range of validity of the far-field ex-
pression increases with the viscosity contrast, a consequence
of the increasing cost for interface deformation under the in-
fluence of the wall (Zhao et al., 2011).

The lift velocity also depends on the ability of the particle
to deform, which is essentially related to reduced volume for
vesicles, and to capillary number for drops and capsules. It
is natural to start our discussion with the simplest of these
objects, i.e. drops.

(Smart and Leighton, 1991) measured experimentally the
lift on drops of viscosity contrast 0.083. Since then, we have
found no record of another attempt to measure directly this
lift in a simple shear flow; other works include drop-drop
interactions, that will be discussed further. They found that
the far-wall velocity follows Eq. (13), with the prefactor 𝐴
being proportional to the capillary number 𝐶𝑎, defined as
𝐶𝑎 = 𝜇 ¤𝛾𝑅/𝜎, where 𝜎 is the surface tension. This indicates
that upon an increase of the flow stress (compared to the elastic
restoring force), the drop elongates more, thus inducing a larger
lift force. This result was theoretically derived by a direct
calculation of the stresslet, both by Chan and Leal (1979)
and Smart and Leighton (1991), under the hypothesis of small
deformation (hence the linear dependence with𝐶𝑎). They both
proposed an expression for the prefactor, which depends on the
remaining characteristic parameters 𝜆, the viscosity contrast
between the inner and the outer fluids. Both expressions are
different but vary by at most 2 % on the whole range of viscosity
contrast. 𝛼(𝜆) was found to be an increasing function of 𝜆,
yet with small variations, from 0.58 when 𝜆 → 0 to 0.69
when 𝜆 → ∞. These theoretical results do not match the
experimental results, where the lift amplitude is found to be
almost 2 times larger.

Numerical simulations generally find a lift velocity that is
slightly smaller than in theoretical works, therefore they agree
even less with experiments (Kennedy et al., 1994; Singh et al.,
2014; Uijttewaal and Nijhof, 1995; Uijttewaal et al., 1993).

We mention here that with drops, another configuration of
interest has been studied by Smart and Leighton (1991), that
of a free surface instead of a rigid wall. In this case, the
overall expression for the far-surface lift velocity (Eq. (13))
is unchanged, but a multiplicative factor 2/3 is introduced.
As the stresslet is that given by the bulk flow, we expect the
expression given by the authors to be valid not only for the
drops they study. Experimentally, as for the lift due to a
rigid wall, their experimental results are above the theoretical
prediction.

An increase of the absolute value of the stresslet, therefore
of the lift velocity, is also mentioned for capsules in (Nix et al.,
2014) (see Fig. 16). Regarding the relative contribution of
the far-field term and of the first soft lubrication correction
term, Nix et al. (2014) showed that, while the far-field approx-
imation is valid even for particles in contact with the wall at
low capillary number, this approximation is valid only when

ℎ/𝑅 ≳ 3 for a capillary number one order of magnitude larger
(Fig. 16). This impact of the capillary number on the locus of
the transition zone is similar to that previously discussed for
vesicles of different viscosity contrast: less ability to deform
lead to a smaller contribution of the soft-lubrication term.

Singh et al. (2014) highlighted the same year the same range
of transition distance between the far-field regime and a more
complex set of contributions, where capsules with different
viscosity contrasts are also considered. At a distance to the wall
where both contributions are comparable, a phenomenological
single scaling is proposed by the authors.

For a vesicle with no viscosity contrast, the more deflated
the vesicle, the faster it migrates (Abkarian et al., 2002; Cal-
lens et al., 2008; Farutin and Misbah, 2013; Zhao et al.,
2011). However, for high enough viscosity contrast, increas-
ing asphericity can lead to transition towards tumbling mo-
tion, which is preceded by a decrease of the inclination angle,
therefore of the lift velocity (Bureau et al., 2017; Olla, 1997).
To our knowledge, this decrease has not been observed ex-
perimentally, but similar phenomenon has been exhibited in
Poiseuille flow (Coupier et al., 2008), as will be discussed later
on.

From a geometrical view point, the decrease of the incli-
nation angle (potentially until zero), leads the configuration
towards a fore-aft symmetric state, hence the vanishing lift
velocity. A similar decrease of inclination angle is observed
for capsules by Nix et al. (2014) upon an increase of capillary
number; in that case though, they also elongate (Lac et al.,
2004; Walter et al., 2000), which is probably the reason why
the lift velocity does not decrease.

In their 2D simulations, Meßlinger et al. (2009) have con-
sidered the case of tumbling vesicles and shown a non-zero
lift force on average, by contrast with the case of a purely rigid
object. The reason stems from the elongational component of
the flow that makes the vesicle be more elongated when its
long axis is along this component than when it is orthogonal
to it. Over one rotation period the mean shape is therefore
not fore-aft symmetric. Still the mean lift velocity remains
much smaller than in the tank-treading regime. A more formal
discussion on this aspect can be found in (Olla, 2000). Simi-
lar results were found for capsules by Hariprasad and Secomb
(2014), who maintained a 2D capsule that would tumble in an
unbounded flow close to a wall by a gravity force of varying
intensity. The proximity with the wall induces a change in the
dynamics that switches from tumbling to tank treading as the
force is increased. As a result, the lift force increases, such
that, in the rather narrow range of parameters explored by the
authors, a quasi constant equilibrium height is observed while
the force is multiplied by a factor 4.

d. Red blood cells While more complex than the above men-
tioned particles, red blood cells exhibit similar lift properties.

In physiological conditions, red blood cells flow in vessels
where the maximal shear rate ranges from 20 to 1500 s−1. In
these conditions, cells will essentially exhibit a tumbling-like
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Figure 16 Lift velocity in simple shear flow for a capsule with a mem-
brane following Neo-Hookean law. Dots and full lines correspond
to simulations while the doted line is the far-field approximation (Eq.
(13)). Figure adapted from (Nix et al., 2014).

motion that couples with strong deformations (Mauer et al.,
2018; Minetti et al., 2019).

As seen in (Meßlinger et al., 2009) for tumbling vesicles,
isolated red blood cells may still migrate. This has been con-
firmed experimentally in simple shear - like flow (in a large
pipe in reality) in the 70’ by Goldsmith, who highlighted a
4 𝜇m transverse drift for cells having travelled 1 cm in the
flow direction (Goldsmith, 1971). More than 40 years later,
a study in microgravity conditions, similar to that carried out
for vesicles in (Callens et al., 2008), has quantified the lift of
red blood cells in a narrow range of shear rates 10 ≤ ¤𝛾 ≤ 50
s−1 (Grandchamp et al., 2013). The far-field scaling has been
confirmed, with a prefactor 𝐴𝑅3 = 0.36 𝜇m3 (following the
notations of Eq. (13)) in physiological conditions (i.e. an
external fluid of viscosity 1.4 mPa.s close to that of plasma).
This factor is increased by a factor 15 if the viscosity is mul-
tiplied by 9, indicating the impact of flow stress on the de-
formation of the cells, that are more elongated and can even
make a transition towards a tank-treading like motion (Fischer
and Korzeniewski, 2013; Minetti et al., 2019). Considering
that red blood cells have a mean volume of 90 𝜇m3 (Baskurt
et al., 1997), whence 𝑅 = 2.8 𝜇m, this leads to a prefactor
𝐴 between 0.016 (tumbling-like regime) and 0.15: this latter
value is comparable to that found for a vesicle in tank-treading
regime.

The value for the lift velocity found in physiological condi-
tions has been calculated to be compatible with the pioneering
result of Goldsmith (1971). It should be noted that, at a dis-
tance e.g. 4 𝜇m from the wall the lift velocity is about 2 𝜇m/s
at a shear rate of 100 s−1, which is comparable to sedimen-

tation velocity (Matsunaga et al., 2016). This illustrates the
difficulty in measuring experimentally far-field lift velocities.

While numerical simulations of red blood cells under flow
are now numerous, we have found no records for this geometri-
cally simple configuration of simple shear flow near a wall, as
far as realistic 3D simulations of cells are concerned. We shall
come back to this point later on while discussing collective
effects.

C. Lift in a channel flow

Lift in channel flow is the other configuration explored in the
literature, as it is relevant for particle handling in microfluidic
devices, and to understand biological flows such as blood flow
especially.

These flows are characterized by the increased presence of
walls but also by linear variations of the shear rate. For large
channels (compared to particle size) and in order to gain funda-
mental understanding of the lift mechanism, it is insightful to
consider first the case of an unbounded Poiseuille flow that is,
a parabolic velocity profile with no walls imposing a condition
of zero velocity.

a. Lift in unbounded Poiseuille flow In the soft lubrication
framework, the necessary breaking of the bottom-up symmetry
in terms of pressure (see Fig. 2 for convention on directions)
is obtained by the presence of a wall. The pressure gradient
that is created between the particle and the wall is different
from that on the other side of the particle, leading to different
deformations patterns at the bottom and at the top of particles,
eventually leading to the fore-aft asymmetry that induces an
overpressure below the particle and makes the appearance of
the lift force possible.

This sequence is indeed also possible in the configuration of
an unbounded Poiseuille flow where a particle is surrounded
by different shear rates on both sides, except when it is located
on the central line of the flow. This situation can create an
asymmetry in the deformation patterns along the flow direc-
tion, making thus possible the appearance of a net lift force.
Notably, while in the soft-lubrication framework the creation
of a gap resembling that of the Reynolds slider makes it intu-
itive the sign of the lift force, the deformation arising on both
sides of the particle leads to a less clear situation.

Indeed, several scenarii have been predicted. For a drop in a
2D parabolic flow, Chan and Leal (1979) and Leal (1980) have
predicted that a drop would migrate outward for a viscosity
ratio 0.71 ≲ 𝜆 ≲ 11.35 but towards the central line for other
values of 𝜆. For an axisymmetric Poiseuille flow, the interval
for outward migration becomes 0.56 ≲ 𝜆 ≲ 10.2.

Theoretical and numerical studies on vesicles have shown
that vesicles apparently behave differently: Kaoui et al. (2008)
ran 2D numerical simulations of vesicles with 𝜆 = 1 and
evidenced inward migration at almost constant velocity along
the trajectory but at the very end, when the particle meets
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the central line. Danker et al. (2009) confirmed these results
through a theoretical approach valid in the small deformation
approximation. For all 𝜆 such that a tank-treading motion
takes place, an inward migration is predicted. A tentative
physical argumentation in favor of this migration has been
given in this article, which is reported in Fig. 17. Similarly,
Helmy and Barthès-Biesel (1982) theoretically showed that
capsules migrate towards the centerline, in the limit of small
deformation (small capillary number).

Farutin and Misbah (2013, 2014) performed more system-
atic theoretical studies for a 3D, axisymmetric flow. They
revealed a much more complex situation, for a vesicle of given
reduced volume 𝜈 = 0.9. The behaviour strongly depends on
the capillary number 𝐶𝑎 and on the viscosity ratio 𝜆. For
𝜆 = 1, vesicles migrate towards the center at high capillary
number, at a constant velocity but in the vicinity of the center.
This situation corresponds to the case most easily studied by
theory as a stationary shape can be considered (due to large
𝐶𝑎), as in (Danker et al., 2009; Farutin and Misbah, 2013). At
lower 𝐶𝑎, i.e. when the particle has no time to adjust its shape
to the surrounding local flow before being advected further, an
equilibrium position away from the center is found. For larger
viscosity contrasts, outward motion is observed at large 𝐶𝑎
whereas metastability was observed at smaller 𝐶𝑎, the vesicle
migrating outward or toward a position close to (but not on)
the center, depending on its initial position.

Kaoui et al. (2009a) reached similar conclusions for 2D vesi-
cles with no viscosity contrast: upon a decrease of capillary
number a deflated enough vesicle does not converge towards
the center but stays at a finite distance from it, adopting an
asymmetric shape described as a slipper shape. This situation
is also favored by a deflation of the vesicle. A tentative expla-
nation for this phenomenon is proposed by the authors, based
on their numerical observation: the transition towards an off-
center, asymmetric shape is accompanied by a reduction of the
lag, which is anticipated to be a favorable configuration by the
authors, despite the increase in internal dissipation inside the
particle not being symmetric anymore.

However, arguments based on a minimization of energy or
of dissipation are not supported by any fundamental principle
in this viscoelastic problem with moving boundaries. Indeed,
Farutin and Misbah (2014) discard both possibilities by show-
ing they are not compatible with their numerical observations
— though in the meantime arguments of that kind are still
being used in (Tahiri et al., 2013). Improper use of argu-
ments based on dissipation consideration is also discussed in
(Dasanna et al., 2021).

