
HAL Id: hal-03719127
https://hal.science/hal-03719127v2

Preprint submitted on 19 Jul 2022 (v2), last revised 9 Nov 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lift at low Reynolds number
Lionel Bureau, Gwennou Coupier, Thomas Salez

To cite this version:
Lionel Bureau, Gwennou Coupier, Thomas Salez. Lift at low Reynolds number. 2022. �hal-
03719127v2�

https://hal.science/hal-03719127v2
https://hal.archives-ouvertes.fr


Submitted to Reviews of Modern Physics

Lift at low Reynolds number

Lionel Bureau,1, ∗ Gwennou Coupier,1, † and Thomas Salez2, ‡
1Université Grenoble Alpes, CNRS, LIPhy, F-38000 Grenoble, France
2Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
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Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects, and are
often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and some specific symmetry-
breaking mechanism. In contrast, low-Reynolds-number flows are usually overdamped and do not exhibit such
peculiar and interesting features. However, the inclusion of boundary effects qualitatively changes this picture.
Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift
forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is
to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated
communities, and pave the way towards future research around lift effects at low Reynolds numbers.
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INTRODUCTION

We are all familiar with dynamically-induced lift forces in
hydrodynamics. These are typically observed for big and fast
objects, e.g. in aeronautics or ball sports, and result from
fluid inertia (i.e. large Reynolds numbers) and a symmetry-
breaking mechanism, such as wing shape or ball rotation. We
define here a lift force as a force acting perpendicularly to the
initial motion of the object, which is generally due to its initial
acceleration or to its advection by external flows.
While more discrete in everyday life, lift effects do also

exist in low-Reynolds-number flows, and often result from a
key role played by the flow boundaries. Indeed, the confined
hydrodynamic interaction between two objects (e.g. a particle,
a wall, etc.) or the bulk fluid-structure interaction may break
the flow symmetry. This was already understood by Reynolds
[1] through his famous tilted slider. In the latter example, a
lift force exists due to a fore-aft geometrical asymmetry (see
Fig. 1) between two immersed rigid objects in sliding relative
motion. However, for a rigid sphere moving along a rigid
wall, the time reversal-symmetry of the steady Stokes equa-
tions coupled to the fore-aft symmetry of the contact warrants
the absence of any emergent normal force in the problem. To
overcome this impossibility, in the absence of any inertial ef-
fects, other symmetry-breaking mechanisms are thus required,
as schematized in Fig. 2.
A prominent example is that of the lift induced by elastic

deformations, for which we wish to bridge the gap between
two aspects of this phenomenon, that were historically stud-
ied by separate research communities. On the one hand, for
small gaps between two objects (one of them being often much
larger, e.g. a wall), i.e. in the so-called lubrication regime,
the flow between the two objects mediates the hydrodynamic
interaction and deforms the elastic surface(s), which in turn
modifies the flow profile between the objects and thus the
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Figure 1. Reynolds’ slider. Despite the time-reversal symmetry of the steady Stokes equations, the fore-aft asymmetry of a tilted immersed
slider that moves tangentially to a neighbouring wall generates a difference in the hydrodynamic pressure magnitudes at the front and at the
back of the slider. As a consequence, the latter experiences a normal force. This seminal system conceived by Reynolds highlights the leitmotiv
of this review: at low Reynolds numbers, a symmetry breaking in transverse motion may generate normal forces. Figure taken from [1].

intensity of the net normal force. This strongly-coupled elas-
tohydrodynamic regime is relevant to a wide variety of soft
and wet contacts, ranging from roller bearings in industry
to biological/physiological systems like mammalian joints or
circulating cells in contact with soft endothelial walls within
blood vessels.

On the other hand, when the objects are too far from each
other, the deformation arising from their hydrodynamic in-
teraction vanishes and the resulting force disappears. Yet,
in fluidic environments with externally-applied flows, shear
forces may maintain flowing bodies in an asymmetric-shape
configuration that may still give rise to repelling forces. As the
shape is maintained by the shear forces and not by the body-
body interaction, these forces will not decrease as quickly with
the distance. This configuration is well known, in particular,
by the blood-flow community. Indeed, the shear-induced lift
of red blood cells is reckoned as the main origin of the creation
of a depleted layer near the vessel walls, giving rise to non-
linear rheological properties for blood, as well as to complex
phase-separation laws at the level of vessel bifurcations. The
exact characterization of this lift force, in a context of high cell
concentration, is still unresolved in spite of the numerous nu-
merical methods that are a priori able to simulate this complex
fluid-structure interaction problem. We stress that this shear-
induced lift phenomenon requires the considered object to be
deformed, which, in the vanishing-Reynolds-number context
that we focus on, implies rather soft objects such as biological
materials, drops and artificial capsules. We however exclude
the particular case of filaments, which have generally a very
complex shape dynamics even in the absence of walls, thus
rendering difficult our quest for universal mechanisms.

Among other mechanisms giving rise to the symmetry
breaking at the heart of lift forces at zero Reynolds num-
ber, electrokinetic effects are dominant in the literature. They
involve ionic currents taking place when fluid-immersed rigid
objects carrying surface charges are in relative motion. Such

a phenomenon is typically of interest in microparticle-sorting
applications, and an illustration of cases where non-inertial
lift forces emerge between objects that are not necessarily de-
formable.
Those are important mechanisms since they demonstrate

that inertial-like effects can be triggered at microscopic and
biological scales through a smart role of boundaries. The
three mechanisms discussed so far will be the topic of the
three chapters of the present review, respectively. Other mech-
anisms, unexplored yet or marginally explored, will be also
briefly mentioned in the perspectives of the concluding sec-
tion.

SOFT-LUBRICATION LIFT

Context

Soft and wet contacts are widespread in nature and technol-
ogy. Their rich history in science and engineering involves
issues and scales as diverse as the lubrication of roller bear-
ings [4] after the industrial revolution, or the catastrophic ge-
ological landslides [5]. The properties of these contacts im-
plicate the coupling between the local hydrodynamic pressure
induced by fluid flow and the deformation of the confining
solids. Often as well, for stiff surfaces associated with in-
dustrial devices, non-Newtonian lubricant effects (e.g. piezo-
viscous and thermoviscous behaviours) are expected to play
an important role [6] and require multiscale numerical model-
ing [7]. These interesting features for industrial lubricant flows
may be considered as more minor corrections in the context of
soft materials and small velocities at stake here, despite some
potential interest for sorting strategies [8], and are thus not
addressed in details in the following.
Recently, such an elastohydrodynamic (EHD) coupling

gained attention in the context of confined, soft and biolog-
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(a) Inertial lift (b) Viscous lift

(a2)(a1)
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(b1) (b2)

Figure 2. Required symmetry breakings for inertial and viscous lift forces to arise, transversally to the main motion (blue arrows), leading
to tilted trajectories (green arrows). (a) Inertial lift: a bottom-up asymmetry may suffice to create a pressure difference across the particle,
leading to the apparition of the lift force. Examples of such a symmetry breaking include (a1) asymmetry in shape as for an airplane wing or
(a2) rotation-induced asymmetry, as for a rotating ball sport experiencing a Magnus effect in free space [2], or a sphere in a channel according
to the SegrÃľ-Silberberg effect [3]. Note that wings often exhibit a fore-aft asymmetry as well, for drag reduction requirements. (b) Viscous
lift: even in the presence of bottom-up asymmetry, a fore-aft symmetry prevents the apparition of a lift force. If it was not the case, assuming
the particle has a velocity given by (i), a left-right reversal of the boundary conditions (e.g. external flow, gravity field,...) would lead, by
fore-aft symmetry of the particle, to the symmetric motion (ii). However, the time reversibility of the steady Stokes equations imposes also that
the motion would be according to (iii), thus leading to the impossibility of the existence of a lift force. This marks the strong difference with
situations where fluid inertia is not negligible. The additional fore-aft asymmetry may be due to e.g. (b1) the particle geometry or (b2) the
boundary conditions at the surface of the particle, that can be linked to charge distribution or slip properties, among others. In most situations,
the presence of a wall warrants the bottom-up asymmetry, but we shall also explore cases where lift occurs in the absence of nearby walls but
with a vertical flow gradient.

ical matter, where very compliant solids and tiny length scales
are common [9]. In fact, this coupling could conceivably play
a crucial role in the motion of various physiological and bi-
ological entities. Examples are numerous and include e.g.
the incredible frictional properties of mammalian joints [10]
through the fine interplay between soft cartilage and viscous
synovial fluid, or the crucial influence of vessel boundaries on
the motion of deformable red blood cells [11]. The normal
motion towards a soft wall has been investigated in particu-
lar [12–15], with a special attention given to the collision [16]
and rebound [17, 18] properties.

Furthermore, through surface-forces apparatus (SFA) [13,
19–23] and atomic-forcemicroscopy (AFM) [24–29], the near-
contact EHD (termed soft-lubrication in the following) cou-
pling offers an alternative strategy for micro and nanorheology
of fragile soft materials, with the key advantage of avoiding
any solid-solid adhesive contact that could alter their proper-
ties (see Fig. 3).

The key mechanism

Despite the irrelevance of inertia, a soft-lubrication lift force
emerges for elastic bodies moving past each other within a vis-
cous fluid. Essentially, any (initially) fore-aft-symmetric ob-
ject moving within such a fluid and along a nearby soft wall is
repelled from the latter by a dynamically-generated emergent

normal force. This force intimately arises from a symmetry
breaking in the contact shape (see Fig. 4), and thus the asso-
ciated flow fields, due to the EHD coupling described above.
Qualitatively, the elastic deformation induced by the hydrody-
namic pressure generates a self-sustained asymmetric contact
similar to the one in Reynolds’ rigid slider (see Fig. 1), and
thus a normal force. This effect is well known at macroscopic
scales, for relatively rigid materials such as car tires undergo-
ing aquaplaning, or industrial roller bearings getting deformed
in operating motors and machines.

Moving on to the context of mesoscale physics and soft
matter, the earliest theoretical descriptions of such a soft-
lubrication lift effect are the ones by Dowson and Jin [31],
Lequeux, Grosshans and Hocquart [32], as well as Sekimoto
and Leibler [33], to the best of our knowledge. The underlying
motivation behind these similar approaches is the calculation
of forces between soft curved surfaces undergoing shear, which
are important for the interpretation of SFA measurements, the
physics of cartilage, and the rheology of a variety of complex
fluids such as suspensions of colloidal particles protected by
grafted or adsorbed polymer chains, suspensions of gel mi-
croparticles, or polymer emulsions and alloys on certain time
scales.

The general idea can be illustrated from e.g. [33], through
the calculation of the soft-lubrication interaction between a
cylindrical elastic object of radius R moving at transverse ve-
locity V past and nearby a flat wall (as in Fig. 4), within a
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deformations leads to very rich scaling properties of the force response, providing a unique signature

of the surface elastic behavior. These properties are illustrated on three different examples: a thick

elastomer, a thin elastomer film, and a layer of micrometric bubbles. We show that this fluid probing

allows one to measure the Young’s modulus of surfaces and soft thin layers at distance, without any direct

solid-solid contact.
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The nano-mechanics of soft, thin materials, such as poly-
mer coatings, has become an important issue with the
development of composite and nano-composite new mate-
rials and their applications in many industrial processes
(surface coatings, stability of structures used in microelec-
tronics, etc.) [1–4]. Direct characterization based on touch-
ing the surfacewith a solid probe does not always provide an
absolute determination of elastic moduli, since adhesion
and friction forces are intrinsically of the same magnitude
as the elastic forces [5–7]. In some extreme cases, such as
bubbles or biological systems, contact forces can even ruin
the sample. A naive idea would be to blow gently on these
soft surfaces to deform them without touching them. In this
Letter, we rather demonstrate that a liquid probe can be
an alternative to classical hard contact mechanics. More
precisely, we show that the nano-hydrodynamic interaction
between a sphere and a soft layer supported on a rigid
substrate can provide a new, precise, and faithful method
for measuring its absolute elastic properties. Indeed in the
past ten years, surface forces measurements and more gen-
erally very weak forces measurements have reached an
encompassed precision [8–11] and nano-hydrodynamic
forces have been used to probe the friction at a solid-liquid
interface. We extend here the use of nanoflows to measure
the mechanical properties of surfaces.

We use the nanoscale flow created by a sphere which is
oscillated at a very small amplitude in the direction normal
to the tested surface. We use to create this flow a surface
force apparatus (SFA) [12]. The fluid layer between the
sphere and the plane is forced to drain inward and outward
of the gap, generating a dynamic pressure at the excitation
frequency !=2!. More specifically, we define the dynamic
response ~G!ðDÞ ¼ ~F!=h0 as the ratio of the complex am-
plitude ~F! of the hydrodynamicforce to the amplitude h0 of
the oscillating motion [Fig. 1(a)]. If the probed surface is
perfectly rigid, the force applied by the flow is the so-called
Reynolds force of amplitude RðDÞ ¼ 6!"h0!R2=D, "

being the fluid viscosity andD the sphere—surface distance.
An important feature of the Reynolds flow is that the radial
extension of the applied pressure is of order

ffiffiffiffiffiffiffiffiffiffi
2RD

p
. Thus,

when the distance is varied, the hydrodynamic force and the
probed area vary in opposite ways, resulting in a great
flexibility of this mechanical essay. If the target surface is
not rigid but elastically compliant, the lubrication flow
couples to its elastic deformation. In a recent paper, we
have calculated theoretically the elasto-hydrodynamic
(EHD) linear response ~G!ðDÞ as a function of the
Young’s modulus E and the Poisson ration # of the material
[13]. In this Letter, we demonstrate that the precise mea-
surement of ~G!ðDÞ allows for an absolute determination of
the elastic modulus of the surface without further assump-
tion on adhesion properties. This experimental proof is
performed on three examples which illustrate the three
possible types of elasto-hydrodynamic interactions.

(a) (b)

FIG. 1 (color online). Principle of the experiment. (a) A sur-
face force apparatus creates a flow between a sphere and an
elastic film (the sphere oscillates with an amplitude h0 at a
frequency f ¼ !=2!). The typical distance over which the
flow probes the soft surface quotes

ffiffiffiffiffiffiffiffiffiffi
2RD

p
. (b) Spring-and-

dashpot model equivalent to the system. The dashpot character-
istic is given by the Reynolds force.

PRL 108, 264501 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JUNE 2012

0031-9007=12=108(26)=264501(5) 264501-1 ! 2012 American Physical Society

Related results by others : surface force apparatus

G0
!(D)

Figure 3. (left) In a surface-forces apparatus (SFA), a flow between an oscillating sphere and an elastic film is created. (right) Real (blue)
and imaginary (red) parts of the force-distance impedance response Gω (D) obtained for an elastomer (crosslinked PDMS) and compared to
soft-lubrication theory (dashed lines). Figure adapted from [19].Viscous sliding + soft boundary = emergent lift

Integrating (4)–(6) leads to the dimensionless Reynolds
equation [5]:

0 ! @X"6H #H3@XP$: (7)

Since the gap pressure is much larger than the ambient
pressure, we may approximate the boundary conditions
on the pressure field as

P"1$ ! P"%1$ ! 0: (8)

Next, we consider the deformation of the elastic layer of
thickness Hl that rests on a rigid support. Balance of
stresses in the solid leads to

r & ! ! 0; (9)

with the stress given by

! ! G"ru#ruT$ # !r & uI; (10)

where u ! "ux; uz$ is the displacement field and G and !
are the Lamé constants for the solid, which is assumed to
be isotropic and linearly elastic. To calculate the increase
in gap thickness H"x$, we use the analog of the lubrication
approximation in the solid layer [6]. The length scale in
the z direction is Hl and the length scale in the x direction
is

!!!!!!!!!

h0R
p

. We take the thickness of the solid layer to be
small compared to the thickness of the contact zone,
!!!!!!!!!

h0R
p ' Hl, and consider a compressible elastic material,
G( !, to find the vertical force balance: @zzuz ! 0. The
boundary condition at the solid-fluid interface is ! & n !
%pn, so that "2G# !$@zuz"x; 0$ ! %p"x$. Using the zero
displacement condition at the interface between the soft
and rigid solid, uz"x;%Hl$ ! 0 leads to the following
expression for the displacement of the surface:

uz"x; 0$ ! % Hlp"x$
2G# !

: (11)

The dimensionless version of the gap thickness, h !
h0"1# x2

2h0R
% uz"x;0$

h0
$, is

H"X$ ! 1# X2 # "P"X$; (12)

where " ! !h=h0 ! "
!!!!!!

2R
p

Hl#V$=)h5=20 "2G# !$* is the
dimensionless parameter governing the size of the de-
flection. Inspired by the some recent experiments [7]
in a similar geometry, we consider a cylinder of radius
R ! 10 cm coated with a rubber layer (Hl ! 0:1 cm,
G ! 1 MPa) moving through water (# ! 1 mPa s, V !
1 cm=s, h0 ! 10%3 cm). Then " ! 10%2 + 1, so that we
may use the perturbation expansion P ! P0 # "P1,
where P0 is the antisymmetric pressure distribution
corresponding to an undeformed layer, and P1 is the
symmetric pressure perturbation induced by elastic de-
formation. Substituting (12) into (7) leads to the following
equations for P0; P1:

"0:@X)6"1# X2$ # "1# X2$3@XP0* ! 0; (13)

"1:@X)6P0 # 3"1# X2$2P0@XP0 # "1# X2$3@XP1* ! 0;
(14)

subject to the boundary conditions P0"1$ ! P0"%1$ !
P1"1$ ! P1"%1$ ! 0. Solving (13) and (14) yields

P ! 2X
"1# X2$2 # "

3"3% 5X2$
5"1# X2$5 : (15)

Then the normal force is

F !
Z 1

%1
PdX ! 3$

8
"; (16)

In dimensional terms, F ! )"3
!!!

2
p

$$=4*f"#2V2HlR3=2$=
)h7=20 "2G# !$*g; whose scaling matches the result re-
ported in [8], but with a different prefactor. When " is
not small, we solve (7), (8), and (12) numerically. Figure 2
shows that as " increases the mean gap increases and its
profile becomes asymmetric, resembling the profile of a
rigid slider bearing, a configuration well known to gen-
erate lift forces [4]. In addition, this increase in the gap
size causes the peak pressure to decrease since p(
"#VR1=2$=h3=20 . These two competing effects produce a
maximum lift force when " ! 2:06.

The physical basis for the previous arguments can be
more easily understood using scaling and therefore allows
us to generalize these results to a variety of configurations
involving lubrication of soft contacts (Fig. 3; Table I).
Balancing the pressure gradient in the gap with the vis-
cous stresses yields

p
l
(#V

h2
! p(#VR1=2

h3=2
: (17)

Substituting h ! h0 # !h, with !h + h0, we find that
the lubrication pressure is

FIG. 1. A rigid cylinder moves at a velocity V a distance h0
above a rigid substrate coated with an elastic layer of thickness
Hl. Hl; h0 +

!!!!!!!!!

h0R
p ! l. We illustrate the steps of the pertur-

bation analysis. (b) An antisymmetric pressure distribution
pushes down on the gel in front of and pulls the gel up be-
hind the cylinder. (c) The fore-aft gap profile symmetry is
broken. (d) The new pressure field produces a normal force.
(a) and (b) correspond to an undeformed substrate, while (c)
and (d) correspond to solutions of (7), (8), and (12) for
" ! "!h$=h0 ! 10.
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Figure 4. Principle of the soft-lubrication lift force. For a non-
deformed wall (a), the classical lubrication pressure p(x) induced in
the viscous fluid by the tangential motion of a sphere at velocity V is
antisymmetric in the transverse direction x (b), resulting in a null net
force (integral of the pressure along x) in the normal direction z. In
contrast, a soft surface is deformed by the pressure field (c). The latter
then loses its symmetry (d), which results in a finite emergent normal
force: the soft-lubrication lift force. Figure adapted from [30].

.

viscous fluid of dynamic viscosity µ, both solids being covered
by polymer brushes. The latter are modeled as identical thin
linear-elastic compressible layers.