A question naturally arises: does this complex behaviour
survives in more realistic situations where walls are present
? Walls induce additional lift forces but also additional space
dependence of the shape. A secondary question is, how do lift
forces due to flow curvature and lift forces due to the presence
of a wall compare to each other in intensity ? An attempt to
answer partly this question can be found in the 2D numerical
simulations of Kaoui et al. (2009b) where a vesicle with no
viscosity contrast is placed in a semi-bounded parabolic flow,

Figure 17 Creation of an inward lift force in Poiseuille flow for a
tank-treading vesicle located at a position 𝑦 > 0 from the central
line, according to Danker et al. (2009). The local velocity field
can be decomposed into a local shear that dictates the shape of the
vesicle and local quadratic correction (blue arrows). The normal
contribution of this flow field points downward on segments AB and
CD and upward on the two other segments, which are smaller. Hence
a negative lift force acting on the particle. This argument is debatable
as it does not take into account either the part of the flow that modifies
the particle shape but not its position, or the relative intensity of the
normal contribution on each segment. In addition, it should also
apply per se for liquid drops, and would contradict the finding of
Chan and Leal (1979). This illustrates the difficulty in getting an
intuitive picture for migration in quadratic flows. Figure taken from
(Danker et al., 2009).

i.e. where only one wall is present (say, at position 𝑧 = −𝑧0
while the centerline is at 𝑧 = 0). In this case, a vesicle placed
at a distance 𝑧 > 0 from the center larger than its typical
radius migrates outwards, while it would migrate inwards in
the absence of the opposite wall. This indicates, at least in this
specific situation, that the lift due to the presence of the wall
overcomes that due to the flow curvature, at a distance from
the center large than a particle radius.

Nix et al. (2016) carried out a more detailed study regarding
this question, with capsules. They quantified the ratio of the
contributions arising from the shear gradient and from the
presence of a wall, that grows as the particle approaches the
center of a channel. An interesting output of their study is
that the drift velocity due to shear gradient hardly depends
on the viscosity ratio (in the explored range 1 < 𝜆 < 5)
while the effect of the wall diminishes with increasing 𝜆 – as
already discussed here. As a result, the effect of shear gradient
is predominant on a larger area within the channel for more
viscous particles.

b. Migration in a channel In a channel, using boundary inte-
gral method to solve the flow field requires to incorporate more
complex Green’s function. Even in a 2D case where only two
opposite walls are needed, this requires to incorporate mul-
tiple image systems (Nait-Ouhra et al., 2018; Thiébaud and
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Figure 18 Lift of a red blood cell in a microchannel: snapshots
at different positions along the channel. Figure taken from Ref.
(Losserand et al., 2019).

Misbah, 2013). An alternative method consists in considering
walls as soft boundaries of known rheological property, such
that additional integrals must be considered, with the advan-
tage to handle only the Green’s functions for unbounded flow
(Kaoui et al., 2011). In all cases, the strong impact of con-
tinuous shape evolution due to non-homogeneous shear rates
makes it difficult to exhibit a simple scaling for the lift velocity:
one cannot simply plunged a particle of given shape into the
desired geometry. Yet, several experiments and simulations
tend to prove that a scaling 𝑈𝐿 ∝ ¤𝛾(𝑧)/𝑧𝛼, with the expo-
nent 𝛼 close to 1, holds for several types of particles. In the
following, we will denote by 𝑟 the radius of the channel, and
𝑟 = 𝑟/𝑅 its dimensionless form, that accounts for the degree
of confinement of the particle.

Coupier et al. (2008) first proposed such a scaling for lipid
vesicles. By varying experimentally the confinement (2 ≲
𝑟 ≲ 9), they showed that, in the range of viscosity contrast
1 ≤ 𝜆 ≤ 10 and of reduced volume 𝜈 ≥ 0.92, trajectories from
the wall to the center are well described by the law

¤𝑧 = 𝜉 𝑅
𝛿+1 ¤𝛾(𝑧)

(𝑧 − 𝑧𝑤) 𝛿
, (20)

where 𝛿 is close to 1 and 𝜉 a dimensionless parameter that
depends on the vesicle properties, similar to 𝐴 for the drift
under simple shear rate (Eq. (13)). 𝑧𝑤 is the position of the
center of mass when the particle is as close as possible to the
wall. For the quasi-spherical vesicles considered in Coupier
et al. (2008), 𝑧𝑤 ∼ 𝑅 but in general, it may depend on par-
ticle deformability. 2D numerical simulations have provided
a similar scaling (Coupier et al., 2008). Having 𝛿 close to 1
can somehow be viewed as an intermediate case between the
unbounded parabolic flow (where 𝛿 = 0) and the shear flow in
presence of a wall (where 𝛿 = 2).

The alternative law

¤𝑧 = 𝜉
𝑅𝛿+1

0 ¤𝛾(𝑧)
𝑧𝛿

, (21)

is formally simpler and has been proposed in subsequent
articles ((Qi and Shaqfeh, 2017) then (Losserand et al., 2019))
to allow for comparison between different situations with no
need to take into account the detail of the near-wall interactions.

Simulations of red blood cells yet having a non-

physiological viscosity contrast of 1 (and therefore in tank-
treading regime) have highlighted an exponent that is essen-
tially in the range 1.2-1.3 for 𝑟 = 6 and 8.8 (Qi and Shaqfeh,
2017).

Similarly to what was found for simple shear flows, the more
complex dynamics followed by red blood cells in physiological
conditions does not prevent them from following similar law.
Losserand et al. (2019) found experimentally through in vitro
experiments that on a large range of confinements (1.5 ≲ 𝑟 ≲
10), Eq. (21) was followed with an exponent 𝛿 ≃ 1.3 (Fig.
18). They also mentioned that a fit of experimental data by
a trajectory obtained through Eq. (21) poses practical issue
as parameters 𝜉 and 𝛿 are strongly correlated: several pairs
of values for these parameters indeed lead to reasonable fits.
Discussions on the exact value of exponent 𝛿 should probably
be considered with care.

Regarding the dependence with the particle mechanical
properties, the overall picture is that an increase in deformabil-
ity (through an increase of capillary number or a decrease of
the viscosity ratio) leads to an increase in migration velocity
towards the center, be it for capsules (Doddi and Bagchi, 2008;
Qi and Shaqfeh, 2017), vesicles (Coupier et al., 2008) or red
blood cells (Losserand et al., 2019). For vesicles, varying the
reduced volume of viscous enough particle have an interesting
effect: starting from the sphere, deflating the vesicle allows
for the fore-aft symmetry breaking that leads to migration, but
below a given reduced volume, the more elongated particle
aligns in the flow (approaching then the tumbling transition)
and recover a fort-aft symmetry; the lift velocity then drops to
0 (Coupier et al., 2008).

The above mentioned studies focus on the migration from
the wall towards the center. As pointed out in (Kaoui et al.,
2009b; Nix et al., 2016), this migration is dominated by the
wall effect in its vicinity. When the particle approaches the
center, shear gradient contribution will become dominant. As
discussed previously, the direction of the transverse migration
might be reversed. In addition, since the shear rate decreases
as the particle approaches the center, the capillary number
decreases therefore the particle shape is not any more in a
quasi-steady configuration, leading to a more complex cou-
pling between shape and migration. This aspect is discussed
in particular in the last pages of (Li and Ma, 2010).

c. Shape-lift coupling and instability in channels While particles
approach the centerline, the presence of walls seem not to
destroy the complexity seen in unbounded Poiseuille flow. It
rather complexifies the picture, at least for deformable enough
particles. Kaoui et al. (2011) considered 2D vesicles with no
viscosity contrast, and scrutinized their behaviour while the
confinement and the capillary number are varied. As shown in
Fig. 19, increasing the confinement leads to the appearance of
another kind of behaviour, which is an oscillation in the lateral
position, which can be centered or not, which is called snaking.
The possibility to de-stabilize this state towards a stationary
shape through a time-varying flow has been explored by Boujja
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et al. (2018).
Remarkably, while a transition from symmetric, centered

shape to off-center slipper shape is observed upon a decrease
of the capillary number, a transition from symmetric shape to-
wards slipper is also observed upon an increase of the capillary
number, as long as a more viscous inner fluid is considered: in
Ref. (Tahiri et al., 2013), a 2D vesicle with a viscosity contrast
of 5 exhibits such a behaviour, which encourages the authors
to establish a similitude with experimental observations on red
blood cells. The latter indeed exhibit the appearance of slip-
per shapes upon an increase of flow velocity, in very confined
situations (Guckenberger et al., 2018; Tomaiuolo et al., 2009).

This behaviour for high viscosity contrast particles was later
on confirmed by 3D numerical simulations of red blood cells
(Dasanna et al., 2021; Guckenberger et al., 2018; Takeishi
et al., 2021), but also of vesicles (Agarwal and Biros, 2020)
— thus disregarding shear elasticity as an important parameter
in this problem. Guckenberger et al. (2018) explored the full
range of parameters relevant for microcirculation, and further-
more showed that most configurations in the parameter space
lead to bistability between the centered, parachute-like shape
and the slipper shape, whose existence depend on the initial
condition. Noteworthy, the snaking behaviour observed in 2D
simulations, but also in another 3D study (Fedosov et al., 2014)
does not seem to take place in their study. Similarly, a study of
a vesicle placed in a confined simple-shear flow has exhibited
similar centered/off-centered transition without snaking dy-
namics. Recktenwald et al. (2022) however highlighted slight
oscillation in lateral position of slipper-shaped red blood cells
through experiments and numerical simulations. They could
be interpreted as a signature of off-centered snaking. These
oscillations are obtained after the flow velocity has been in-
creased progressively, and they tend to disappear after a while,
on a time scale that depends on the viscosity contrast. These
results suggest that the discussions on the existence of stable
states should include the question of the relaxation time needed
to exit or enter a given state, which calls for longer simulation
times and also makes the comparison with experiments more
delicate.

More recently, several experimental developments have
taken place for better characterization of shape zoology, in-
cluding careful design of chips to control initial conditions
(Reichel et al., 2019), 3D tomography of flowing cells (Simion-
ato et al., 2021), and machine-learning based methods for high
throughput classification (Kihm et al., 2018; Martin-Wortham
et al., 2021; Simionato et al., 2021)

While the behaviour of these confined cells may be used
as a tool to characterize their individual mechanical proper-
ties, it should also be noted that it has direct consequences
on the collective behaviour, since the cell shape will directly
influence the flow pattern around it, therefore the aggregation-
disaggregation dynamics of a train of cells (Aouane et al.,
2017; Claverı̀a et al., 2016; Ghigliotti et al., 2012; McWhirter
et al., 2009; Takeishi and Imai, 2017; Tomaiuolo et al., 2012;
Yaya et al., 2021).

Figure 19 Diagram for the behaviour of 2D vesicles in a channel, as
a function of confinement ratio 𝑟 and capillary number 𝐶𝑎. Figure
taken from (Kaoui et al., 2011).

D. Other configurations

a. Curved streamlines Curved channels are frequent in mi-
crosystems. While more marginally studied, this configuration
has attracted some attention, in particular because this geom-
etry leads to interesting features when inertia comes into play
(Dean vortices).

Before considering this complex geometry, Ghigliotti et al.
(2011) first considered a model configuration with an un-
bounded flow consisting in circular streamlines. When plac-
ing a 2D vesicles is this flow, they observed that tank-treading
vesicle migrate towards the center while tumbling one hardly
migrated. They demonstrated that the inward migration ve-
locity is proportional to 𝑁𝑅2 ¤𝛾/(𝑟 − 𝑅), where 𝑟 is the radial
position of the vesicle, and 𝑁 is the normal stress difference,
that is related to the cell mechanical properties. Chan and Leal
(1979) also predicted such a result for a drop. In real systems,
be it a curved channel or a Couette device, a wall would be
present at some point, therefore inducing outward migration.

Ebrahimi, Balogh and Bagchi have recently demonstrated
that indeed a capsule would converge towards an intermediate
position between the wall and the centre line, for a channel
of circular (Ebrahimi et al., 2021) or rectangular (Ebrahimi
and Bagchi, 2021) cross section. Being the result of two
competing effects lying on the same mechanism, the resulting
position is independent from the capillary number. Higher
curvature leads to a final position closer to the inner wall.

These studies are, to our knowledge, the sole ones account-
ing for migration in curved channels at zero Reynolds number.
It remains to be determined whether this would greatly affect
the flow of particles in channels, where the curved part has
necessarily a finite length. In (Ebrahimi and Bagchi, 2021),
Fig. 3b, a capsule starting on the central line of the channel is
shown to have moved by 5% of the distance to the inner wall
after the channel has turned by 180◦, for a very sharp turn of
curvature radius of 5 times the cell radius. While this will
probably lead to negligible effect in most channels of interest,
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one may still use this effect to induce particle separation by
considering channels in spirals. Such a geometry may also be
used to validate the above mentioned numerical studies.

b. Oscillating flows The case of near centerline migration has
shown us that the interplay between migration and shape
leads to complex behaviour when a stationary shape cannot
be reached. Another way to produce a time lag between shape
relaxation and particle migration is to force changes in the
applied flow. These changes can be triggered by time varying
boundary conditions or by the geometry, a typical situation
being structured microchannels.

Following a series of studies on particles dynamics under
oscillating unbounded flows (Dupire et al., 2010; Kessler et al.,
2009; Matsunaga et al., 2015; Nakajima et al., 1990; Noguchi,
2010; Zhao and Bagchi, 2011), this more recent field of re-
search has now been explored through several kind of particles
and geometries and will probably meet growing interest in the
next years, for the rich behaviours that emerge and the potential
applications that could be developed.