A thin linear-elastic compressible layer is equivalent toWin-
kler’s foundation, i.e. a mattress of independent springs with a
local and linear response to the external pressure field p(x) (see
Fig. 5), that was proven to be of great modelling power [34].
In such a description, the normal deformation field is given
by δ(x) = −Lp(x)/(2G), where we introduced an effective
shear modulus G as well as an effective thickness L of the

mattress, and where we assumed for simplicity a full com-
pressibility (i.e. vanishing Poisson ratio). Near its minimum
h0, the steady-state fluid gap profile h(x), along the transverse
direction x of motion, is well approximated by a parabola
(i.e. second-order development of a spherical contact near the
apex) corrected by the elastic deformation of the elastic layer
induced by the hydrodynamic pressure. It thus follows that:

h(x) ' h0 +
x2

2R
+

L
2G

p(x) . (1)

Scaling analysis. The main idea is then based on a hierar-
chical scale separation, by considering that the elastic deforma-
tion is small compared to the fluid-gap thickness, which is itself
small compared to the cylinder radius. By invoking the steady
Stokes equations in the lubrication approximation, it follows
that the leading-order pressure magnitude scales as∼ µV`/h 2

0 ,
where ` =

√
2Rh0 is the characteristic horizontal length scale,

given by the Hertz-like hydrodynamic radius emerging from
the parabolic approximation in Eq. (1). In such a framework,
and in addition to the lubrication condition h0/R � 1, one
finds κ ∼ µ

√
RV L/(Gh5/20 ) as a second natural small parame-

ter of the problem. Then, an expansion of the soft-lubrication
flow problem is performed at order 1 in κ. The zeroth-order
contribution corresponds to the purely rigid case with gap pro-
file h(0) (x) ' h0 + x2/(2R) and a zeroth-order pressure field
p(0) (x) that can be computed analytically, and that is found to
be antisymmetric in x (Fig. 4(b)). This is expected in view
of the time-reversal symmetry of the steady-Stokes equations
and the fore-aft symmetry of the contact shape. As the normal
force per unit length Fz exerted on the cylinder is dominated,
in the lubrication approximation, by the pressure contribution
(i.e. the ratio between the viscous shear stress and the pres-
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where w is also the beam deflection, p is the applied (per unit
length along beam) lateral loading,† E and I are, respectively,
Young’s modulus and second moment of area of the beam about
its neutral axis, and k is the elastic foundation stiffness (force per
unit displacement per unit length of beam).

The complimentary solution of the GDE involves exponen-
tially varying, sinusoidal undulations of the form:

w(x) = C1e!lwx cos lwx + C2e!lwx sin lwx + C3elwx cos lwx

+ C4elwx sin lwx (2)

where C1, C2, C3, and C4 are the integration constants deter-
mined from problem-specific boundary and/or continuity con-
ditions. As can be seen in its definition given above, the
characteristic length scale lw

!1 represents the deformability
of the foundation relative to that of the beam. As one can see
from (2), the reciprocal length governs the decay rate (from the
point of load application) and the period of the oscillations.
It corresponds to the exponential decay length in a similar
manner that the shear lag distance is defined in the Volkersen
solution.4 The rapid decay rate relative to the oscillation period
means that the oscillations become negligible after several
characteristic lengths; 5lw

!1 is the traditional definition of a
‘‘short beam’’ for BoEF solutions.5 It is tacitly assumed here
that, during the deformation process, there is no separation

between the deformed beam and the foundation and that
neighboring particles of the foundation deform independently
of each other. Furthermore, the bending-induced axial dis-
placements at the beam surface are neglected in the Winkler
formulation (and most extensions, including all those dis-
cussed herein).

From its introduction, Winkler’s BoEF approach found
widespread applications as well as numerous extensions.
Biot6 took exception with Winkler’s solution in 1937, arguing
that the foundation model applicability was rather limited,
effectively because it applied to a layered system (beam atop a
foundation layer atop a rigid substrate). Biot’s interesting
development extended the solution to the case where the
foundation is a half-space and the applied load is sinusoidal,
resulting in a foundation stiffness that effectively became a
function of the spatial frequency of the applied load. His
analysis would later find widespread applications for surface
layer wrinkling analysis, where the surface layer thickness is
small compared to that of the underlying material.

Hetényi3 presented solutions for a very wide range of
BoEF geometries and loading cases, including applications to
cylindrical pressure vessels, torsion, and buckling, in his classic
1946 monograph. Apparently largely based on his dissertation
and postdoc tenure with Timoshenko a decade earlier, this
source remains a thorough and seminal work illustrating some
of the many outcomes of Winkler’s foundation predictions.

Winkler’s foundation is easily extended to a generalized
formulation for plates (shown in Fig. 1c) by using a similar,
spatially varying restoring force (per unit area):r4w = ( p ! q)/D,

Fig. 1 Illustrations of configurations and sign conventions for: (a) simple beam on elastic foundation subjected to lateral loading, (b) free body diagram of
a differential beam element including moment M and transverse shear V, (c) plate on elastic foundation, and (d) plate supported by a liquid of density rf.

† Note that here and elsewhere throughout the paper, p is the externally applied
mechanical loading. The zero deflection reference state is assumed to coincide
with any deflection resulting after the linear (for beam) or areal (for plate) self
weight is applied.
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Figure 5. Schematic involving a Winkler’s foundation, i.e. a model
and simple type of elastic substrate characterized by an assembly
of parallel, independent and identical springs, leading to a local
and linear response to the external pressure field p(x). For thin
enough, compressible elastic layers, such a toy model even provides
a quantitative description of their elastic Green’s function. Figure
adapted from [34].

.

sure is of order h0/` � 1), the latter antisymmetry of p(0) (x)
implies to evaluate the first correction p(1) (x) induced by the
elastic deformation. The magnitude of the latter scales as
∼ κ(µV`/h 2

0 ). Therefore, the resulting normal force per unit
length reads, at order 1 in κ:

Fz '

∫ ∞

−∞

dx p(1) (x) ∼
µ2V 2R3/2L

Gh7/20

. (2)

Interestingly, one sees that this soft-lubrication lift force in-
creases with the viscosity of the fluid, driving velocity, com-
pliance, contact area, and confinement. Then, the authors
of [33] confront the theoretical predictions with the result
of force measurements under shear between surfaces cov-
ered with grafted polymer chains. While the observed nor-
mal forces in these experiments are often attributed to brush
swelling due to external flows, the authors quantitatively argue
here that the brush-deformation-induced soft-lubrication lift
force is instead the dominant mechanism behind the common
observations.

Soft-lubrication theory. Here, as an illustration of the typ-
ical method for the readers, we aim at retrieving the scaling
result above quantitatively. Weplace ourselves in the rest frame
of the cylinder. We introduce the fluid velocity field u(x, z)
along x, and the dimensionless variables: z = Zh0, h = Hh0,
x = X`, u = UV , p = PµV`/h20, and Fz = FZ µV`2/h20.
Hence, the gap profile given by Eq. (1) is non-dimensionalized
as:

H (X ) = 1 + X2 + κP(X ) , (3)

where:

κ =
LµV R1/2
√
2Gh5/20

. (4)

In the lubrication approximation where h0 � R, the incom-

pressible steady Stokes equations reduce to [1, 35, 36]:

∂ZZU = ∂X P . (5)

with ∂Z P = 0, In addition, we impose no-slip boundary condi-
tions, throughU (X, Z = −κP) = −1 andU (X, Z = H− κP) =
0. Solving Eq. (5) with these boundary conditions, and invok-
ing the condition of volume conservation yields the Reynolds
equation:

∂X
(
H3∂X P + 6H

)
= 0 . (6)

Solving the latter with vanishing pressure in the far field, one
can then calculate the dimensionless normal force (per unit
length) exerted on the cylinder, through:

FZ =

∫ ∞

−∞

dX P(X ) . (7)

Since κ � 1, perturbation theory [30] using P ' P(0) + κP(1) ,
allows one to integrate Eq. (6) at first order in κ, eventually
leading to the dimensionless lift force:

FZ '
3πκ
8

, (8)

and thus providing Eq. (2) as well as the missing prefactor
therein.

Theoretical developments

Let us make a few comments about Eq. (2). This typical
asymptotic expression of the soft-lubrication lift force per unit
length relies on several assumptions: a 2D problem, a pure
linear and local compressible elastic rheology, a vanishing
compliance, a near-contact/confinement situation, a parabolic
contact shape, etc. It is thus expected to find important modifi-
cations of the lift force in more complex or realistic situations.
First of all, while the perturbative/asymptotic nature of the
approach is expected to hold near contact and at small elastic
deformations, through the explicit factor ∼ (µV )2/G in the
force expression, dimensionality and geometry are expected to
modify the dependencies on the various length scales of the
problem. Similarly, the exact elastic rheology (compressible
vs incompressible, thin vs thick) will modify the constitutive
response between the pressure p(x) and the elastic deforma-
tion δ(x). Indeed, while a linear response is expected to hold at
small deformations, the simple Hookean proportionality rela-
tion δ(x)/L ∼ p(x)/G may be replaced by a nonlocal relation
of the type:

δ(x) ∼
1
G

∫ ∞

−∞

dx ′ g(x − x ′)p(x ′) , (9)

where g is the dimensionless elastic Green’s function (in a
2D description here), that simply reduces to a Dirac distribu-
tion in the Winkler’s case discussed above. Qualitatively, δ
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Table I. Different scalings of the soft-lubrication lift force for a
sphere in 3D, for various geometries and rheologies of the elas-
tic substrate [37]. Here, µ is the shear viscosity of the lubricant,
V the relative tangential speed, ω the angular speed, n the contact-
degeneracy parameter, Hl the elastic substrate thickness, R the sphere
radius, G the shear modulus of the elastic substrate, h0 the fluid-gap
thickness (noted h in this manuscript) and hs the shell thickness.

is still the linear response to the source p(x) with a magni-
tude set by the compliance 1/G (and even a proportionality in
Fourier space). Quantitatively, we expect differences depend-
ing on the exact Green’s function characterizing the response.
To go one step further along this line of thought, substrate
viscoelasticy and poroelasticity are expected to add one or
several new time scale(s) in the problem, rendering the re-
sponse time-dependent, including memory effects. Similarly,
large deformability and/or elastic nonlinearities may induce
saturations of the force, beyond the small-deformation scal-
ing in 1/G of Eq. (2). Finally, adding non-Newtonian effects,
or conservative surface forces, such as van der Waals forces
and screened electrostatic interactions, is expected to lead to
non-trivial effects and coupling with the EHD picture above.
One thus realizes that there was room and need for further
theoretical developments around Eq. (2).

Perhaps the most emblematic example of such develop-
ments, is the series of work by Skotheim and Mahade-
van [30, 37]. Therein, a systematic zoology of various non-
conforming and conforming contact geometries and elastic
responses was addressed analytically and numerically. This is
exemplified in Table I with a collection of lift-force scalings
for the particular case of a 3D sphere. This body of work
applies the same soft-lubrication framework as the one intro-
duced above, and employs numerical resolutions to go beyond

Figure 6. Shear stress as a function of driving velocity measured
with a SFA covered by strongly adhesive polyelectrolyte layers and in
presence of a lubricant. Figure taken from [39].

scaling expressions and the small-compliance limit. Interest-
ingly, thanks to the numerical resolution, an optimum in the
lift-force-vs-gap-distance behaviour was systematically found.
Note that a capillary version of soft lubrication, analogous to
the elastic one at stake here, was not addressed therein, but
was studied previously in the context of rising bubbles [38].
Nearly at the same time, and importantly, Beaucourt et

al. [40] understood the interest of such a lift force in a bio-
physical context. These authors addressed in particular the
case of vesicles, as model biological elastic microparticles,
during theirmotion inwater near soft glycocalix layers. Putting
numbers on the optimal lift expression, they found forces with
magnitudes lying in the physiological range. This work thus
highlights the potential importance of such soft-lubricated cou-
plings for the dynamics of red blood cells, and thus biological
processes that are essential to life.
To go beyond scaling symbols in the soft-lubrication lift

expression for a sphere in 3D is a more intricate task. An
elegant solution based on Lorentz’s reciprocal theorem was
sketched by Stone et al. during an oral communication at the
2004 APS-DFD meeting [42]. It was later on systematically
explored by Urzay et al. [43] for the problem of a sphere
translating and rotating near a thin compressible elastic layer.
A main finding therein is that the 3D geometry eliminates
the occurrence of maximum lift and optimum choice of the
material properties. Later on, Urzay generalized the scope
to the added role of DLVO intermolecular interactions [44].
There, the competition of the hydrodynamic, intermolecular
and deformation effects leads to forces which do not scale
linearly with the velocity, and produce a non-additivity of the
intermolecular effects. Mainly, the intensity of the repulsive
forces is reduced while the intensity of the attractive forces is
increased, collectively leading to an effective and reversible
EHD adhesion scenario. Besides, a more exotic irreversible
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Experimental setup
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Figure 7. (left) A rigid cylinder immersed in a viscous bath slides along an inclined plane covered with a thin elastic layer. Fluorescent
particles embedded in the latter make it possible to observe its deformation using a laser and a camera. (right) Sliding speed V as a function
of normalized time T = t/ttot = tV∞/L, for several shear moduli of the elastic coating. Here, V∞ is the time-averaged steady-state sliding
speed, L is the total length of the substrate, and t is the time. The dotted line corresponds to the case of a bare glass substrate. Figure adapted
from [41].

EHD adhesion regime was also found. Elastohydrodynamic
corrections to the DLVO framework for the critical coagulation
concentration of electrolytes were obtained too.

Beyond global quantities, such as the net normal lift force,
local details on the contact shape show peculiar features as
well. For instance, in 2D, the self-similar properties of the
soft-lubricated contact zone in a high-loading case was inves-
tigated by Snoeijer et al. [48]. Asymptotic results for a soft
sphere in 3D pressed against a hard wall were shown to agree
with both experimental and numerical data. Later on, Essink
et al. [49] managed to obtain analytical scaling laws in the
high-loading regime. In this work, the authors described vari-
ous regimes of soft lubrication for two-dimensional cylinders
in lubricated contact with compliant walls. They addressed
the limits of small and large entrainment velocities, near thin
elastic coatings, both compressible and incompressible. The
analysis relies intimately on the introduction of an elastohydro-
dynamic boundary layer that appears at the edge of the contact
region.

So far, the problems studied involved constant fluid gap
thickness and transverse velocity. The case of a more general
prescribed motion in 2D and 3D near a Winkler’s founda-
tion was addressed analytically and numerically by Weekley
et al. [50]. When the particle moves from rest towards the
wall, fluid trapping beneath the particle leads to an overshoot
in the normal force on the particle, with trapping at early times
and fluid draining at late times. When the particle is pulled
from rest away from the wall, a transient adhesive normal force
emerges. When a cylinder moves from rest transversely along
the wall, an overshoot in the transverse drag appears. However,
the case of a free particle immersed in a viscous fluid and near
a soft wall, with all degrees of freedom allowed, is relevant

to experiments and needed to be addressed. The associated
leading-order soft-lubrication interaction matrix was derived
by Salez and Mahadevan in 2D [51], and later on by Bertin et
al. in 3D [52]. Interestingly, when including the particle in-
ertia, a counterintuitive zoology of fluid-inertial-like solutions
emerges. These encompass: Magnus-like effects, enhanced
sedimentation, adhesive-like EHD forces, roll reversal, os-
cillations, etc. In addition, the existence of a spontaneous
soft-lubrication torque, at next (i.e. second) order in κ, was
revealed in 2D by Rallabandi et al. [53], for compressible and
incompressible settings.
We have focused on purely elastic materials in the descrip-

tion above. In such a framework, the softer the material, the
larger the effect, until an optimum or saturation eventually
occurs. This suggests to employ rather soft materials in prac-
tice. However soft gels and elastomers are inevitably prone
to poroelastic and viscoelastic effects. While the former have
been briefly sketched by Skotheim and Mahadevan in the lift
context [30, 37], the latter needed to be incorporated in details.
Pandey et al. [54] thus analyzed soft-lubricated contacts with
viscoelastic walls. In particular, the authors focused on three
canonical responses, namely: Kelvin-Voigt, standard linear,
and power-law rheologies. They showed how viscoelasticity
modifies the contact properties when the time scales of both
the substrate and the driving become comparable. Mainly,
they found modified asymptotic scaling laws for the lift force,
indicating a decrease of the magnitude of the EHD effect due
to inner viscous contributions. Later on, Kargar-Estahbanati
and Rallabandi [55] employed Lorentz’s reciprocal theorem to
derive a general integral relation between the soft-lubrication
lift force and the linear response function of the soft substrate.
They first analyzed the lift force as a function of Poisson’s ra-
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Figure 8. (left) A glass microbead is advected in an aqueous environment within a microfluidic chamber whose walls are decorated by
a biomimetic polymer brush. (right) The distance to the wall is measured versus the imposed shear rate, for three brush elastic moduli
(increasing from orange to pink). Theoretical lines including the soft-lubrication lift contribution are fitting the data. Figure adapted
from [45].

Figure 9. Gravitational sedimentation of a macroscopic sphere immersed in a viscous fluid, along a vertical membrane under tension, exhibits
an important normal drift induced by the soft-lubrication lift. Figure taken from [46].

tio and thickness of the elastic material. Moreover, they found
a superposition of steady and oscillating modes whose am-
plitudes and phases contain information about the elastic and
viscous components of the material response, thus opening the
way to the fine characterization of the mechanical properties
of materials via lift force measurements. Compared to nor-
mal mode excitations [13, 19–29], the interest of the lift-force
mode for such a purpose is rooted in Eq. (2), where a ∼ V 2

dependency appears. Therefore, with a sinusoidal excitation,
a frequency doubling is expected, thus enabling the use of a
region of the spectrum that is disconnected from the excitation
one.

As introduced above, Winkler’s foundation is the simplest
linear and local elastic model (see Fig. 5) [34]. Since it avoids
the complication of nonlocal responses associated with elastic
materials, it is often used as a simplified model for thought.
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Figure 10. (left) Shear-induced force as a function of driving velocity measured with a SFA covered by microgel layers and in presence of a
lubricant, for various gap thicknesses increasing from brown to grey symbols. (right) Measured lift force as a function of lubricant thickness.
Figure adapted from [47].

Figure 11. (left) A soft substrate is fixed atop a rigid piezo stage that is transversally oscillated along time t, at angular frequency ω and
with amplitude A. A rigid sphere is glued to an AFM cantilever and immersed in a viscous liquid lubricant near the substrate. The normal
force FN exerted on the sphere at a given distance from the surface is directly measured from the deflection of the cantilever along z. (right)
Temporal average F of FN as a function of the gap distance d to the substrate, for both rigid (silicon wafer) and soft polydimethylsiloxane
(PDMS) substrates. The inset shows a log-log representation of the data for the soft substrate where the solid line indicates a −5/2 power law
characteristic of an EHD lift force in the case of a semi-infinite incompressible elastic substrate [37]. Figure adapted from [56].

A natural question emerging from that is how valid such a
model is to describe actual physical systems, with a particular
focus on the lift problem. In particular, in the limit of strictly
incompressible and thin elastic layers, one expects an infinite
resistance to deformation, and hence the Winkler’s approach
breaks down. Chandler and Vella [57] provided an answer to
that by formally deriving a lift force that interpolates between
the Winkler and incompressible limits for thin elastic layers.
They found that the applicability of the Winkler model is not
determined by the value of the Poisson ratio alone, but by some
compressibility parameter that combines the Poisson ratiowith
a measure of the layer slenderness, which depends on the
problem under consideration. Essentially, for Poisson ratios
strictly smaller than 0.5, the crossover to Winkler’s model as

the thickness is reduced is rooted in the elastic Green’s function
itself [13, 55].
Finally, the effective compliance of a material, and the

lift force as a consequence, can be increased tremendously
by using slender geometries, such as membranes and plates.
The EHD coupling in such systems was addressed by Daddi-
Moussa-Ider and collaborators [58, 59]. In the first article,
the authors computed the leading-order frequency-dependent
translational and rotational mobilities of an axisymmetric par-
ticle immersed in a viscous fluid and moving near an elastic
cell boundary allowed to stretch and bend. The authors found
that the translation-rotation coupling mobility is primarily de-
termined by bending, whereas shearing mostly affects the ro-
tational mobility. In the second article, the authors derived
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the lift force exerted on a rigid spherical particle translating
parallel to a finite-sized membrane. Specifically, the Lorentz
reciprocal theorem was employed, as well as a perturbative ex-
pansion for small deformations of the membrane. The authors
reported interesting attractive and repulsive regimes depend-
ing on the dominant elastic mode at play.

As a concluding remark, we expect no qualitative differ-
ence between the two dual situations of a rigid particle near a
soft wall and vice versa. This is reminiscent of the admitted
equivalence in dry elastic contacts [60, 61].

Experimental pieces of evidence

Despite the above abundant theoretical literature, experi-
mental evidence for such a soft-lubrication lift force in soft
matter is recent and scarce.

A preliminary qualitative observation was reported in the
context of smart lubricants and adsorbed polyelectrolytes by
Bouchet et al. [39]. The authors investigated the lubricant
properties of a strong polyelectrolyte, in aqueous solutions of
different salt concentrations. They first studied how the mor-
phology of the adsorbed layer could be modified by increasing
the salt concentration. Then, a complex velocity dependence
of the friction was observed, with a maximum value at inter-
mediate velocities and even some hysteresis. A progressive
increase in separation between the rubbing surfaces with ve-
locity was also observed (see Fig. 6). These observations were
discussed in terms of a possible indication of the presence of
a soft-lubrication lift force.