We first consider a particle placed in a time-periodic har-
monic shear flow bounded by a wall. In this problem, a new
dimensionless parameter must be added, which is the ratio 𝜔̂
between the oscillation pulsation and the maximal shear rate.
At high enough capillary number such that the particle shape
relaxation time is set by the shear rate, the intuitive picture
is that, if 𝜔̂ is increased from 0 (corresponding to stationary
flow), the particle will face situations where it does not have
enough time to re-orient itself after flow reversal, such that
it will migrate towards the wall. On average though, the net
migration should be positive. In the large 𝜔̂ limit, the picture
is that of a fixed shape in a time varying flow, which recovers
a fore-aft symmetry when time-averaging is made.

Zhu et al. (2015) considered 3D simulations of a capsule
with no viscosity contrast. In addition to confirming the de-
crease of the mean migration velocity with 𝜔̂, they also high-
lighted a non monotonous evolution of this mean velocity,
when rescaled by the typical flow velocity, with the capillary
number, at given 𝜔̂. This is due to the plateauing of the mean
deformation upon an increase in capillary number (in practice,
upon an increase in maximal shear rate), because the capsule
fails to reach its potential maximal deformation, due to flow
reversal. It is found that the optimal capillary number scales
linearly with 𝜔̂−1, in line with the idea that at high capillary
number the deformation is not limited by its own deformability
but rather by the time ∝ 𝜔−1 during which the shear is applied
in a given direction.

It is interesting to observe that the notion of time lag be-
tween shape deformation and surrounding flow is sufficient to
create an effective asymmetry leading to migration even in an
unbounded shear flow, providing the particle presents an initial
asymmetry, as discussed by (Laumann et al., 2017) where a
wide class of particle is considered.

We are not aware of studies with flow reversal in a Poiseuille
flow. Periodic spatial modulation of the channel have instead

attracted some attention in the last 10 years, but most focus
was on shape changes of centered vesicles or red blood cells
(Braunmüller et al., 2011; Noguchi et al., 2010). Yet, such
a sawtooth channel is argued to be an efficient way to center
cells in a microfluidic devices in (Amirouche et al., 2020).
However, the picture might turn out to be more complex, ac-
cording to recent numerical simulations of vesicles in a wavy
channel, that have exhibited off-centered equilibrium positions
in a configuration where the same vesicles would be centered
if the channel was straight (Laumann et al., 2019).

IV. ELASTOHYDRODYNAMIC INTERACTIONS BETWEEN
PARTICLES

Figure 20 Fundamental configuration for pair interaction studies

As two particles cross each other in a flow, they may ex-
perience a lift force of similar nature as that induced by the
presence of a neighbouring wall. The induced normal dis-
placement has been documented by several experimental and
numerical studies. Such fluid-mediated scattering events in a
suspension induce a diffusion in all directions. This diffusion
has two consequences: mixing in the suspension, and flux
along concentration gradients. Contrary to Brownian diffu-
sion, these two phenomena are characterized by coefficients
that are a priori independent (Da Cunha and Hinch, 1996), the
down-gradient diffusion coefficient being expected to be sev-
eral times larger than the self-diffusion coefficient (Da Cunha
and Hinch, 1996; Grandchamp et al., 2013; Hudson, 2003).
They can, in principle, be deduced from the knowledge of the
displacement map of the two particles as a function of their ini-
tial relative position (Da Cunha and Hinch, 1996; Loewenberg
and Hinch, 1997). However, this approach poses convergence
issues due to the slow decrease of the interaction force with lat-
eral distance between particles (Loewenberg and Hinch, 1997;
Wang et al., 1998).

A. Pair interaction

By comparison with the lift of a particle close to a wall, the
finite extent in all directions of the interacting particles makes
this interaction problem even richer. As they approach each
other also in the flow direction, soft lubrication effects will
also take place when they collide. We will first consider two
identical particles in an unbounded shear flow of flow direction
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(A) (B)

Figure 21 Pair interaction between two droplets in unbounded shear flow. (A) Evolution of the shift 𝑧/𝑅 in the shear direction versus time, for
a fixed capillary number and various viscosity contrasts 𝜆 indicated on the figure. Particles are located in the same shear plane (𝑦0 = 0). The
fine solid curve corresponds to rigid sphere, and illustrates the absence of net lift, for symmetry reasons similar to that discussed in Fig. 2. The
fine dash-dotted curve refers to a configuration not relevant here. The representation in (B) is commonly used in these problems to depict the
final position in the 𝑧 (shear gradient) and 𝑦 (vorticity) directions as a function of initial position. The vertices of the light gray grid indicate
the initial positions that were tested, while the vertices of the thick, deformed, one indicate the final positions far from the reference particle.
Here, 𝜆 = 1 and in (b) the capillary number is larger than in (a). In (b), for an initial position 𝑦/𝑅 = 2, 𝑧/𝑅 = 1, the grid is slightly deformed
towards smaller 𝑦, indicating an attraction in the vorticity direction. Adapted from (Loewenberg and Hinch, 1997).

𝑥, shear direction 𝑧 and vorticity direction 𝑦, one of them placed
at an initial position (𝑥0, 𝑦0, 𝑧0) from the other, whose center of
mass is taken as the origin, with 𝑥0 < 0 of large absolute value
(see Fig 20). If 𝑧0 ≠ 0 (for further discussion, we will consider
𝑧0 > 0), the two particles will eventually cross each other,
which may result in a net displacement (Δ𝑦,Δ𝑧) in the two
directions perpendicular to flow. This displacement depends
a priori on both initial coordinates of the first particle. Along
the flow direction, an additional displacement Δ𝑥 will also be
found. Compared to the differential displacement between the
particles due to advection, it is however quite small and is
seldom commented.

Before turning to deformable particles, it is worth mention-
ing that the finite duration of the interaction between particles
makes it possible to obtain a net separation between solid par-
ticles. Da Cunha and Hinch (1996) proposed a model for the
interaction between rough spherical particles, assuming that
the approach phase builds up a repulsive force while the sepa-
ration phase does not. However simple this assumption might
seem, the existence of this separation effect was later on proved
experimentally (Blanc et al., 2011).

Loewenberg and Hinch (1997) studied numerically pair in-
teraction of identical drops in simple shear flow, for different
values of viscosity contrast and capillary number. A repre-
sentative set of their data is shown in Fig. 21. The relative
trajectories shown in Fig. 21A show that, for particles not sep-
arated in the vorticity direction, a significant shift of order one
radius is observed, if the initial position in the shear direction
is also of the order one radius. For drops, this shift decreases
upon an increase of viscosity contrast, which marks a strong
difference with the case of a drop above a flat wall, for which

the dependence of the lift velocity with 𝜆 is weak. The syn-
thesis of the final positions reached depending on the initial
positions shows several interesting features that illustrate the
complexity of this problem. First, a larger capillary number
do not necessarily induce a larger displacement. For small
initial 𝑧, the contrary even occurs (see Fig. 5 in (Loewenberg
and Hinch, 1997)). Again, this is in marked contrast with
the results for a particle near a wall. This points to a more
complex situation from the geometrical point of view, since
the incoming particle do not only flow above the other one
but also hits it initially: Loewenberg and Hinch (1997) argued
that the increased deformability reduces somehow the cross
section for near contact interaction at collision.

Though not commented by the authors, a weak attraction in
the vorticity direction can be seen for a drop initially located
at position (2𝑅, 𝑅), in Fig. 21B(b). This phenomenon also
appeared later on in other studies.

Fig. 21B also shows that net displacements are much larger
in the shear gradient than in the vorticity direction. This
implies that diffusion due to collisions is strongly anisotropic,
as will be discussed later.

As for lift above a wall, experimental studies on droplet inter-
action are scarce. Guido and Simeone (1998) and Wang et al.
(2016) showed some trajectories, and confirmed the typical
trajectories shown in Fig. 21A, and the weak net displacement
as soon as the initial distance is larger than a few radii, as in
Fig. 21B. As can be seen in Fig. 22, the collision between the
particles result in the creation in an extended and long-lasting
contact between the particles, with the creation of lubrica-
tion film. (Loewenberg and Hinch, 1997) exhibited different
scalings for the duration of the approach sequence and have
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Figure 22 Succesive snapshots of interacting drops with 𝜆 = 1.4
and 𝑅 = 20 𝜇m. The scale bar is 25 𝜇m. Adapted from (Guido and
Simeone, 1998).

showed that the separation stage is much shorter.
Capsules are again widely ignored by experimentalists,

while several numerical simulations shed light on the detail
of their interactions under shear flow. Lac et al. (2007) asked
themselves whether the presence of a membrane modifies
the drift observed for droplets. Their numerical simulations
showed that for capsules with no viscosity contrast placed in
the same 𝑥𝑧 plane, the net displacement is smaller. They also
found a weak effect of the capillary number and of the initial
deflation. The same team published a complementary study
where they studied the consequence of the capsules not being
in the same shear plane (i.e. 𝑦0 ≠ 0) (Lac and Barthès-Biesel,
2008). By contrast with what is observed on drops, a clear
attraction in the vorticity direction is observed for initial sepa-
ration in the vorticity direction of order the capsule radius and
small separation in the shear direction (i.e., small velocity dif-
ference). In this situation, the displacement depends strongly
on the capillary number, and increases with it. The authors
provided no explanation for this phenomenon.

Lac et al. also highlighted the fact that even if the capsules
are placed on the same streamline of the unperturbed flow, they
may still interact and cross each other. This is due to the flow
perturbation associated with the tank-treading motion of the
membrane, which have the effect to shift the particles apart:
the particle located at 𝑥0 < 0 and 𝑧0 = 0 will see its 𝑧 position
increasing because of the clockwise tank-treading motion of
the membrane of the particle located at the origin.

Singh and Sarkar (2015) confirmed the difference between
drops and capsules, the latter showing less cross-stream sepa-
ration, for viscosity contrast equal to 1. The difference turns
out to decrease upon an increase of this viscosity contrast.

Le and Chiam (2011) considered a refined model for cap-

sules that includes bending elasticity (while previous one only
included shear elasticity). They also considered different ini-
tial shapes, one of them being the biconcave shape of red blood
cells. Finally they considered a viscosity ratio of 4, closer to
physiological values for red blood cells. The capsules were
kept in the same shear plane. Instead of particle crossing, they
observed for small initial 𝑧0 a motion called spiraling, that
consists in oscillations of the particle positions at finite dis-
tance from each other. In this article, the origin of this effect is
particularly unclear, as the positions around which oscillations
take place correspond to an equilibrium configuration induced
by the periodic boundary condition. Moreover, the viscosity
ratio apart, the configuration is quite similar to that studied in
(Lac et al., 2007), where no such motion was described.

Fore small capillary numbers, more deflated capsules ex-
hibit more complexe interaction patterns, like a swapping of
positions as they collide, or a pairing followed by a rotation
of the couple as a whole. This happens in conditions where
the capsule would tumble, if isolated in the flow. As these
behaviours take place in the middle of the simulation box, they
are probably more trustful. This possibility of more complex
interactions has been confirmed by other numerical simula-
tions of capsules with no viscosity contrast (Hu et al., 2020):
for an initial position defined by small enough |𝑥0 |, 𝑧0 close
to 0 and 𝑦0 ≠ 0, the initial shift in the 𝑧 direction due to the
flow induced by the reference capsule is not large, essentially
because the studied capsule can flow straight. However, the
attraction after interaction, as observed in Fig. 21A, is main-
tained, such that the sign of 𝑧 is changed, implying a backward
motion of the capsule and a new crossing. In the meantime,
it is, on average, attracted in the 𝑦 direction (as already seen
in (Lac and Barthès-Biesel, 2008)). Depending on deforma-
bility, the interaction might end up there (thus resembling the
swapping motion described by Le and Chiam (2011)), or go on
for one or more additional interaction, leading to what the au-
thors called minuet motion. In agreement with Le and Chiam
(2011), swapping or multiple swapping (i.e. minuet) is favored
by low capillary number.

Pair interaction of vesicles has been studied through exper-
iments, numerical simulations and theory. Using the far field
perturbation due to one vesicle (which is proportional to its
stresslet and decays as the inverse of the distance squared),
Farutin and Misbah (2013) proved that, for weakly deformed
vesicles with no viscosity contrast, placed in the same shear
plane, the net displacement scales as the inverse of the initial
position 𝑧0 squared. They also provided an expression for the
prefactor, as a function of reduced volume. Their result agrees
quantitatively with their own simulations. They did not study
the case of initial offset in the 𝑦 direction. Following the same
theoretical framework, Gires et al. (2012) showed that vesicles
with high viscosity contrast (but not tumbling) exhibit attrac-
tion in both directions as soon as |𝑦0 | > |𝑧0 |. The range of
validity of this theory makes it however weakly amenable to
experimental check.