A first quantitative study, by Saintyves et al. [41], showed an
effective reduction of friction induced by the soft-lubrication
lift force. The authors employed a fluid-immersed negatively
buoyant macroscopic cylinder moving along a soft inclined
wall. They observed a steady-state sliding regime with an ef-
fective friction that was significantly reduced relative to the
rigid case (see Fig. 7). The observations were rationalized
by invoking the soft-lubrication lift. This study was followed
up by a work dedicated to the rotational motion of the cylin-
der [62]. The authors experimentally quantified the steady
spinning of the cylinder and theoretically showed that it is due
to an aspect-ratio dependent combination of a soft-lubrication
torque generated by the flow and the viscous friction on the
edges of the finite-length cylinder. The experimental results
were consistent with a transition from an edge-effect dom-
inated regime for short cylinders to a gap-dominated soft-
lubrication regime when the cylinder is very long. A puzzling
feature about these two studies is the fact that the Winkler’s
foundation describes best the observations, despite the rather
incompressible character of the elastomers used. The answer
to that puzzle might be given by Chandler and Vella [57] in
the lift context. Indeed, for Poisson’s ratios strictly smaller
than 1/2, an incompressible layer will eventually behave as a
compressible one for small-enough film thicknesses.

Subsequently, an experimental study by Davies et al. [45]
revealed the significance of the soft-lubrication lift force in

biological and microscopic settings. The authors addressed
the motion of glass microbeads in a linear shear flow close to
a wall bearing a thin soft biomimetic polymer brush. Com-
bining microfluidics and optical tracking, they demonstrated
that the steady-state bead-to-surface distance increased with
the imposed shear rate (see Fig. 8). The article is concluded
by physiological estimates, indicating the potential relevance
of the effect for the transport of red blood cells – and thus for
life processes.

The same year, amacroscopic study byRallabandi et al. [46]
demonstrated the large amplification of the soft-lubrication lift
for very compliant boundaries associated with slender geome-
tries (see Fig. 9). The authors combined theory and experi-
ments in order to show that a small particle moving along an
elastic membrane through a viscous fluid is repelled from the
membrane due to soft-lubrication forces. An analytic expres-
sion for the particle trajectory is derived, including a normal
migration velocity of the particle that is quadratic in speed
and depends on a combination of the tension and bending re-
sistances of the membrane. The quantitative agreement with
the theoretical predictions with no fitting parameter indicates
once again the presence and relevance of the soft-lubrication
lift force. Furthermore, due to the slenderness of the mem-
brane, the effective compliance is large and the effect is strong
enough for separation and sorting of particles on the basis
of both their size and density. Once again, the relevance for
biology – where membranes are widespread – is discussed.

The above recent experimental literature provides confi-
dence in the existence of the soft-lubrication lift force, as well
as in its importance at small scales and for biology. However, in
these works, the quantitative evidence for the soft-lubrication
lift is only indirect since only trajectories and effective friction
coefficients are typically measured. A direct measurement
was thus needed. The first SFA and AFM direct force mea-
surements of the soft-lubrication lift force at the nanoscale
were performed by Vialar et al. and by Zhang et al. respec-
tively [47, 56]. On the one hand, in the former SFA study,
the authors investigated the behavior of mica surfaces coated
with microgels under shear and compression. The emergence
of velocity-dependent, shear-induced normal forces was ob-
served and quantified (see Fig. 10). Moreover, the data are
in agreement with the soft-lubrication lift force but revealed a
counterintuitive value of the microgel elastic modulus. On the
other hand, Zhang et al. employed an AFM colloidal probe
near an horizontally-oscillated elastomeric layer and measured
the average lift force as a function of the gap size (see Fig. 11),
for various driving velocities, viscosities, and stiffnesses. The
results are in agreement with a quantitative model developed
from the soft-lubrication theory for small compliances [52].
For larger compliances, or equivalently for smaller confine-
ment length scales, an empirical scaling law for the observed
saturation of the lift force is proposed and discussed. This
high-loading conjecture should be compared in future to re-
cent theoretical developments [49].
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Figure 12. Shear-induced unbinding of a vesicle: successive RICM
images of the contact area of the vesicle with the substrate are shown.
The evolution of the interference pattern denotes an increase of the
vesicle-to-substrate distance. Figure adapted from [63].

ELASTOHYDRODYNAMIC LIFT IN EXTERNAL FLOW

From soft lubrication to bulk elastohydrodynamics

At the turn of themillennium, key articles have addressed in-
termediate – and complex – configurations which are relevant
to microfluidics [63–65]: an immersed particle in near-contact
elastohydrodynamic interaction with a wall in the presence of
external shear forces due to flow.

The lift force upon detachment acting on a heavy, quasi-
spherical lipid vesicles lying on a substrate has been deter-
mined experimentally by Lorz et al. using RICM technique,
that allows to accurately determine the gap profile between a
particle and a substrate, if of order some hundreds of nanome-
ters [63] (Fig. 12). They compared it with the expression
proposed by Bruinsma [66] in the framework of soft lubrica-
tion theory, for a quasi-spherical particle with given surface
tension and found that the measured force was 2 orders of mag-
nitude larger than that predicted by this theory. The missing
brick was claimed by Seifert in Ref. [65], whose prediction
for the lift force matched the experimental one. In a letter
published simultaneously in the same journal Cantat and Mis-
bah also provided an expression for the lift force [64]. Both
groups considered a vesicle pinned to a rigid substrate by an
adhesive potential, and determined, using similar approaches,
the lift force acting on the vesicle as it is pinned to the wall at
a given distance from it (given by the location of the minimal
potential of energy), while being still able to deform and open
an asymmetric gap between its surface and the wall, following
soft lubrication mechanism. Cantat and Misbah considered a
2D vesicles whose asymmetry is essentially described by its
front and back curvatures (allowing for feedback between gap
shape and flow stress through the curvature energy of themem-
brane), and found a h−1/2 dependency for the lift force. Seifert
considered a 3D vesicle but assumed a linearly increasing gap,
and used the adhesion energy as a control parameter, rather
than the curvature energy. He found a h−1 dependency for the
lift force. Both forces depend quadratically on the shear rate,
as in other soft lubrication configurations (Table I). However,
the exponents that characterize the dependency with gap thick-
ness h are different. Interestingly, Cantat and Misbah also ran
numerical simulations of the lift force as a function of shear
rate and highlighted a transition between the quadratic regime,
when the vesicle is pinned, to a linear regime, when the vesicle
is detached. This points to the fact that while the opening of

Figure 13. A deformable particle in a shear flow is elongated and
tilted, resulting in a lift away from the wall. In the meantime, defor-
mation of the neighboring elastic wall also induces lift, as in Fig. 4.
Figure adapted from [40].

an asymmetric gap is, in the soft lubrication regime, the result
of local equilibrium between flow stress and particle elasticity,
the shape of the vesicle that is far from the wall is governed by
the sole interaction with the bulk flow. For vesicles, it turns
out to be independent from the shear rate because of the mem-
brane incompressibility. This regime of shear-induced lift will
be discussed in the present section. More recently, a similar
case of coupling between adhesion forces and shear-induced
lift has been studied for drops on a deformable polymer brush,
leading to complex phase diagrams [67].
Another interesting combination between shear-induced lift

and soft lubrication is particularly visible in the previously
discussed work of Beaucourt et al. [40], where the lift exerted
on a sheared particle near a soft wall is calculated in a 2D
framework. In addition to substrate elasticity, the authors
add the possibility of cell deformation due to the shear flow
; they show that the maximal lift force — which we recall
to be apparently a 2D feature — is always reached at similar
wall rigidities, but that it increases with cell deformability (see
Fig. 13). This article opens a long series of works devoted
to the impact of cell deformability under shear flow on the
lift force, without considering the effect of wall deformability.
Yet, deformation of the particle by its interaction with the wall
is still possible in this configuration, and we shall discuss the
crossover between the pure shear-induced lift regime and a
mixed regime where the soft-lubrication correction must be
considered.

Dynamics of deformable particles under shear flow

As particles get further from the wall the hydrodynamic
interaction weakens, so does the resulting deformation and
subsequent lift force. Yet, if another mechanism maintains the
shape asymmetry, lift forces may not decrease as quickly. A
prominent example is that of particle asymmetry induced by
velocity gradients. The elongational component of the flow,
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which is aligned at 45◦ relatively to the flow direction for a
simple shear flow tends to elongate a deformable particle in
its direction. Depending on the mechanical properties of the
particle, this may result in a fore-aft asymmetry leading to the
apparition of a lift force.

Before going further, a quick overview on the dynamics of
soft particle under shear flow is needed here, with the aim to
focus on themain information needed to understand the depen-
dency of the amplitude of the lift force with the mechanical
properties of the considered particle. A non-spherical rigid
particle cannot maintain a steady shape under shear flow, due
the rotational component. Yet, its transient configuration will
exhibit fore-aft asymmetry leading to the apparition of a lift
force, whose sign depends on the angle of the particle. Particle
with liquid cores can maintain a fixed shape under shear flow
while accommodating the rotational stresses by a rotation of
their inner fluid. The way they do so depends on the detail
of their mechanical properties. Different types of particles are
met in the literature.

In this review, the term vesicle will be used to designate a
drop of liquid encapsulated by an incompressible elastic layer.
The sole elastic deformation energy of this layer is thus asso-
ciated to bending. In particular, initially spherical vesicles are
non-deformable, by virtue of incompressibility of the mem-
brane and of the encapsulated fluid. Vesicles have long been
considered as model systems to mimic the main behaviour of
more complex cells such a red blood cells. By neglecting
the elastic shear contribution of the underlying cytoskeleton,
researchers have gained simplicity, that was needed for theo-
retical modeling purposes and to reduce cost and complexity
of numerical simulations. In parallel, models for extensible
shells — which are often named capsules — have been devel-
oped. Finally, The last ten years have seen the development
of more accurate models to describe membranes of cells, that
includes the possibility for shear at constant surface in the
membrane plane.

The literature on the dynamics under shear flow of liquid
drops [68], vesicles [69–89], capsules [90–101], or (models
of) red blood cells [102–119] is extended and is still being
enriched by studies of increasing refinement in the modeling
and in the experimental approach. Adding more complexity
to the rheological properties of the membrane leads in gen-
eral to more complexity in the diagrams of dynamical states.
The parameters of the system are usually combined in a set of
dimensionless numbers such as reduced volume ν (character-
izing initial deflation of the object), viscosity ratio λ between
the inner and the outer fluid, and capillary number(s) Ca, that
compare hydrodynamic shear with either surface tension or
bending rigidity or shear elasticity of the membrane.