Gires et al. (2014) studied the case of vesicles with no vis-
cosity contrast not initially placed in the same shear plane was
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studied through numerical simulations. They found that for
vesicles with initial position 𝑦0 larger than a threshold which
is of order the vesicle radius, attraction in the vorticity direc-
tion takes place, while almost no net displacement is observed
in the shear direction. The author notes that, while in (Gires
et al., 2012) the attraction can be interpreted in terms of contri-
bution of the far field perturbation due to the other vesicle, here
the small distance between the vesicles makes it necessary to
consider additional forces due to the fluid flow in the thin film
created between the vesicle, that are deformed by their interac-
tion. This soft-lubrication approach may follow the guidelines
of Loewenberg and Hinch (1997). Numerically, the additional
pressure that builds up was particularly discussed in the study
of capsules dancing menuet (Hu et al., 2020).
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Figure 23 Net displacement Δ𝑧 as a function of initial offset 𝑧0
for vesicles places in the same shear plane. Dots correspond to
experimental data for vesicles with 0.98 > 𝜈 ≳ 0.75 and 𝜆 = 0.28
(black squares), 𝜆 = 1 (red disks), and 𝜆 = 3.8 (open squares). 𝐶𝑎
lies between 10 and 100. Dashed line (𝐶𝑎 = 10), full line (𝐶𝑎 = 50)
and dotted line (𝐶𝑎 = 100): simulations for 𝜆 = 1 and 𝜈 = 0.95.
Dash-dotted line: simplified model (Eq. (22)). Adapted from (Gires
et al., 2014).

Gires et al. (2014) also presented experiments between vesi-
cles with 0.28 < 𝜆 < 3.8, and reduced volume 𝜈 ≳ 0.75 placed
in the same shear plane. Their main results are shown in Fig.
23. As for most previous studies, a maximal shift of the order
one radius is found. Remarkably, and in the limit of the ex-
perimental uncertainty the net displacement does not seem to
depend much either on the reduced volume or on the viscosity
contrast, though both are varied in a large range. The experi-
mental results match well with simulations of vesicles with no
viscosity contrast.

In an attempt to rationalize this weak dependence on the
mechanical properties of the vesicles, the authors proposed to
model the interaction between the vesicles as the lift of one
vesicle above a wall of finite length 2𝑅. Assuming the vesicle
starting at 𝑧0 moves with velocity ¤𝛾𝑧 relatively to the vesicle
of reference, Eq. (13) leads to 𝑑𝑧/𝑑𝑥 = 𝐴𝑅3/𝑧3. Integration
along the trajectory leads to the net displacement

Δ𝑧 = (𝑧4
0/𝑅

4 + 8𝐴)1/4 − 𝑧0/𝑅. (22)

A fit of experimental data with this rough model, shown in
Fig. 23, showed good agreement with single fitting parameter
𝐴 close to the typical values found by Olla. The overall
amplitude of the interaction curve is set by the maximal
displacement (8𝐴)1/4. This 1/4 exponent explains why the
variations of 𝐴 with cell mechanical property are smoothed
out when net displacement is considered. Note that the long
distance limit 𝑧0/𝑅 ≫ 1 of Eq. (22) is Δ𝑧 ∼ 2𝐴𝑅3/𝑧3,
which is not in agreement with more accurate theoretical
derivations (Farutin and Misbah, 2013). Yet, this law can
serve as a good proxy for estimating the drift due to interaction.

In channels, the interaction between particles becomes
more complex, due to the varying shear rate. Also, the
presence of walls strongly modifies the perturbing field
creating by one particle, and attraction/repulsion in the flow
direction becomes a dominant feature, as it exists also for rigid
spheres (Zurita-Gotor et al., 2007). This leads to complex
structuring mechanisms in the flow direction (Aouane et al.,
2017; Claverı̀a et al., 2016; Ghigliotti et al., 2012; McWhirter
et al., 2009; Takeishi and Imai, 2017; Tomaiuolo et al., 2012;
Yaya et al., 2021), which we will not study here.

Finally, the collision between particles of different proper-
ties is of great interest to understand segregation mechanisms
within a suspension.

Kumar and Graham (2011); Kumar et al. (2014); and Singh
and Sarkar (2015) studied pairs of capsules with different
rigidities; the key finding is that the stiffer particle is more
displaced, although the relative displacement remains quasi
constant. In line with the result for similar capsules, the net
displacement depends only weakly on the capillary number.
Závodszky et al. (2019) simulated interactions between red
blood cells and platelets (modeled as smaller and 10 times
stiffer particles than red blood cells). The displacement of the
red blood cell is found to be negligible, while the platelets can
be displaced by around 2 of their radii.

B. Diffusion in suspensions

In a semi-dilute suspension (such that interactions involving
more than 2 particles can be neglected), the effect of multiple
pair interactions with random initial relative positions, is to
give birth to a diffusive flux.

This flux is one of the ingredients that can be incorporated
in continuous models to describe the distribution of concen-
trations across a flow chamber. It will tend to oppose to
the advection due to wall repulsion. As a pair interaction
is needed for lateral displacement to occur, the diffusion con-
stant depends linearly on the concentration of diffusing species.
Furthermore, the diffusion is anisotropic, due to the inequal
displacements in shear and vorticity direction. This results
in anisotropic non-linear advection-diffusion equations which
can only be analytically solved in some few cases. The type of
solutions strongly depends on the boundary conditions of the
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(A)

(B)

Figure 24 Shear induced diffusion of interacting particles. (A) A jet
of red blood cells injected in a flat channel diffuses in the 𝑦 direction
because of shear in the 𝑧 direction, thus allowing to determine the 𝑓3
coefficient experimentally. Picture taken from (Grandchamp et al.,
2013). (B) Simulations of red-blood-cell-like capsules diffusing in a
simple shear flow, allowing to determine the coefficient 𝑓2. The cross-
stream concentration profile is the truncated parabola expected from
the model. Proper rescaling shows a collapse indicating that the
width increases as a function of time with exponent 1/3. Picture
taken from (Malipeddi and Sarkar, 2021).

problem.
For instance, in (Rusconi and Stone, 2008), an initial step

function of concentration of asymmetric particles is flowing in
a channel where its interface diffuses. The authors found that
the widening of the interface is characterized by an exponent
1/2, as for Brownian diffusion. By contrast, it was shown in
several studies that a narrow stream of red blood cells (Grand-
champ et al., 2013; Malipeddi and Sarkar, 2021), or droplets
(Malipeddi and Sarkar, 2019) injected in a channel diffuses
with an exponent 1/3 (Fig. 24). The difference between the
two experiments lies in the boundary conditions: a step func-
tion that becomes smoother and smoother can be considered,
as long as diffusion has not reached its edges, as a function
with fixed maximal amplitude. By contrast, an initially nar-
row distribution sets a condition of constant integral, and not
of constant maximal value. In this case, the subdiffusive be-
haviour is accompanied by the existence of a different family of
self-similar distributions, which are truncated parabolas (Fig.
24). This subdiffusion can be understood by the fact that the
more the cells diffuse, the less they interact, so the less lateral
displacement is produced.

For particles placed in a simple shear flow, the down-
gradient diffusive flux for a suspension of local concentration
𝜙 can be written as

J = − 𝑓 𝑅2 | ¤𝛾 |𝜙∇𝜙. (23)

The term | ¤𝛾 |𝜙 accounts for the frequency of collisions. The
dimensionless prefactor 𝑓 is related to the detail of the inter-

action, as described previously for different kind of particles.
If the gradient of concentration is in the shear direction, this
coefficient is often denoted 𝑓2, and 𝑓3 if the gradient is in the
vorticity direction. Although it is possible to describe locally
the flow in a channel as a simple shear flow (whose axis depend
on the position in the channel) (Grandchamp et al., 2013), this
description in terms of two different coefficients is certainly
not sufficient to account for diffusive processes in channels,
where shear gradients must also be taken into account. For
that reason, most characterization of fluxes were run in simple
shear flows, to the exception of the experiments channels of
(Grandchamp et al., 2013), where simplifying hypothesis had
to be made.

While looking at the time-evolution of concentration pro-
files allows to determine these unknown coefficients 𝑓𝑖 , this
method becomes more complex if other effects have to be
considered, in particular that of the presence of walls. If the
time-evolution equation becomes difficult to solve analytically,
it is still possible to solve for the resulting stationary distribu-
tion, assuming the the diffusive flux and convective flux due to
the wall-induced lift can be simply added. If the lift velocity
due to the walls is known, this distribution is a function of
𝑓2 only (Bureau et al., 2017; Hudson, 2003; Malipeddi and
Sarkar, 2019; Podgorski et al., 2011).

For droplets, a coefficient 𝑓2 of order 0.2 was experimentally
found by Hudson (2003), for drops of viscosity ratio close to
0.2. The dependence with the capillary number was not stud-
ied. In the numerical simulations of Malipeddi and Sarkar
(2019), 𝑓2 is a non monotonous function of the capillary num-
ber taking values between 0.2 and 0.45, this maximal value
being reached for intermediate capillary number. This be-
haviour agrees with the calculation of Loewenberg and Hinch
(1997) for the self-diffusivity coefficient, and can be under-
stood as follows: for small capillary numbers, the drops stay
spherical and do not diffuse. For large capillary numbers, their
deformation is so strong that they elongate in the flow, which
results also in a quasi-symmetric situation. This discussion is
similar to that held for vesicles near a wall, where such a non
monotonous behaviour was observed as a function of reduced
volume, that controls their ability to deform.

Coefficient 𝑓2 was also experimentally determined for
slightly deflated lipid vesicles with no viscosity contrast, and
a coefficient 0.06 ± 0.02 was found by two different methods
(Bureau et al., 2017).

For red blood cells, experiments for cells under moderate
shear rate — such that they are in a tumbling-like regime —
have led to 𝑓3 ≃ 0.2 and 𝑓2 ≃ 2.7 (Grandchamp et al., 2013)
2. The latter value is strongly different from that found for
drops or vesicles; however, a renormalization of the concen-
trations by considering the effective volume occupied along
time by these tumbling cells lead to find closer results, though

2 The values given here were re-calculated from the original article (Grand-
champ et al., 2013) where the authors use for 𝑅 the maximal radius 3.6 𝜇m;
in this review, 𝑅 = 2.8 𝜇m is based on the cell volume.
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the diffusion of red blood cells still appears as stronger. In
their numerical simulations, Malipeddi and Sarkar found that
𝑓2 increases from 0.3 to 0.6 as the capillary number increases
and allows for transition between a tumbling-like to a tank-
treading regime 3. A small decrease is however observed as
the cell transits between the two regimes. These values are
much smaller than that found experimentally. A potential ex-
planation could be that the experiments were run in a Poiseuille
flow and simplifications in the modeling had to be made to lead
to equations that could be solved. Also, the authors mainly
studied the non-physiological case 𝜆 = 1, but they showed on
selected cases that the diffusion coefficient does not vary much
with 𝜆. Considering that strong modifications in a red blood
cell dynamics are expected upon a transition to physiological
to unity viscosity contrast (Fischer and Korzeniewski, 2013;
Minetti et al., 2019), this point would deserve to be further
elucidated.

Regarding self-diffusivity, the difficulty in tracking particles
among others makes numerical methods the tool of choice for
the determination of diffusion coefficients. Conclusions on the
effect of mechanical properties are in line with the previous
discussions, see e.g (Malipeddi and Sarkar, 2021).

Finally, we remark that 𝑓3 coefficient has, in general, seldom
been measured. In particular, consequences of attraction in
the vorticity direction has never been observed, nor introduced
in models. As it would reinforce concentration gradients
rather than smooth them out, it may lead to interesting
problems where initially homogeneous suspensions could
become unstable.

Interactions between particles of different sizes or mechan-
ical properties may lead to segregation effect within the sus-
pension. A key example is that of blood, where platelets and
white cells are often met in the edges of the channels. This
multi-parameter problem is complex and lies beyond the scope
of this review. It has been studied, mainly through numerical
simulations, by different groups, and would probably deserve
a review in the next years (Chang et al., 2018; Crowl and
Fogelson, 2011; Fedosov et al., 2012; Krüger, 2016; Kumar
and Graham, 2011, 2012; Kumar et al., 2014; Müller et al.,
2016; Rivera et al., 2016; Ye et al., 2019; Závodszky et al.,
2019; Zhang et al., 2020a). As for diffusion of a single type of
particle, it can also be addressed through continuous models
involving cross terms between the different types of particles,
as in (Rivera et al., 2016).

C. Creation of cell free layers in blood flow

The flow of red blood cells in microcirculation is marked
by the existence of a cell-free layer (CFL) near the walls (Fe-

3 The values given here were re-calculated from the original article
(Malipeddi and Sarkar, 2021) where the authors use for 𝑅 the maximal
radius 4 𝜇m; in this review, 𝑅 = 2.8 𝜇m is based on the cell volume.

dosov et al., 2010; Katanov et al., 2015; Narsimhan et al.,
2013; Sherwood et al., 2012), which has first been observed
by Poiseuille (1835) almost two centuries ago. This CFL
has been acknowledged to be at the origin of the decrease of
the apparent viscosity referred to as Fåhræus-Lindquist effect
(Fåhræus and Lindqvist, 1931) as well as the decrease of the
hematocrit in small vessels compared to large ones (Fahraeus,
1929; Popel and Johnson, 2005).

The shear-induced lift of red blood cells is reckoned as the
main origin of the creation of this depleted layer. In a first
approach, one can quantify this depletion layer by zeroing the
sum of the advection flux 𝜙𝑈𝐿 and of the diffusive flux (Eq.
(23)), for a given mean volume fraction.