An oversimplified picture is that for low λ and high Ca , par-
ticles adopt a drop-like behaviour, called tank-treading (TT),
where the particle keeps a constant angle θ (see Fig. 14 for
notation) relatively to flow direction. For high λ or low Ca ,
particles behave more like solids and tumble under flow, with a
periodic evolution of θ. In between, a rich zoology of motions
has been described, from small oscillations around a given

angle to off-plane orbital motion. The oscillations of the main
axis of the particle is often accompanied by shape oscillations
of more or less important amplitude. For ellipsoidal rigid par-
ticles, orbits have been exactly described by Jeffery [120] ; this
description is also a good proxy for tumbling motion of not
too deformable particles like red blood cells [116] or capsules
[98] under moderate shear flow.

Far-field interaction with a rigid wall

If a particle is far enough from the wall, the elastohydrody-
namic problem decouples as one can first determine the shape
from the interaction between the flow and the particle, ne-
glecting the influence of the wall, then consider the resulting
drift velocity that emerges by making the flow perturbation
due to the flowing body compatible with the boundary con-
ditions on the wall. This corresponds to the 0th order in the
soft lubrication approach, which is sufficient here as the re-
quired asymmetry is maintained by another mechanism than
the direct interaction with the wall.
A fundamental example of this approach is the one of a

tank-treading ellipsoidal vesicle in a simple shear flow near a
wall, whose dynamics can be calculated independently from
the presence of the wall. By setting that the lift velocity of
the particle is such that this velocity added to the velocity
perturbation due to the particle must vanish on the wall, Olla
showed that in the absence of other forces (e.g. buoyancy), the
lift velocity UL scales as [121, 122]

UL = AR3 |γ̇ |/z2 . (10)

In this expression, z ' h + R is the particle-to-wall distance,
R a characteristic size of the particle, γ̇ the shear rate and A
a dimensionless prefactor that depends on the cell geometry
and mechanical properties. Another theoretical modeling, not
assuming ellipsoidal shape a priori, has later on led to the same
result [123].
Indeed, this scaling is generic and can be proven by different

means. Here, we will first introduce the boundary integral
formalism to solve the Stokes flow due to the force distribution
on the particle surface ; it will also allow to discuss the different
contributions to the lift force, be it far or close to the wall, as
developed in particular by Nix et al. in [124]. We generalize
their work in a first step to a larger class of particle than that
considered by the authors (capsules with no viscosity contrast
between the inner and outer fluid), also using the reference
work on boundary integral method by Pozrikidis [125] and
that of Zhao et al. [126] on the migration of lipid vesicles.
To facilitate the notations and summations, we introduce

the position vector x = (x1, x2, x3), where x1 corresponds to
the flow direction, and x3 to the direction perpendicular to the
wall (located at x3 = 0), i.e. to z in Fig. 2.
Following [125], the flow field at any point x0 outside the
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particle reads

u j (x0) = u∞j (x0) −
1

8πµ

∫
S

σik (x)nk (x)Gi j (x, x0)dS

+
1
8π

∫
S

ui (x)Ti jk (x, x0)nk (x)dS (11)

Here, u∞ is the imposed flow, σ is the fluid stress tensor
such that fext = σ · n is the force distribution acting on the
surface. We recall that µ is the viscosity of the fluid. G is the
Green’s function that is adapted to the boundary condition of
the problem and T is the associated stress tensor. The second
and third term of the right-hand side of the equation are called
the single and double layer potentials, respectively. In order
to account for the presence of body forces, σ can be replaced
in the above expression by the modified stress tensor such that
σMOD
i j = σi j+ρg·xδi j [125]. Here, g is the acceleration field,

like gravity, and ρ is the associated quantity, like fluid density.
Keeping this in mind, we will drop the MOD superscript from
now on.

A more convenient expression can be obtained when one
knows the specificmechanical properties of the particle bound-
ary. Awidely considered configuration is that of a 2D interface
delimiting the interior of the particle, filled with a fluid of vis-
cosity µ′ ≡ λµ from the surrounding fluid. In that case, Eq.
11 becomes [125]

u j (x0) = u∞j (x0) −
1

8πµ

∫
S

∆ f i (x)Gi j (x, x0)dS

+
1 − λ
8π

∫
S

ui (x)Ti jk (x, x0)nk (x)dS. (12)

Here, ∆f = fext − f int = (σext − σint ) · n is the discon-
tinuity in the interfacial surface force. It can be written as
∆f = (ρext − ρin )g · x n+∆ξ, where ∆ξ is the discontinuity in
the surface force that depends only on the interface mechanical
properties. For a given model of particle (e.g. a drop, a vesi-
cle, a capsule), and in the absence of significant inertia of the
membrane, it can be calculated according to the chosen con-
stitutive law for the surface, as it must equal the opposite of the
membrane load. Regarding numerical simulations, Eq. 12 can
be implemented to compute the particle dynamics according
to a two-step process where first the displacement of the par-
ticle membrane is calculated according to Eq. 12, after what
the force ξ can be calculated in this new configuration, and so
on. This so-called boundary integral method has given rise to
several developments regarding numerical schemes be used,
following the seminal work of Pozrikidis [127]. In particular,
it has successfully been used to describe the motion of drops
[128], vesicles [123, 126, 129–131] or capsules [96, 124, 132]
in the vicinity of walls. To do this, Green’s function that are
adapted to the considered boundary conditions must be used,
which we describe below. Note that Eq. 12 does not provide a
direct expression for the velocity as it appears on both sides of
the equation, when λ , 1. This requires to implement adapted
numerical schemes to ensure convergence.

For an unbounded domain, the Green’s function is called
the Stokeslet and describes the flow field created by a point
force. We will denote it as G∞ and it reads

G∞i j (x, x0) =
δi j

r
+

rir j
r3

, where r = x − x0. (13)

The associated stress tensor is

T∞i jk (x, x0) = −6
rir jrk

r5
. (14)

The Green’s functions we need here is that satisfying the no
slip condition on the wall. A calculation of this semi-infinite
Green’s function has been proposed by Blake in [133], using
Fourier transform. It can be thought as the Green’s function as-
sociated with other point singularities located at the reflection
point xIM = (x1, x2,−x3) of the initial force. Interestingly, in
[133], this interpretation in terms of singularities is obtained a
posteriori, after the direct calculation is lead. We are not aware
of any direct construction of the semi-infinite Green function
based on adequate considerations on the singularities to be
chosen to satisfy, at the end, the correct boundary conditions
on the wall.
The semi-infinite Green’s function reads G = G∞ + Gw ,

where the wall Green’s function Gw is given by

Gw
i j (x, x0) = −G∞i j (x

IM, x0)

−2x3GSD
i j (xIM, x0) + 2x23GD

i j (x
IM, x0),(15)

where

GSD
i j (x, x0) = (1 − 2δ j3)

( δi jr3 − δi3r j + δ j3ri
r3

−
3rir jr3

r5
)

(16)
is a Green’s function associated with a Stokeslet doublet and

GD
i j (x, x0) = (1 − 2δ j3)

( δi j
r3
−
3rir j

r5
)

(17)

is a Green’s function associated with a source doublet. By
Green’s function associated with a doublet, we mean the
Green’s function allowing for the calculation of the far-field
velocity associated with a pair of singularities of opposite sign
or direction located at a finite distance.
Similar expressions exist for the stress tensor Ti jk = T∞

i jk
+

Tw
i jk

, which can be found in [125], p. 85.

Contributions to lift velocity

The decomposition of the velocity field into a contribution
arising directly from the presence of the particle (through the
unbounded Green’s function and the associated stress tensor)
and one from the presence of a wall makes it tempting to
discuss their relative contribution to the lift velocity. However,
as seen in the last term of Eq. 12, the coupling between u and
T makes this distinction tricky in the general case.

For particle with no viscosity contrast, still, this discus-
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sion can be carried out, as in [124]. The lift velocity UL can
be thought as the averaged velocity over the particle volume,
which can be transformed into a surface integral for incom-
pressible particles: noting that ~∇ · (x3u) = u3, one finds that

UL =
1
V

∫
V

u3dV =
1
V

∫
S

x3u · n dS, (18)

where n is the unit vector normal to the surface.

In the specific situation where λ = 1,We decompose this lift
velocity into two contributions: a self termU s that arises from
the flow created by the particle, without taking into account
the presence of a wall, and the wall term Uw , such that UL =

U s +Uw . They are defined as

U s =
1
V

∫
S

x3us · n dS, with (19)

us
j (x0) = −

1
8πµ

∫
S

∆ f i (x)G∞i j (x, x0) dS (20)

and

Uw =
1
V

∫
S

x3uw · n dS, with (21)

uw
j (x0) = −

1
8πµ

∫
S

∆ f i (x)Gw
i j (x, x0) dS. (22)

In an infinite simple shear flow, the whole configuration
has a point symmetry with respect to the centre of the particle.
Considering two opposite points on themembrane, one can see
that the us · n terms are equal while the x3 term has opposite
sign, whence U s = 0, as expected. The self term therefore
represents the effect of the asymmetrical deformation of the
particle — due to the presence of the wall — on the particle
displacement due to its own created flow field.

For a capsule in a quite narrow range of capillary numbers
(of order 0.1-1), it has been shown numerically in [124] that
this self term is negative (that is, the particle is attracted to-
wards the wall). Importantly, this self term decays as (z/R)−4,
where R is the particle typical size. In that it follows the
scaling for the evolution of a geometrical parameters charac-
terizing how far the particle is far from pointwise symmetry.

Wemake the remark here that, to our knowledge, the scaling
for the asymmetric contribution in the self term have not been
derived formally. We may assume that, in the far-field limit, it
may always be negligible compared to the wall term.

In order to comment on the behavior of the wall term Uw ,
we first consider its far-field limit, which is often the only
one considered in models, being the dominant contribution as
soon as the particle is far enough from the wall. To that aim,
we re-consider the generic case of λ taking any value, as in
[126, 134].

Far from the wall, the velocity Uw of the particle may be
approximated by that of its center, that we set to be located at

position x0 = (0, 0, z). This far-field velocityUw, f f thus reads

Uw, f f = −
1

8πµ

∫
S

∆ f i (x)Gw
i3(x, x0) dS

+
1 − λ
8π

∫
S

u0i (x)Tw
i3k (x, x0)nk (x)dS, (23)

where u0 is the leading order term in the velocity on the
particle surface.

Gw
i3(x, x0) indeed represents the flow field created by the

singularities from the image system, located at xIM = −x0.
For |x − x0 | � h, one can expand Gw (x, x0) and Tw (x, x0)
around x0, such that:

Uw, f f = −
1

8πµ
Gw

i3(x0, x0)
∫
S

∆ f i (x) dS

−
1

8πµ
∂Gw

i3
∂xk

(x0, x0)
∫
S

∆ f i (x)(x − x0)k dS

+
1 − λ
8π

Tw
i3k (x0, x0)

∫
S

u0i (x)nk (x)dS. (24)

In the absence of external force (like gravity) the first term
of the right hand side is zero.
The integral that appears in the second term is the dipolar

tensor that characterizes the first moment of the force dis-
tribution on the particle surface. Depending on the authors,
it is sometimes denoted as Dik . We now turn to the usual
decomposition of this tensor (see e.g. [135]):

Dik =
1
3

D j jδik + Sik + Tik (25)

.
The first term has no impact on the flow, as can be seen

by inserting it in Eq. 24: the resulting term is ∝ ∂Gw
k3/∂xk ,

which is the divergence of the Green’s function and is 0 (since
this function represents a solution of the incompressible Stokes
flow). The traceless symmetric tensor

Sik =
∫
S

[1
2

(∆ f i (x−x0)k+∆ fk (x−x0)i )−
1
3
∆ f j (x−x0) jδik

]
dS

(26)
is often called the stresslet and its asymmetric counterpart Tik

is called the rotlet (or couplet, following Batchelor [136]). The
latter is proportional to the torque exerted on the particle and
is therefore 0 in the absence of external torque. As the stresslet
is symmetric, only the symmetrical part 1

2 (
∂Gw

i3
∂xk
+
∂Gw

k3
∂xi

) of the
derivative of the Green’s function eventually contributes to the
lift velocity. Following [124], we call it Kw

i3k .
We now make the remark that Tw

i3k (x0, x0) =

−δik pj (x0, x0) + 2Kw
i3k (x0, x0), where p is the pressure vector

associated with the Green’s function [125]. Since the flux of
u through S is 0, its contribution to the lift is 0. As Kw

i3k
is symmetric, it will act only on the symmetrical part of last
integral of Eq. 24.
Finally, in the absence of external force and torque, the lift
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velocity is given by the image system of the complete stresslet
Σik , acting on the center of the particle. It is given by

Uw, f f = −
1

8πµ
Kw
i3k (x0, x0)Σik, (27)

where

Σik = Sik + (λ − 1)µ
∫
S

(u0i (x)nk (x) + u0k (x)ni (x)) dS. (28)

This last expression defines more generally the stresslet, for
a larger class of particles than Eq. 26. It should be noted
that the second term vanishes not only for particles with no
viscosity contrast but also for rigid particles [136].

An expression for Kw
i3k can be found in [124]:

Kw
i3k =

1
8z2

(−5δik + 9δk3δ j3). (29)

This leads to

Uw, f f = −
9

64πµ
Σ33

z2
. (30)

This results generalizes Eq. 10. By coherence with the
leading order approximation we made here, one must keep in
mind that the stresslet Σ33 is that created by the interactionwith
the external flow, in the absence of wall. This simpler situation
opens the way to theoretical determination of the stresslet ; it
is then convenient to check the validity (and the associated
domain in the z-axis) through full numerical simulations or
experiments. To do, one must keep in mind that while the
theoretical approach through the determination of the stresslet
will provide the lift velocity at a given position for a particle
in its stationary dynamics, simulations or experiments provide
full trajectories along which the shape at given position might
not be the stationary one. Comparing both approach requires
to ensure that the typical time needed for shape change is
much smaller than the migration time. A priori, this will be
achieved for sufficiently high capillary numbers. In practice,
this conditions holds in the situations we will describe below.
Also, in simple shear flow, the shape depends only weekly on
the position. The situation will be more complex in quadratic
flows, which will be shown to trigger more complex couplings
between shape and lift direction.

To conclude with our discussion on the different contribu-
tions to lift, numerical simulations lead in [124] have high-
lighted that replacing the far-field stresslet by its value at the
considered distance from the wall enhances the lift force. The
overall contribution of the wall is shown to be smaller, due
to the asymmetric deformation (with respect to the point-wise
symmetric shape) that has a negative contribution to the lift
velocity, as for the self term. It has been shown that it also
varies like (z/R)−4.

Lift velocity and lift force, the vesicle case

The case of vesicles is interesting for comparing results
from different studies as there are only few parameters in-
volved: for large enough capillary numbers such that the hy-
drodynamic stress overcomes bending forces, the dynamics
of vesicles depends only on their initial deflation and on the
viscosity contrast [84]. In the range of parameters where tank-
treading motion occurs, the shape and angle of inclination of
the vesicle are therefore independent of the shear rate, so is the
prefactor A given by Olla in Eq. 10. Similarly, the stresslet
should scale with the shear rate. We are not aware of studies
on lift of vesicles at small capillary numbers, when wrinkles
appear due to hydrodynamic forces or Brownian fluctuations
and modify the nature and the transition between dynamical
regimes in unbounded shear flow [73, 137, 138].
Two different sets of experiments are available in the lit-

erature that describe the lift of vesicles of radius of order 10
microns: the lift velocity of vesicles in the absence of gravity
has been studied by Callens et al. [139], while the close wall
lift force has been measured by Abkarian et al. [72, 140], by
balancing it by the vesicle weight.
Experiments for lift velocity were performed in parabolic

flights, allowing for successions of normal gravity phases and
low gravity phases. In the first phase, sedimentation of vesicles
on the bottom plate of a shear chamber allowed for the creation
of a well-defined initial condition, while the lift velocity of the
vesicle could be measured in the low gravity phase, without
being screened by sedimentation. Thanks to this, distances to
the wall of up to 7 times the vesicle radius could be explored.
Vesicles with inner fluid having the same viscosity inside and
outside were studied in [139] while more viscous inner fluids
were considered in [141]. In the range 3 . z/R . 7, the
distance to the wall is found to scale with time to the power
1/3, indicating agreement with the far-field scaling. They
also found a prefactor that is independent from the shear rate,
that was varied by a factor 10. Eventually, sticking to the
notations of Eq. 10, the prefactor A(ν, λ) has been determined
for reduced volumes ν & 0.95 and λ = 1 [139], 4 and 6.5
[141]. The reduced volume ν ≤ 1 characterizes the deflation
of the vesicle, therefore its ability to get deformed, and reads
ν = V/(A/(4π))3/2, whereV and A are the vesicle volume
and surface area, respectively. They are both constant due to
the inner fluid and membrane incompressibility.

In the experiments byAbkarian et al. [72, 140], vesicleswith
no viscosity contrast but with density contrast, and ν & 0.92,
are sheared close to the wall, with shear rates varying by
a factor 5 such that different equilibrium positions can be
scanned. It is found that at equilibrium the gap h between
the vesicle and the wall scales linearly with the shear rate,
indicating the following relationship between the lift force FL :

FL = B(ν)µR3γ̇/h (31)

Using both the results of Callens et al. [139] and Abkarian
et al. [72, 140] to make comparisons with existing simula-
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tions and theories requires first to establish a link between lift
velocity and lift force.

In presence of a body force (which is often, in practical
cases, gravity), the lift motion is modified and can even vanish
if this body force acts opposite to the lift force. Regarding
boundary integral framework, the presence of the body force
induces an additional term Ug in the migration velocity Ug =
1
V

∫
S

x3ug · n dS, where

ug
j (x0) = −

1
8πµ

∫
S

(ρext − ρin )g · x niGi j (x, x0) dS (32)

is the flow field created by the particle due to the presence
of a density difference across its membrane. For a sphere
of radius R in a unbounded flow, with a gravity field in the
direction −x3, solving Eq. 32 would lead to the well-known
Stokes law 6πµRUg = −P, where P = 4

3πR3(ρin − ρext )
is the weight of the particle minus the Archimedes force. In
presence of a wall at x3 = 0, the expression of Gw

i j shows that
the first order correction to the velocity would scale like 1/z.
For a sphere settling towards a wall, the full correction for the
modified drag force as a function of distance to the wall has
been solved by Brenner [142].

6πµRUg
Λ(cosh−1[z/R]) = −P, with

Λ(ξ) =
4
3
sinh(ξ)

∞∑
n=1

n(n + 1)
(2n − 1)(2n + 3)

(33)

[ 2 sinh((2n + 1)ξ) + (2n + 1) sinh(2ξ)
4 sinh2((n + 1/2)ξ) − (2n + 1)2 sinh2(ξ)

− 1
]

The first order of this correction is given by

Λ(cosh−1[z/R]) ' 1 +
9
8

R
z
, (34)

indicating, in agreement with the intuition, that the presence
of the wall increases the drag on the particle.

For deformable particles, this expression of the drag force
can be considered as a proxy but one should keep in mind
that, even in the absence of external flow, density mismatch
between a particle an the surrounding fluid is sufficient to
deform it [143, 144].

In the presence of a body force that acts against lift, an
equilibrium position in the z direction is found by the particle,
corresponding to Ug +UL = 0. Defining the lift force FL as
the force that balances the weight P, one eventually finds, that

FL ' 6πµRULΛ(cosh−1[z/R]), (35)

where the lift velocity is given by the appropriate expression,
and the correction on drag is assumed to be that for a sphere.
This expression will serve us as a basis for discussion.

Simulations using boundary integral method have been pro-
posed in several studies [123, 126, 129]. In the absence of
gravity, the far-field scaling has been confirmed quantitatively
in [129], yet for a narrow range of characteristic parameters
of the vesicle. The authors also found that the far-field ap-

Figure 14. Sequence of shapes taken by a vesicle as it unbinds and lift
away from the wall under simple shear flow. Figure taken from [140].

proximation is valid almost until the particle touches the wall.
By contrast, the agreement with the far field approximation is
shown to be valid only when z/R > 4 in more recent simu-
lations carried out in [126], for 1 ≤ λ ≤ 6. As seen in Ref.
[124] for capsules, the lift velocity close to the wall is smaller
than the far-field contribution, confirming on another type of
particle the negative contribution of asymmetric (relatively to
point-wise symmetry) deformation. By subtracting an extrap-
olation of the far-field contribution to the total lift velocity
(data from Fig. 2 in [126]), we found that this contribution
scales also like (z/R)−4, as for the capsules in Ref. [124].
All simulations, as well as far-field theoretical calculations

lead in [123] that confirmed the far-field scaling of Eq. 30,
consider mostly vesicles with reduced volumes higher than
0.95. This corresponds, e.g., to a prolate ellipsoid of long axis
1 and short axis 0.63.