Using such a model, one can calculate an analytical relation-
ship between mean concentration and thickness of the CFL,
in a simple shear flow where the lift velocity is assumed to
be the sum of the lift velocities due to each wall. Doing so,
Rivera et al. (2016) proposed a fit of several data coming from
previous simulations or experiments. This result was obtained
with a fit parameter 𝐴/ 𝑓2 of order 0.5 (where 𝐴 is the constant
of Eq. (13) and 𝑓2 that of Eq. (23)). This value deserves
a comment: in (Rivera et al., 2016), agreement is found in
particular with numerical simulations run by the same group
(Kumar et al., 2014), where capsules are considered, whose
characteristics are such that they are in a tank-treading regime.
For vesicles in tank-treading regimes, the 𝐴/ 𝑓2 ratio is of order
0.1/0.06 ∼ 1.7 which is indeed of the same order of magnitude
as the ratio obtained from the fit. At that point, the picture is
clear. On the other hand, red blood cells in microcirculation
are clearly not in such a regime, when isolated. Indeed, for
red blood cells, the ratio becomes 0.016/2.7 ∼ 0.006 (Grand-
champ et al., 2013), which is much lower and would lead,
when used in the theoretical model, to the absence of CFL.
The effective 𝐴/ 𝑓2 parameter of order 0.5 that is needed to
account for the presence of the CFL highlights the complexity
of modeling structuring effects by continuous models. This
questions the relevance of such a modeling whose goal is in-
deed to establish a micro-meso link between cell mechanical
properties and structure of the suspension, unless additional
ingredients are considered.

In particular, the simple model above neglects several fea-
tures: the modification of cell-cell interactions in the vicinity
of walls, the screening of lift forces by neighboring cells, and
the modification of cell dynamics due to the presence of neigh-
boring cells; indeed neighbors tend to prevent tumbling-like
motion, which would favor an increase of the lift parameter 𝐴.
In this spirit, an attempt to determine the lift force on a cell
under an external force directed towards the wall that mimics
the effect of neighboring cells can be found in (Hariprasad and
Secomb, 2014).

Another ingredient may also be considered: in a Poiseuille
flow, collisions between red blood cells induce a transverse
flow because of the concentration gradient, but also because
of the shear rate gradient, which also makes the collision proba-
bility asymmetric. One can show that the associated flux reads



29

(Rivera et al., 2016)

−( 𝑓2 − 2 𝑓2𝑠)𝑅2Φ2 𝜕 | ¤𝛾 |
𝜕𝑧

, (24)

where 𝑓2𝑠 is the 𝑓 -coefficient associated with self-diffusion.
As 𝑓2 is always greater than 2 𝑓2𝑠 (Da Cunha and Hinch, 1996),
this flux is directed towards the center of the channel. In a
channel of radius 𝑟 , the ratio 𝜁 between the convective flux
and this new diffusive flux reads

𝜁 =
𝜉

𝑅1−𝛿 ( 𝑓2 − 2 𝑓2𝑠)
× 𝑟 − 𝑧
𝑧𝛿Φ

≃ 0.007
𝑟 − 𝑧
𝑧𝛿Φ

, (25)

where the last equation was obtained using 𝑅 = 2.8 𝜇m,
𝜉 = 1.1× 10−2 and 𝛿1.3 (Losserand et al., 2019), 𝑓2 = 2.7 and
𝑓2/( 𝑓2−2 𝑓2𝑠) ≃ 9/7 (Grandchamp et al., 2013). For a channel
radius of order some tens of microns, a cell even quite close
to the wall (𝑧 ≃ 𝑅) and a volume fraction of some 10%, this
ratio is ≲ 1, meaning that the effect of asymmetric collision
due to shear gradient cannot be omitted and may deserve to be
considered as a contributor to the creation of cell free layers.

Finally, modeling the core of the suspension, where the
highest concentrations are expected, as a suspension where
only pair interactions take place, is probably not relevant. In
addition, the modification of the local rheology due to this
concentration leads in practice to a plug flow with high shear
region near the walls (see, e.g. (Roman et al., 2016)).

The agreement between the numerical simulations of
Kumar et al. (2014) — which are not based on red-blood-
cell-like objects — and experimental observations on red
blood cells, as far as CFL thickness is concerned, leads to
question the ability of these to predict other phenomena
impacted by the cell mechanical properties? More generally,
benchmarking of numerical methods on the behaviour of the
particles under flow is often partial. Regarding capsules, this
can be explained by the lack of experiments quantifying lift,
but experimental results on red blood cells under flow do exist
(Amirouche et al., 2020; Dupire et al., 2012; Grandchamp
et al., 2013; Lanotte et al., 2016; Losserand et al., 2019;
Minetti et al., 2019; Yao et al., 2001). Nevertheless, numerical
methods are often validated only through quasi-static standard
configurations like micropipette aspiration or optical tweezers
stretching — as in (Malipeddi and Sarkar, 2021) or in (Balogh
and Bagchi, 2017) which is used by Balogh and Bagchi (2019)
to set exhaustive discussion on the dynamics of creation of
the CFL in complex networks — or by considering simpler
objects like quasi-spherical capsules — as in (Doddi and
Bagchi, 2009) — or through the observation of a collective
behaviour — as in (Balogh and Bagchi, 2017; Fedosov et al.,
2011; Ye et al., 2019) — which may hide several offsetting
issues. More precisely, Sigüenza et al. (2017) showed that
agreement on quasi-static load is not sufficient. Agreement
with experiments under flow would therefore be a plus,
keeping in mind that, quoting Nicoud et al. (2019), ” this is in

fact not always sufficient as the robustness of the numerical
results to physical/numerical parameters may be so large that
a good agreement may be reached by chance”. Efforts in
running comparison with single cell dynamics results has
been noticed in the recent literature (Závodszky et al., 2019;
Zhang et al., 2020a).

As a concluding remark, dynamic interactions between soft
particles exhibit a rich variety of behaviours, including attrac-
tion, whose impact at the level of a suspension have not yet
been discussed. As noted above, the creation of a cell-free
layer in a blood stream (and, by extension, in any other con-
fined flow of deformable particles) has not yet been modeled
in a framework that relies on what is known about cell-cell and
cell wall interactions. Layering effects have been reported in
such suspensions, which are still unexplained (Audemar et al.,
2022; Feng et al., 2021; Shen et al., 2016, 2017; Thiébaud
et al., 2014; Zhou et al., 2020). Another issue is that of the
modeling of interactions in the vicinity of the flow centerline,
where the shear rate is zero, hence a vanishing diffusive flux.
This leads to unphysical accumulation of particles in the cen-
terline, if one uses continuous diffusive models (Phillips et al.,
1992). While some ad-hoc corrections can be introduced to
account for this finite-size effect, there is certainly a long way
to go before establishing a comprehensive link between local
mechanisms and diffusive flux in such a configuration, where
the longitudinal attraction/repulsion mechanisms should also
be considered.

V. FLOW-INDUCED ELECTROKINETIC LIFT

A. Context

In relation to the flow properties of fluid-suspended objects
mentioned before, it is of interest to note that, for suspen-
sions of charged particles in an electrolyte, a phenomenon
known as the “primary electroviscous effect” has been identi-
fied since the 50s (see (Hinch and Sherwood, 1983) and refer-
ences therein), which points to the importance of the coupling
between flow and ionic transport near the surface of the parti-
cles, resulting in a modified lubrication drag (Rodrı́guez Matus
et al., 2022), and an enhanced viscosity of charged suspensions
compared to uncharged ones. Along this line, we describe in
the following section the electrokinetic effects that give rise to
lift forces at play at low Reynolds numbers with rigid objects
bearing surface charges. Such forces have, in recent years,
been mainly described and exploited in the context of particle
manipulation (separation, focusing) in microfluidic applica-
tions, in which an external electric field is applied parallel
to the channel walls. These applications, and their theoreti-
cal foundations, have been recently reviewed by Xuan (2019).
Therefore, it is beyond our scope here to cover the rich corpus
of observations and predictions made on cross-stream particle
motion in the presence of an electric field (we briefly come
back on these in the concluding part of this section). Rather,
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we limit our discussion to the case where no external elec-
tric field is applied, with the aim of (i) emphasizing that such
electrokinetic effects do arise in flow situations with no elec-
trical driving, (ii) providing the reader with a concise review
of their modeling, and (iii) evaluating whether such effects are
important to account for in aqueous-based suspensions.

Figure 25 Histograms of bead/wall distances obtained at two differ-
ent shear rates Γ in water/glycerol mixtures of (a) 𝜇 = 2.9 × 10−3

Pa.s−1 and 𝐾 = 2 𝜇𝑆.cm−1, and (b) 𝜇 = 630 × 10−3 Pa.s−1 and
𝐾 = 0.046 𝜇𝑆.cm−1. Adapted from (Alexander and Prieve, 1987).

B. Experimental observations

Alexander and Prieve (1987) described an experimental
method designed to determine the interaction potential be-
tween a colloidal particle and a surface. Their approach con-
sisted in measuring the temporal fluctuations of the translation
velocity of a bead driven by a shear flow near a flat wall, and to
rely on theoretical results established previously by Goldman
et al. (1967) in order to infer, from their velocity measure-
ments, the distance between the bead and the wall, using the

following relationship between bead velocity 𝑉 , shear rate ¤𝛾,
bead radius 𝑅 and bead/wall distance ℎ (Goldman et al., 1967):

𝑉 (ℎ) ≃ ¤𝛾𝑅 0.7431 (1 + ℎ/𝑅)
0.6376 − 0.2 ln (ℎ/𝑅) (26)

Doing so, they assumed that the shear flow did not perturb
the equilibrium colloidal forces to be characterized (arising
from electrostatic double layer interactions in their experi-
ments). In order to validate experimentally such a hypothesis,
they performed a series of measurements in which they varied
the strength of the shear flow (the shear rate at the wall, ¤𝛾),
and the viscosity of the suspending fluid (working with vari-
ous water/glycerol mixtures). While they indeed measured no
effect of ¤𝛾 in low viscosity fluids, they unexpectedly observed
that, in liquids with high glycerol contents, the flowing beads
travelled at a larger distance from the wall at higher shear rates
(Fig. 25).

This first observation was followed by more systematic stud-
ies by Bike et al. (1995) and Wu et al. (1996), who investi-
gated in more details the role of shear rate and suspending fluid
composition on the observed lift of flowing particles. Their
findings are summarized in Fig. 26: both groups of authors
observed, as initially found by Alexander and Prieve, that the
bead/wall distance increases as the shear rate is increased, this
effect being much more pronounced in fluids of higher glycerol
content.

C. Origin

The observed phenomenon being amplified in high glycerol
content fluids, this rules out hydrodynamic inertial effects to be
at the origin of the lift, as those would rather be weakened upon
increasing the fluid viscosity, which is the case at increasing
concentrations of glycerol. As noted already by Alexander and
Prieve (1987), high glycerol content fluids also exhibit lower
conductivities, which rather hints to an electrokinetic origin,
with a lift force associated to the streaming potential arising
from the relative motion of two charged surfaces.

Indeed, when a solid bearing surface charges is in motion
relative to a polar liquid, the fluid flow associated with this
motion induces currents of ions within the near-surface Debye
layer that screens the surface charges from the electroneutral
bulk liquid. Such a charge transport within the Debye layer
is compensated for by the buildup of currents in the bulk of
the surrounding fluid (Fig. 27a). An electric field is induced
by these streaming currents, which has two consequences: (i)
it sets the Maxwell (electrical) stress acting on the body; and
(ii) it creates an electro-osmotic flow that perturbs the initial
driving flow. In addition, polarization of the ionic concen-
trations in the liquid surrounding the particle gives rise to
a diffusio-osmotic flow perturbing further the driving flow.
These osmotic phenomena thus contribute to the net hydrody-
namic stress acting on the solid. For a charged sphere purely
translating in an unbound polar fluid, all these effects result
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Figure 26 (a) Bead/wall gap distance as a function of imposed fluid
shear rate, taken from references (Alexander and Prieve, 1987) (red
filled circles), (Bike et al., 1995) (blue squares), and (Wu et al., 1996)
(green triangles). The three datasets have been obtained with beads of
diameter 𝐷 = 9.2 𝜇m and solution conductivity 𝐾 = 0.046 𝜇S.cm−1

(Alexander and Prieve, 1987), 𝐷 = 10 𝜇m and solution conductivity
𝐾 = 0.013 𝜇S.cm−1 (Bike et al., 1995), and 𝐷 = 5.1 𝜇m and solution
conductivity 𝐾 = 0.05 𝜇S.cm−1 (Wu et al., 1996). (b) Distance as a
function of carrying fluid conductivity, taken from (Bike et al., 1995)
(blue squares), and (Wu et al., 1996) (green triangles). The two
datasets have been obtained with 𝐷 = 5.2 𝜇m and shear rate ¤𝛾 = 6
s−1 (Bike et al., 1995), and 𝐷 = 5.2 𝜇m and shear rate ¤𝛾 = 19 s−1

(Wu et al., 1996). In (a) and (b), the lines correspond to theoretical
predictions using a lift force as computed from Eq. (29), as described
in the text. Theoretical curves in (a) were obtained with 𝜓 = −40 mV
and ionic strength 𝐶∞ = 2 × 10−4 M (red dotted line), 𝜓 = −45 mV
and𝐶∞ = 10−4 M (blue full line), 𝜓 = −40 mV and𝐶∞ = 1.6×10−4

M (green dashed line). Curves in (b) were obtained with 𝜓 = −30
mV (blue full line) and 𝜓 = −40 mV (green dashed line), with 𝐶∞
varied in the range 10−4 − 2.5 × 10−3 M.

in an extra drag acting on the sphere, along the direction of
motion, but no force acting transverse to the motion of the
bead. Any factor breaking the axial symmetry of this situation
will induce a force transverse to the motion, i.e a lift force: this
can be for instance an angular velocity imposed to the bead
(Khair and Balu, 2019), or the presence of another solid/liquid
boundary (electrically charged or not) near the flowing particle
(Fig. 27b).

Figure 27 (a) A charged particle of radius 𝑅 translating in a fluid at
velocity𝑉 and at a distance ℎ of a flat surface. The bead/fluid relative
motion sweeps charges within the Debye layer that screens the bead
surface charges, resulting in near-surface currents (𝐼s). (b) The field
associated to the dipole induced by the streaming currents displays a
non-axial symmetry due to the proximity of the wall, which results in
a force acting transversally to the bead motion. Adapted from (van de
Ven et al., 1993).

D. Modelling

Soon after the initial observations described above, several
groups of authors have attempted to establish a theoretical de-
scription of the phenomenon for a bead of radius 𝑅 translating
at velocity 𝑉 at a distance ℎ from a flat wall (see Fig. 27).
This formally amounts to solving a set of equations consisting
of (i) the Nernst-Plank equation describing the convection-
diffusion of ionic species, (ii) the Poisson equation relating
the electric potential to the density of charges in the fluid, (iii)
the Stokes equation accounting for Coulomb forces, balancing
pressure, viscous and electrostatic forces, and (iv) the conti-
nuity equation (fluid incompressibility). These are associated
to boundary conditions imposing no slip, no normal current,
and electric potential on each solid surfaces.

Such coupled electro- and hydrodynamic problems are
mathematically quite involving. We skip here all the technical
aspects related to solving, present qualitatively the assump-
tions made in the various theoretical studies and provide the
analytical expressions obtained for the lift force under these
assumptions.

As summarized by Cox (1997), the solutions of such a type
of problems depend, in addition to the distance between the
solids, their shape and relative motion, on the following pa-
rameters:

• the Peclet number 𝑃𝑒 = 𝑉𝑅/𝐷1, with 𝐷1 the diffusion
coefficient of (say) cations, comparing convection to
diffusion effects,
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• 𝐷1/𝐷2, the ratio of cation to anion diffusivities,

• the Debye length 𝜅−1 =
√︁
𝜖 𝑘𝐵𝑇/(2𝑧2𝑒2𝑐∞), i. e. the

extension of the ion cloud screening surface charges,
with 𝜖 the fluid permittivity, 𝑘𝐵𝑇 the thermal energy, 𝑧
the valency of the ions, 𝑒 the elementary charge, and 𝑐∞
the bulk (number) ion concentration,

• the Hartmann number 𝜆 = 2𝑐∞𝑘𝐵𝑇𝑅/(𝜇𝑉), with 𝜇 the
fluid dynamic viscosity, giving the relative importance
of electrical body forces on fluid flow,

• the particle, 𝜓𝑝 , and wall, 𝜓𝑤 , surface potentials (or
their dimensionless forms 𝜓̃𝑝,𝑤 = 𝜓𝑝,𝑤𝑧𝑒/(𝑘𝐵𝑇)

A number of attempts have been made in order to determine
the normal force that could arise from electrodynamic and
hydrodynamic couplings when a bead flows near a flat wall.

Bike and Prieve (1990) employed the lubrication approxima-
tion combined with the assumption that the Debye layer 𝜅−1 is
smaller than the gap ℎ, i.e. 𝜅−1 ≪ ℎ ≪ 𝑅 (this is the so-called
“thin Debye layer limit”), and computed an electrokinetic lift
force 𝐹𝐵𝑃1 reading:

𝐹𝐵𝑃1 =

( 𝜖
4𝜋

)3 𝜋𝑅𝑉2

𝐾2ℎ3

[
0.384𝜓2

+0.181𝜓Δ𝜓 + 0.0242(Δ𝜓)2] (27)

where 𝜖 and 𝐾 are the fluid permittivity and conductivity,
𝜓 = (𝜓𝑤 + 𝜓𝑠)/2 and Δ𝜓 = 𝜓𝑤 − 𝜓𝑠 . The above expression
was obtained by accounting only for the Maxwell stress arising
from the streaming potential, and neglecting a priori other
electro-osmotic perturbations of the driving flow.

The same authors also derived, in a subsequent article in
which they relaxed the lubrication approximation, an expres-
sion for the lift force that holds for ℎ ≳ 𝑅 (Bike and Prieve,
1992):

𝐹𝐵𝑃2 =

( 𝜖
4𝜋

)3 27𝜋𝑅2𝑉2

16𝐾2 (𝑅 + ℎ)4 (𝜓𝑠 + 2𝜓𝑤) 𝜓𝑠 (28)

This expression coincides with that obtained by van de Ven
et al. (1993) when 𝜓𝑤 = 0.

Equations (27) and (28) both capture qualitatively the fact
that the lift force, hence the bead/wall distance, is expected
to be larger at larger shear rates (recalling that 𝑉 ∼ ¤𝛾𝑅) and
for lower solution conductivity 𝐾 . However, when used with
physically sound values for 𝜓, 𝜖 and 𝐾 , none of the above ex-
pressions allows to quantitatively account for the steady-state
bead/wall distances measured experimentally, with computed
lift forces several orders of magnitude too low to explain ob-
servations (Bike and Prieve, 1990, 1992, 1995; van de Ven
et al., 1993).

The problem was tackled later by Cox (1997), who pointed
out that, in contrast to what was assumed in previous works,
the dominant contribution is not due to the Maxwell stress

alone but arises from the electro-osmotic flow generated by the
streaming potential, which perturbs the driving flow. Cox de-
rived a general solution scheme, using asymptotically matched
expansions in 𝛿 = 1/(𝜅𝑅), which is valid in the thin-Debye-
layer limit. This framework was employed by several authors
in order to address the specific problem of a charged sphere
translating at speed 𝑉 and rotating at angular velocity Ω in the
vicinity of a charged wall (Tabatabaei et al., 2006; Warszynski
et al., 1998; Wu et al., 1996). Wu et al. (1996) and Warszyn-
ski et al. (1998) made derivations for a cylinder/flat geometry,
followed by the use of Derjaguin approximation to convert the
obtained result to the sphere/flat situation, whereas the work
reported in (Tabatabaei et al., 2006) was obtained directly for
a sphere. We thus provide below the expression for the elec-
trokinetic lift force derived by Tabatabaei et al. (2006) 4:

𝐹𝑇𝑎𝑏𝑎 =
12𝜋𝜖2 (𝑘𝐵𝑇)3𝑅2

25(𝑧𝑒)4𝑐∞ℎ2

×
{[(

𝐺 𝑝

𝐷1
+
𝐻𝑝

𝐷2

)
+
(
𝐺𝑤

𝐷1
+ 𝐻𝑤

𝐷2

)]2
(𝑉 + 𝑅Ω)2

−𝛼3

[(
𝐺 𝑝

𝐷1
+
𝐻𝑝

𝐷2

)
−
(
𝐺𝑤

𝐷1
+ 𝐻𝑤

𝐷2

)]2 (
𝑉2 − 𝑅2Ω2

)}
(29)

with 𝛼3 ≃ −1.66678, and the quantities 𝐺𝑖 and 𝐻𝑖 defined as:

𝐺𝑖 = ln
1 + 𝑒− 𝜓̃𝑖/2

2
, 𝐻𝑖 = ln

1 + 𝑒 𝜓̃𝑖/2

2
(30)

where 𝑖 = (𝑤, 𝑝) stands for wall and particle. The above
expression was shown by the authors to hold valid for low and
moderate (of order a few unities) Peclet numbers (Tabatabaei
et al., 2006).

For the sake of comparison, we have plotted on Fig. 28
the electrokinetic lift forces predicted by Eqs. 27, 28 and 29,
as a function of bead/wall gap distance ℎ. It clearly appears
that, in addition to the different ℎ-dependence predicted by the
theories, the lift force computed by Tabatabaei et al. using
Cox’s framework is several orders of magnitude larger than
that computed by Bike and Prieve.

More recently, Yariv et al. (2011) pointed out an inconsis-
tency in Cox’s solution scheme. These authors noted that the
Hartmann, 𝜆, and Peclet, 𝑃𝑒, numbers are not independent,
but linked via 𝜆𝑃𝑒 ∼ 1/𝛿2, with 𝛿 = 𝜅−1/𝑅. Therefore, in the
𝛿 → 0 limit used in (Cox, 1997), 𝜆 and 𝑃𝑒 cannot be both of

4 The provided expression for 𝐹𝑇𝑎𝑏𝑎 is obtained by “re-dimensionalizing”
the dimensionless forms reported in (Tabatabaei et al., 2006) as equa-
tions (7.3) and (7.4). Doing so, we noted a series of misprints in
the original article by Tabatabaei et al.: (i) dimensionless forces 𝐹̃

should read 𝐹̃ = 𝐹/(𝜇𝑉𝑅) (and not 𝐹̃ = 𝐹/(𝜇𝑉 ) as in eq. 2.2
in (Tabatabaei et al., 2006)), and (ii) the dimensionless lift force of
eq. 7.3 should read 𝐹𝑧 = 4𝜋𝜆𝑃𝑒2 (𝜅−1/𝑅)4 (ℎ/𝑅)−2 𝑓𝑧 (and not
𝐹𝑧 = 4𝜋𝑃𝑒2 (𝜅−1/𝑅)4 (ℎ/𝑅)−2 𝑓𝑧)
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Figure 28 Comparison of lift force predictions computed using Eq.
(29) (Tabatabaei et al., red line), Eq. (27) (Bike & Prieve, blue dashed
line), and Eq. (28) (Bike & Prieve 2, green short-dashed line), in the
case of a pure translation motion (Ω = 0 in Eq. (29)). Computation
were done using 𝑅 = 5 𝜇m, a salt concentration 𝐶∞ = 10−5M (with
the number concentration per cubic meter 𝑐∞ = 𝐶∞ × 103 × 𝑁𝐴),
𝑇 = 300 K, 𝜓𝑤 = 𝜓𝑠 = −50 mV, and 𝜖 = 80𝜖0 taken for aqueous
suspending fluid. A shear rate ¤𝛾 = 10 s−1 was used to compute
𝑉 (ℎ) according to Eq. (26). Diffusion coefficients were set to 𝐷1 =

1.33 × 10−9 m2.s−1 and 𝐷2 = 2 × 10−9 m2.s−1 (typical for Na+
and Cl− in water), and solution conductivity 𝐾 estimated as 𝐾 =

𝑒2𝑐∞ (𝐷1 + 𝐷2)/𝑘𝐵𝑇 .

order 1, contrary to what was assumed by Cox. Yariv et al.
therefore revisited Cox’s scheme in a series of articles treating
the two cases {𝑃𝑒 ≫ 1, 𝜆 = O(1)} (Schnitzer et al., 2012a;
Yariv et al., 2011) and {𝜆 ≫ 1, 𝑃𝑒 = O(1)} (Schnitzer et al.,
2012b; Schnitzer and Yariv, 2016) separately.

In the {𝑃𝑒 ≫ 1, 𝜆 = O(1)} limit, they find a lift force which,
as assumed by Bike and Prieve, is governed by the contribution
of the Maxwell stress, and derive an expression that reduces to
Eq. (27) above (Schnitzer et al., 2012a). In the opposite limit
where 𝜆 ≫ 1 and 𝑃𝑒 = O(1), Schnitzer and Yariv (2016)
demonstrate that the leading contribution to electroviscous
effects is due to the diffusio-osmotic flow resulting from salt
concentration polarization, and derive an expression for the
lift force that is identical to the one obtained by Tabatabaei et
al.. It thus appears that, in spite of the improper assumption
made by Cox, a fortuitous cancellation of errors in the solution
scheme has led Tabatabaei et al. to reach a valid expression
for the lift force.

E. Comparison with experiments

Let us now estimate the order of magnitude of 𝜆 and 𝑃𝑒
typically encountered in the experiments described in the first
section: with beads of radius 𝑅 of micrometric size, flowing
at a velocity 𝑉 being a fraction of ¤𝛾𝑅, and an ionic diffusion
coefficient in high viscosity solutions of 𝐷 ≃ 10−12 m2.s−1,

one finds a Peclet number in the range 0.5 − 10 for shear rates
in the range 1 − 10 s−1. Conversely, with salt concentration
of about 10−4 M in solutions of viscosity 𝜇 ∼ 1 Pa.s, the
Hartmann number falls in the range 100 − 1000 for the same
range of shear rate. Under such conditions, the {𝜆 ≫ 1, 𝑃𝑒 =
O(1)} limit identified by Yariv et al. seems appropriate for a
direct comparison of theoretical predictions with experimental
observations.

As was done in previous studies (Wu et al., 1996), we com-
pute the bead/wall distance at steady-state from the following
force balance:

𝐹𝑙𝑖 𝑓 𝑡 + 𝐹𝐷𝑒𝑏𝑦𝑒 = 𝐹𝑔𝑟𝑎𝑣 (31)

in which the electrokinetic force 𝐹𝑙𝑖 𝑓 𝑡 and the double-layer
force 𝐹𝐷𝑒𝑏𝑦𝑒 both repel the bead from the surface and balance
the gravity 𝐹𝑔𝑟𝑎𝑣 that brings the bead towards the wall. The
latter merely reads:

𝐹𝑔𝑟𝑎𝑣 =
4𝜋
3
𝑅3𝑔Δ𝜌 (32)

with 𝑔 = 9.81 m.s−2 and Δ𝜌 ≃ 200 kg.m−3 for polystyrene
beads in glycerol.

The repulsive double-layer force is given by (Wu et al.,
1996):

𝐹𝐷𝑒𝑏𝑦𝑒 =

128𝜋𝑅𝑘𝐵𝑇𝑐∞𝜅−1 tanh
(
𝑧𝑒𝜓𝑤

4𝑘𝐵𝑇

)
tanh

(
𝑧𝑒𝜓𝑝

4𝑘𝐵𝑇

)
exp(−𝜅ℎ).

(33)

The lift force is computed from Eq. (29), in which we sub-
stitute Eq. (26) for 𝑉 (ℎ) and use the following result from
Goldman et al. (1967) in order to compute the angular velocity
Ω(ℎ):

Ω(ℎ) ≃ ¤𝛾 0.4218
0.6376 − 0.2 ln (ℎ/𝑅) (34)

We then solve Eq. (31) numerically for ℎ, for a given set of
parameters {𝑅, ¤𝛾, 𝑇 , 𝑐∞, 𝜖 , 𝑧, 𝐷1, 𝐷2, 𝜓𝑝 , 𝜓𝑤}. Quantitative
comparison between predictions and observations is done by
taking the values of 𝑅 and ¤𝛾 reported in the experimental
studies, 𝑇 = 300 K, 𝜖 = 43𝜖0 for the permittivity of glycerol,
and 𝑧 = 1 for monovalent salts. Diffusion coefficients of ionic
species are estimated from their known values in water divided
by the dynamic viscosity of the suspending fluid reported in
the experimental studies, which leads to 𝐷1 and 𝐷2 ∼ 10−12

m2.s−1 (see caption of Fig. 26 for detailed values). Once
𝐷1 and 𝐷2 are set, concentration 𝑐∞ is chosen in order to
match the reported value of solution conductivity using 𝐾 =

𝑒2𝑐∞ (𝐷1 + 𝐷2)/𝑘𝐵𝑇 . Finally, for the sake of simplicity we
set 𝜓𝑝 = 𝜓𝑤 = 𝜓, and use 𝜓 as the only free parameter in the
model.

Doing so, we find that the lift force derived by Tabatabaei
et al. (2006) or Schnitzer and Yariv (2016) allows us to quan-
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titatively account for the various experimental observations,
using sensible values for 𝜓 ranging from -30 mV to -45 mV.
Such an agreement is illustrated on Fig.26. It is, to the best
of our knowledge, the first comparison of the theoretical pre-
dictions of electroviscous lift effects with the whole set of
available experimental data obtained by different groups.

F. Concluding remarks

We have shown in the previous section that electrokinet-
ics can indeed account quantitatively for the lift of a charged
sphere flowing near a surface in a polar fluid. The recent
theoretical work by Yariv et al., revisiting the pioneer study
of Cox, allows identifying the relevant mechanisms underly-
ing the buildup of an electrokinetic lift force. It thus appears
that the symmetry breaking of the linear Stokes flow in such
problems is associated to the streaming potential that builds
up when counterions in the Debye layer are swept by the flow.
This potential gives rise to both a non linear Maxwell stress
and to osmotic flows controlled by the non linear transport of
charges in the vicinity of the flowing object, both contributing
to the lift force, with weight depending on the Peclet number,
i.e. on the relative importance of convection and diffusion of
ions.

Figure 29 (𝐹𝐷𝑒𝑏𝑦𝑒 + 𝐹𝑙𝑖 𝑓 𝑡 )/𝐹𝑔𝑟𝑎𝑣 as a function of ℎ for beads of
𝑅 = 5 𝜇m, ¤𝛾 = 10 s−1, 𝐶∞ = 0.1 M (physiological range), for the
range of diffusion coefficients indicated in the figure. Intersections
of the curves with the horizontal line show the steady-state (or static
equilibrium) value of ℎ. No differences between static and 𝐷 =

10−9 m2.s−1 (order of magnitude for sodium in water) are observed.
Electrokinetic lift effects become sizeable only for𝐷 < 10−11 m2.s−1.

In the context of particle sorting, the study performed by
Hollingsworth and Silebi directly points to the relevance of
such flow-induced electrokinetic lift forces (Hollingsworth and
Silebi, 1996). The authors performed capillary hydrodynamic
fractionation of submicron-sized particles suspended in low

conductivity aqueous media, and showed that a proper theo-
retical description of their measurements of separation factors
required accounting for electrokinetic lift forces between the
flowing beads and the walls of the capillary.

It is important to recall however that, in practice, such elec-
trokinetic lift phenomena are of sizeable magnitude only in low
conductivity fluids. This implies for example that in biological
situations, at ionic strength ≃ 150 mM and 𝐷 ≃ 10−9 m2.s−1,
electrokinetic lift of cell-sized objects is essentially not rele-
vant. As an illustration of this, we have plotted on Fig. 29 a
series of force/separation distance curves for a bead carried by
a fluid containing 100 mM of monovalent salt, computed for
various values of the ion diffusion constant. The steady-state
distance between the bead and the wall can be read off the
graphs as the point at which the normalized interaction force
crosses the horizontal dashed line. It can thus be seen that
deviations from the static equilibrium distance, due to elec-
trokinetic lift, are observable only for diffusion coefficients
below 10−11 m2.s−1.

As a consequence, and as mentioned already in the introduc-
tion part of this section, fluidic applications exploiting elec-
trokinetics for e.g. particle separation/manipulation in aque-
ous medium do not rely on flow-induced electrokinetic effects
but rather exploit non-inertial lift forces arising in the presence
of an externally applied electric field. As initially pointed out
theoretically by Young and Li (Young and Li, 2005) and Yariv
(Yariv, 2006), the electrophoretic motion of a spherical parti-
cle is affected by the presence of a nearby wall, due to local
symmetry- and uniformity-breaking of the electric field. As
a result, the bead experiences a net dielectrophoretic-like lift
force (𝐹𝐷𝐸𝑃), perpendicular to the applied electric field. This
force has been shown theoretically to scale, in the limit where
the bead/surface gap ℎ is large compared to the bead radius
𝑅, as 𝐹𝐷𝐸𝑃 ∼ 𝜖𝑅6𝐸2/(𝑅 + ℎ)4, where 𝐸 is the magnitude
of the applied electric field (Yariv, 2006, 2016). Such an
electrically-driven lift force has been experimentally observed
to be at play in flows induced by dc electric fields, for both
micron- and sub-micron-sized beads (Cevheri and Yoda, 2014;
Kazoe and Yoda, 2011; Liang et al., 2010; Liu et al., 2017b;
Lu et al., 2015). A semi-quantitative agreement have been ob-
tained between such measurements and theoretical predictions
accounting for 𝐹𝐷𝐸𝑃 . Interestingly, it has been shown very re-
cently, in an experimental study of the frequency-dependence
of the electrokinetic lift under ac applied fields, that the dielec-
trophoretic force alone cannot fully account for the lift magni-
tude at low frequencies (Fernandez-Mateo et al., 2022). The
authors conclude that the dielectrophoretic lift force is respon-
sible for high-frequency observations, but that it is dominated,
at low frequencies, by another phenomenon coined “concentra-
tion polarization electro-osmosis” (CPEO) (Fernandez-Mateo
et al., 2021). CPEO is associated with an electrically-induced
quadrupolar stationary flow around the particle, where fluid is
drawn to the particle in the field direction and expelled from
the particle in the perpendicular direction, eventually yield-
ing to hydrodynamic bead/wall repulsion (Fernandez-Mateo
et al., 2022). The structure of such flow, observed with dielec-
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tric particles, is analogous to that associated with “induced
charge electro-osmosis” which has been described for con-
ducting particles (Kilic and Bazant, 2011). Overall, the above
brief summary of electrically-driven lift shows a richness of
phenomena that would deserve a review of their own, which is
beyond the scope of the present article.

While we have, in this section, focused our attention on the
generation of lift forces of electrokinetic origin when a bead
moves parallel to a wall in a shear flow, it is worth mentioning
that recent works have addressed, both experimentally and
theoretically (Liu et al., 2018; Rodrı́guez Matus et al., 2022;
Zhao et al., 2020), the issue of electrokinetic effects in squeeze-
flow geometries, 𝑖.𝑒.when a bead moves perpendicularly close
to a wall, and their role on the overall repulsion between the
surfaces. Finally, it is of interest to note, in the framework of
this review, that theoretical efforts have recently been made
in order to provide a description of the combined effects of
electrokinetics and elastohydrodynamics in the emergence of
lift forces (Chakraborty and Chakraborty, 2011; Naik et al.,
2017).

VI. CONCLUSION AND PERSPECTIVES

From the above review, we understand that there exist several
mechanisms for lift forces at zero Reynolds number. They in-
variably involve viscous flows as well as soft or charged bound-
aries – which are all widespread ingredients in the physics of
transport at small scales. These mechanisms are thus highly-
relevant to micro- and nanofluidics as well as for biological
flows. In some cases, the magnitudes of these lift forces are
comparable to surface and biological forces, and might thus
have been overlooked in the interpretation of some results and
phenomena. Besides, such effects might be controlled and
employed towards applications, through e.g. rheology, trans-
port, filtering... In the remainder, we list a few elements of
perspective.

Soft-lubrication lift forces may be discovered to play some
role in the fascinatingly-low and still-puzzling effective friction
coefficients of mammalian cartilaginous joints, among other
possible mechanisms (Jahn and Klein, 2018). They might
also allow for a smart tuning of the bulk and interfacial rheol-
ogy of dense suspensions (Meeker et al., 2004), including the
shear-thickening effect. Indeed, if a lubricated-to-dry-contact
transition (Wyart and Cates, 2014) is proved to be the mi-
croscopic mechanism of such a macroscopic manifestation,
then the soft-lubrication lift between soft particles might re-
pel/remove that transition. Besides, wall softness is expect to
play a role too (Rosti et al., 2019). More marginally, landslides
are resulting from flows in poroelastic rocks and their mecha-
nism remains a puzzle (Campbell, 1989). Elastohydrodynamic
couplings may contribute there as well.

Also, as a symmetry-breaking mechanism is a central ingre-
dient for the appearance of lift forces at zero Reynolds num-
bers, one could design in future new lift strategies indepen-
dently of softness and charges. Slip inhomogeneities (Rine-

hart et al., 2020), surfactant gradients (Hanna and Vlahovska,
2010; Pak et al., 2014) and thus Gibbs elasticity at capillary
interfaces, as well as compressibility effects in gaseous layers,
or moderate inertial contributions (Fouxon et al., 2020; Matas
et al., 2004), are possible examples among numerous oth-
ers. Compound particles may also carry their own symmetry-
breaking mechanisms and migrate transversally even in the
absence of walls (Liu et al., 2017a; Veerapaneni et al., 2011).

Beyond lift forces, other non-trivial EHD couplings have
been revealed (Bertin et al., 2022; Noichl and Schönecker,
2022; Salez and Mahadevan, 2015; Urzay, 2010; Weekley
et al., 2006), with important consequences including adhesive-
like forces and enhanced sedimentation effects, among others.
The experimental investigation of these scenarios is an impor-
tant task for the future, and should enable the development
of novel, efficient, contactless microrheological methods (Bar-
Haim and Diamant, 2017). Similarly, looking for an active
soft-lubrication lift (Trouilloud et al., 2008), in addition to
other active soft-lubrication couplings (Nambiar and Wett-
laufer, 2022), is an exciting perspective as e.g. bacterial colony
formation might be affected by it.

EHD couplings are effective ways to reduce or optimise
frictional properties (Greenwood, 2020). This has been in-
vestigated both experimentally and theoretically with rough or
patterned substrates (Hui et al., 2021; Moyle et al., 2020; Pers-
son and Scaraggi, 2009) and might have important implications
for soft robotics (Peng et al., 2021). Moreover, prey capture
by animals can be associated to lubrication through viscous
adhesion (Brau et al., 2016). A natural question emerges on
if, and how, elasticity of the tongue/prey could play a role and
modify the picture of the capture dynamics.

Finally, a route previously followed by solid-state physics,
and then by hydrodynamics through nanofluidics and beyond,
was to investigate the effects of system downscaling and hence
the limits of the classical continuum description at small scales
due to e.g. surface forces, thermal fluctuations and eventually
perhaps quantum effects. We expect a similar interest in inves-
tigating nanoconfined elastohydrodynamics, with fascinating
perspectives for fundamental physics and biophysics. Eventu-
ally, lift at low Reynolds number might have key implications
for life at low Reynolds number (Purcell, 1977).

ACKNOWLEDGMENTS

The authors thank Y. Amarouchene, N. Bain, O. Bäum-
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Appendix A: Boundary integral and stresslet formulation

We present her with more details the boundary integral
formulation and the far-field approximation leading to the ex-
pression of the lift velocity as a function of the stresslet, as
used in section III.

We introduce the position vector x = (𝑥1, 𝑥2, 𝑥3), where
𝑥1 corresponds to the flow direction, and 𝑥3 to the direction
perpendicular to the wall (located at 𝑥3 = 0), i.e. to 𝑧 in Fig.
2.

Following (Pozrikidis, 1992), the flow field at any point x0
outside the particle reads

𝑢 𝑗 (x0) = 𝑢∞𝑗 (x0) −
1

8𝜋𝜇

∫
𝑆

𝜎𝑖𝑘 (x)𝑛𝑘 (x)𝐺𝑖 𝑗 (x, x0)𝑑𝑆

+ 1
8𝜋

∫
𝑆

𝑢𝑖 (x)𝑇𝑖 𝑗𝑘 (x, x0)𝑛𝑘 (x)𝑑𝑆. (A1)

Here, u∞ is the imposed flow, 𝜎 is the fluid stress tensor
such that f𝑒𝑥𝑡 = 𝜎 · n is the force distribution acting on the
surface. We recall that 𝜇 is the viscosity of the fluid. G is
the Green’s function that is adapted to the boundary condition
of the problem and T is the associated stress tensor. In order
to account for the presence of body forces, 𝜎 can be replaced
in the above expression by the modified stress tensor such
that 𝜎𝑀𝑂𝐷

𝑖 𝑗
= 𝜎𝑖 𝑗 + 𝜌g · x𝛿𝑖 𝑗 (Pozrikidis, 1992). Here, g

is the acceleration field, like gravity, and 𝜌 is the associated
quantity, like fluid density. Keeping this in mind, we will drop
the 𝑀𝑂𝐷 superscript from now on.

A more convenient expression can be obtained when one
knows the specific mechanical properties of the particle bound-
ary. A widely considered configuration is that of a 2D interface
delimiting the interior of the particle, filled with a fluid of vis-
cosity 𝜇′ ≡ 𝜆𝜇 from the surrounding fluid. In that case, Eq.
(A1) becomes (Pozrikidis, 1992)

𝑢 𝑗 (x0) = 𝑢∞𝑗 (x0) −
1

8𝜋𝜇

∫
𝑆

Δ 𝑓𝑖 (x)𝐺𝑖 𝑗 (x, x0)𝑑𝑆

+ 1 − 𝜆
8𝜋

∫
𝑆

𝑢𝑖 (x)𝑇𝑖 𝑗𝑘 (x, x0)𝑛𝑘 (x)𝑑𝑆. (A2)

Here, Δf = f𝑒𝑥𝑡 −f𝑖𝑛𝑡 = (𝜎𝑒𝑥𝑡 −𝜎𝑖𝑛𝑡 ) ·n is the discontinuity
in the interfacial surface force. It can be written as Δf =

(𝜌𝑒𝑥𝑡 − 𝜌𝑖𝑛)g · x n + Δ𝜉, where Δ𝜉 is the discontinuity in the

surface force that depends only on the interface mechanical
properties. For a given model of particle (e.g. a drop, a
vesicle, a capsule), and in the absence of significant inertia of
the membrane, it can be calculated according to the chosen
constitutive law for the surface, as it must equal the opposite
of the membrane load.

For an unbounded domain, the Green’s function is called
the Stokeslet and describes the flow field created in x0 by a
point force located in x. We will denote it as G∞ and it reads

𝐺∞
𝑖 𝑗 (x, x0) =

𝛿𝑖 𝑗

𝑟
+
𝑟𝑖𝑟 𝑗

𝑟3 , where r = x0 − x. (A3)

The associated stress tensor is

𝑇∞
𝑖 𝑗𝑘 (x, x0) = −6

𝑟𝑖𝑟 𝑗𝑟𝑘

𝑟5 . (A4)

The Green’s functions we need here is that satisfying the
no slip condition on the wall. Blake (1971) proposed a cal-
culation of this semi-infinite Green’s function, using Fourier
transform. It can be thought as the Green’s function asso-
ciated with other point singularities located at the reflection
point x𝐼𝑀 = (𝑥1, 𝑥2,−𝑥3) of the initial force.

The semi-infinite Green’s function reads G = G∞ + G𝑤 ,
where the wall Green’s function G𝑤 is given by

𝐺𝑤
𝑖 𝑗 (x, x0) = −𝐺∞

𝑖 𝑗 (x𝐼𝑀 , x0)
−2𝑥3𝐺

𝑆𝐷
𝑖 𝑗 (x𝐼𝑀 , x0) + 2𝑥2

3𝐺
𝐷
𝑖 𝑗 (x𝐼𝑀 , x0),(A5)

where

𝐺𝑆𝐷
𝑖 𝑗 (x, x0) = (1 − 2𝛿 𝑗3)

( 𝛿𝑖 𝑗𝑟3 − 𝛿𝑖3𝑟 𝑗 + 𝛿 𝑗3𝑟𝑖
𝑟3 −

3𝑟𝑖𝑟 𝑗𝑟3

𝑟5

)
(A6)

is a Green’s function associated with a Stokeslet doublet and

𝐺𝐷
𝑖 𝑗 (x, x0) = (1 − 2𝛿 𝑗3)

( 𝛿𝑖 𝑗
𝑟3 −

3𝑟𝑖𝑟 𝑗
𝑟5

)
(A7)

is a Green’s function associated with a source doublet. By
Green’s function associated with a doublet, we mean the
Green’s function allowing for the calculation of the far-field
velocity associated with a pair of singularities of opposite sign
or direction located at a finite distance.

Similar expressions exist for the stress tensor 𝑇𝑖 𝑗𝑘 = 𝑇∞
𝑖 𝑗𝑘

+
𝑇𝑤
𝑖 𝑗𝑘

, which can be found in (Pozrikidis, 1992), p. 85.
Far from the wall, the velocity 𝑈𝑤 of the particle may be

approximated by that of its center, that we set to be located
at position x0 = (0, 0, 𝑧). This far-field velocity 𝑈𝑤, 𝑓 𝑓 thus
reads

𝑈𝑤, 𝑓 𝑓 = − 1
8𝜋𝜇

∫
𝑆

Δ 𝑓𝑖 (x)𝐺𝑤
𝑖3 (x, x0) 𝑑𝑆

+1 − 𝜆
8𝜋

∫
𝑆

𝑢0
𝑖 (x)𝑇𝑤

𝑖3𝑘 (x, x0)𝑛𝑘 (x)𝑑𝑆, (A8)

where u0 is the leading order term in the velocity on the
particle surface.
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𝐺𝑤
𝑖3 (x, x0) indeed represents the flow field created by the

singularities from the image system, located at x𝐼𝑀 = −x0.
For |x − x0 | ≪ 𝑅, one can expand 𝐺𝑤 (x, x0) and 𝑇𝑤 (x, x0)
around x0, such that:

𝑈𝑤, 𝑓 𝑓 = − 1
8𝜋𝜇

𝐺𝑤
𝑖3 (x0, x0)

∫
𝑆

Δ 𝑓𝑖 (x) 𝑑𝑆

− 1
8𝜋𝜇

𝜕𝐺𝑤
𝑖3

𝜕𝑥𝑘
(x0, x0)

∫
𝑆

Δ 𝑓𝑖 (x) (𝑥 − 𝑥0)𝑘 𝑑𝑆

+1 − 𝜆
8𝜋

𝑇𝑤
𝑖3𝑘 (x0, x0)

∫
𝑆

𝑢0
𝑖 (x)𝑛𝑘 (x)𝑑𝑆. (A9)

In the absence of external force (like gravity) the first term
of the right hand side is zero.

The integral that appears in the second term is the dipolar
tensor that characterizes the first moment of the force dis-
tribution on the particle surface. Depending on the authors,
it is sometimes denoted as 𝐷𝑖𝑘 . We now turn to the usual
decomposition of this tensor (see e.g. (Yeomans et al., 2014)):

𝐷𝑖𝑘 =
1
3
𝐷 𝑗 𝑗𝛿𝑖𝑘 + 𝑆𝑖𝑘 + 𝑇𝑖𝑘 (A10)

.
The first term has no impact on the flow, as can be seen by

inserting it in Eq. (A9): the resulting term is ∝ 𝜕𝐺𝑤
𝑘3/𝜕𝑥𝑘 ,

which is the divergence of the Green’s function and is 0 (since
this function represents a solution of the incompressible Stokes
flow). The traceless symmetric tensor

𝑆𝑖𝑘 =

∫
𝑆

[1
2
(Δ 𝑓𝑖 (𝑥−𝑥0)𝑘+Δ 𝑓𝑘 (𝑥−𝑥0)𝑖)−

1
3
Δ 𝑓 𝑗 (𝑥−𝑥0) 𝑗𝛿𝑖𝑘

]
𝑑𝑆

(A11)
is often called the stresslet and its asymmetric counterpart 𝑇𝑖𝑘
is called the rotlet (or couplet, following Batchelor (1970)).
The latter is proportional to the torque exerted on the par-
ticle and is therefore 0 in the absence of external torque.
As the stresslet is symmetric, only the symmetrical part
1
2 (

𝜕𝐺𝑤
𝑖3

𝜕𝑥𝑘
+ 𝜕𝐺𝑤

𝑘3
𝜕𝑥𝑖

) of the derivative of the Green’s function even-
tually contributes to the lift velocity. Following (Nix et al.,
2014), we call it 𝐾𝑤

𝑖3𝑘 .
We now make the remark that 𝑇𝑤

𝑖3𝑘 (x0, x0) =

−𝛿𝑖𝑘 𝑝 𝑗 (x0, x0) + 2𝐾𝑤
𝑖3𝑘 (x0, x0), where p is the pressure vector

associated with the Green’s function (Pozrikidis, 1992). Since
the flux of u through 𝑆 is 0, its contribution to the lift is 0. As
𝐾𝑤
𝑖3𝑘 is symmetric, it will act only on the symmetrical part of

last integral of Eq. (A9).
Finally, in the absence of external force and torque, the lift

velocity is given by the image system of the complete stresslet
Σ𝑖𝑘 , acting on the center of the particle. It is given by

𝑈𝑤, 𝑓 𝑓 = − 1
8𝜋𝜇

𝐾𝑤
𝑖3𝑘 (x0, x0)Σ𝑖𝑘 , (A12)

where

Σ𝑖𝑘 = 𝑆𝑖𝑘 + (𝜆−1)𝜇
∫
𝑆

(𝑢0
𝑖 (x)𝑛𝑘 (x) +𝑢0

𝑘 (x)𝑛𝑖 (x)) 𝑑𝑆. (A13)

This last expression defines more generally the stresslet, for
a larger class of particles than Eq. (A11). It should be noted
that the second term vanishes not only for particles with no
viscosity contrast but also for rigid particles (Batchelor, 1970).

An expression for 𝐾𝑤
𝑖3𝑘 can be found in (Nix et al., 2014):

𝐾𝑤
𝑖3𝑘 =

1
8𝑧2 (−5𝛿𝑖𝑘 + 9𝛿𝑘3𝛿 𝑗3). (A14)

This leads to

𝑈𝑤, 𝑓 𝑓 = − 9
64𝜋𝜇

Σ33

𝑧2 . (A15)

By coherence with the leading order approximation we made
here, one must keep in mind that the stresslet Σ33 is that created
by the interaction with the external flow, in the absence of wall.
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Yaya, F. c., J. Römer, A. Guckenberger, T. John, S. Gekle, T. Pod-

gorski, and C. Wagner (2021), Microcirc. 28 (5), e12693.
Ye, H., Z. Shen, and Y. Li (2019), J. Fluid Mech. 861, 55–87.
Yeomans, J., D. Pushkin, and H. Shum (2014), Eur. Phys. J. Spec.

Top. 223, 1771–1785.
Young, E., and D. Li (2005), Langmuir 21 (25), 12037.
Zabusky, N., E. Segre, J. Deschamps, V. Kantsler, and V. Steinberg

(2011), Phys. Fluids 23, 041905.
Závodszky, G., B. van Rooij, B. Czaja, V. Azizi, D. de Kanter, and

A. G. Hoekstra (2019), Phys. Fluids 31 (3), 031903.
Zhang, X., C. Caruso, W. A. Lam, and M. D. Graham (2020a), Phys.

Rev. Fluids 5, 053101.
Zhang, X., and M. D. Graham (2020), Phys. Rev. Fluids 5, 023603.
Zhang, Z., V. Bertin, M. Arshad, E. Raphaël, T. Salez, and A. Maali
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