We now address the question of the comparison of these re-
sults with the experiments, while also addressing the question
of the link between lift force and lift velocity. To that aim, we
focus on vesicles with no viscosity contrast and a reduced vol-
ume of 0.97, which is documented in experiments [72, 139],
simulations by Zhao et al. [126], the model by Olla [122]
that assumes ellipsoidal shape and the model by Farutin et al.
[123] that makes no assumption on the shape. For all above
mentioned studies, but that of Abkarian et al. [72], the lift
velocity as a function of distance z between the vesicle cen-
troid and the wall is given, in the absence of gravity. For the
sake of comparison with the results of Abkarian et al. [72], we
make the assumption that z = h + R (see Fig. 2) and calculate
the lift force through Eq. 33. In order to support discussion,
the lift force arising from the simulations of Zhao et al. is
also calculated using the 1st order approximation of the drag
coefficient (Eq. 34) as well as 0th order, i.e. the drag of a
sphere in an unbounded flow. The results are presented in Fig.
15.
Regarding far-field behaviour, simulations by Zhao et al.

[126], modeling by Farutin et al. [123] and experiments by
Callens et al. [139] show very good agreement. By contrast,
the lift velocity predicted by Olla [122] is about 30% larger.
Comparison between Fig. 7 in Ref. [139] and Fig. 1 in
Ref. [123] shows that a vesicle whose shape is not prescribed
a priori has a (long axis) / (short axis) ratio that is smaller
than that given by the prolate ellipsoid assumption, made by
Olla. This may qualitatively explain why, for a given reduced
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Figure 15. Dimensionless lift force F̂L = FL/(µγ̇R2) on a vesicle
characterized by ν = 0.97 and λ = 1 sheared above a wall, as
a function of reduced gap size ĥ = h/R between the vesicle and the
wall. R is the radius of a sphere having the same volume as the vesicle.
Lines and dots extend on a range where the law has been established
in the different studies. �: F̂L = 1.1/ĥ according to the close-wall
experiments in Ref. [72], Fig. 8. Other data are obtained through
F̂L = DÛL where ÛL is the dimensionless lift velocity UL/(γ̇R)
and D the dimensionless drag coefficient, which is taken either as
D0 = 6π (unbounded domain), D1 = 6π(1+ 9/[8(ĥ+ 1)] (first order
approximation of Brenner’s drag), or D∞ = 6πΛ(cosh−1[ĥ + 1])
(Brenner’s drag). •: D = D∞ and ÛL = A(0.97)/(ĥ + 1)2 with
A(0.97) = 0.11 according to the far-field experiments in Ref. [139],
Fig. 7 ; Red line: the same with A(0.97) given by Olla’s model
[122] (ellipsoid of aspect ratio 0.705) ; Orange line: the same with
A(0.97) given by the theoretical model of Farutin et al. (Eq. 5 in
[123], for Γ = 0.021, Γ being defined in the referred paper). Note
that in Ref. [139], the volume and reduced volumes of the vesicle are
known only indirectly through the measurement of its short axis in
the vorticity direction and of the projection of its long axis parallel
to the z direction. These data are converted into volume and reduced
volume through the direct calculation of Farutin et al. [123], which
have shown excellent agreement with these experiments [141]. Blue
lines: F̂L = DÛL , where the lift velocity is obtained from direct
simulation in [126], Fig. 2 and D = D0 (dotted line), D1 (dashed
line), or D∞ ( full line).

volume, the lift predicted by Olla is larger than that measured
in other studies.

Remarkably, the far field measurements of the lift force by
Abkarian et al. [72] are perfectly described by the gravity-
free simulations of Zhao et al., who scanned the same range
of particle-to-wall distance, providing the drag contribution is
that of Brenner for a sphere of equal volume. This agreement
is far from being reached if one considers only the 0th (as used
in [129]) and 1st order of the drag force.

The conclusion of this aggregation of data is that the 1/ĥ
scaling for the drag force, proposed by Abkarian et al., is
therefore recovered, in the close-wall range, by multiplying
the multipolar drag coefficient of Brenner with a lift veloc-
ity that is composed of a repulsive stresslet contribution that
scales as (ĥ+1)−2 and of an attractive contribution that would

be the consequence, by analogy with the analysis of Ref. [124]
for capsules, of the asymmetric deformation (with respect to
the point-wise symmetry taking place far from the wall). This
contribution scales like (ĥ+1)−4. A geometrical interpretation
of this negative contribution is proposed here, based on the ob-
served shape sequences upon unbinding, which are illustrated
in Fig. 14 but also seen in numerical simulations for vesicles
or capsules [124, 129]. Far from the wall, the vesicle adopts an
orientation that roughly follows that of the elongational com-
ponent of the flow, i.e. 45◦ relatively to the flow direction. So
does its bottom membrane, on average (Fig. 14 (e)). Closer
to the wall, the shape of the bottom end of the particle, which
is close to the wall, is controlled by the local interaction with
the wall, which creates, as in the soft-lubrication framework
depicted in Fig. 4, a quasi-horizontal gap with a small opening
angle (Fig. 14 (c,d)). Compared to the high opening angle
induced by the bulk flow, this reduces the fore-aft asymmetry
of the particle, hence a negative correction to the lift veloc-
ity. In future works, it would be interesting to examine this
hypothesis by comparing the amplitude and scaling of this neg-
ative contribution to the lift force of a similar particle moving
along the wall without external shear flow (i.e., in the typical
soft-lubrication configuration).
Zhao et al. have also run simulations including gravity and

found good agreement with the experimental data of Abkarian
et al. In the same paper, they compare their simulations of the
lift force with the that calculated from the lift velocity times
a first order expression for the drag (as in Eq. 34). Unfortu-
nately, we are not able to comment on this approach by lack of
definition of some parameters and of detail of calculation by
the authors. Other direct simulations of vesicles under gravity
have been performed in Ref. [131], but they consider a 2D
system. On a quite narrow range of distances, the authors
found that the force scales like 1/z2 even for z/R close to 1.
We now discuss the evolution of the lift amplitude with the

mechanical properties of the vesicle, that are documented in
[123, 126, 131, 141]. For a vesicle with no viscosity contrast,
the more deflated the vesicle, the faster it migrates, which is
due to its increased fore-aft asymmetry. For a given reduced
volume, increasing the viscosity contrast leads to a decrease
of the inclination angle, therefore of the lift force. For high
enough viscosity contrast, increasing asphericity can lead to
transition towards tumbling motion, which is preceded by a
decrease of the inclination angle, therefore of the lift velocity.
To our knowledge, this decrease has not been observed experi-
mentally, but similar phenomena has been shown in Poiseuille
flow [130], as will be discussed later on.
In their 2D simulations, Meßlinger et al. have considered

the case of tumbling vesicles and shown a non-zero lift force
on average, by contrast with the case of a purely rigid object
[131]. The reason stems from the elongational component of
the flow that makes the vesicle be more elongated when its
long axis is along this component than when it is orthogonal
to it. Over one rotation period the mean shape is therefore
not fore-aft symmetric. Still the mean lift velocity remains
much smaller than in the tank-treading regime. A more formal
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discussion on this aspect can be found in Ref. [145].

Other particles

We review now the available works from the literature that
essentially confirmed Eq. 30, and go discussing what are the
limits of this far-field approximation.

Red blood cells Though they are rather complex objects,
we start with red blood cells, whose incompressible mem-
brane justifies to make a parallel with the behaviour of vesi-
cles, though the presence of the underlying elastic cytoskeleton
induces more complex dependency with the capillary number.

In physiological conditions, red blood cells flow in vessels
where the maximal shear rate ranges from 20 to 1500 s−1. In
these conditions, cells will essentially exhibit a tumbling-like
motion that couples with strong deformations [111, 116].

As seen in Ref. [131] for tumbling vesicles, isolated red
blood cells may still migrate. This has been confirmed exper-
imentally in simple shear - like flow (in a large pipe in reality)
in the 70’ by Goldsmith, who highlighted a 4 µm transverse
drift for cells having travelled 1 cm in the flow direction [11].
More than 40 years later, a study in microgravity conditions,
similar to that carried out for vesicles in Ref. [139], has quan-
tified the lift of red blood cells in a narrow range of shear
rates 10 ≤ γ̇ ≤ 50 s−1 [146]. The far-field scaling has been
confirmed, with a prefactor AR3 = 0.36 µm3 (following the
notations of Eq. 10) in physiological conditions (i.e. an exter-
nal fluid of viscosity 1.4 mPa.s close to that of plasma). This
factor is increased by a factor 15 if the viscosity is multiplied
by 9, indicating the impact of flow stress on the deforma-
tion of the cells, that are more elongated and can even make
a transition towards a tank-treading like motion [108, 116].
Considering that red blood cells have a mean volume of 90
µm3 [147], whence R = 2.8 µm, this leads to a prefactor A
between 0.016 (tumbling-like regime) and 0.15: this latter
value is comparable to that found for a vesicle in tank-treading
regime.

The value for the lift velocity found in physiological condi-
tions has been calculated to be compatible with the pioneering
result of Goldsmith [11]. It should be noted that, at a distance
e.g. 4 µm from the wall the lift velocity is about 2 µm/s at
a shear rate of 100 s−1, which is comparable to sedimenta-
tion velocity [148]. This illustrates the difficulty in measuring
experimentally far-field lift velocities.

While numerical simulations of red blood cells under flow
are now numerous, we have found no records for this geometri-
cally simple configuration of simple shear flow near a wall, as
far as realistic 3D simulations of cells are concerned. We shall
come back to this point later on while discussing collective
effects.

Capsules. Regarding the impact of mechanical properties,
it is shown in Ref. [134] that an increase in viscosity contrast
leads to a decrease in lift velocity, as for vesicles. They show
that this is the direct result of the increase of the second term

in the stresslet expression (Eq. 28), although the first term S33
decreases.
In their numerical study, Nix et al. have shown that an

increase in the capillary number leads to an increase of the
stresslet therefore to an increase of the far-field lift velocity
(see Fig. 16) [124]. This result is not that intuitive and it
is difficult to extrapolate further than the range explored in
their study: as the shear rate is increased, capsules adopt a
smaller angle compared to the flow direction but also elongate
(contrary to vesicles) [149, 150]. In parallel, as the negative
contribution of the term related to particle asymmetry depends
more strongly on the capillary number, the range of validity of
the far-field approximation depends on this capillary number:
as can be seen in Fig. 16, while the far-field approximation is
valid even for particles in contact with the wall at low capillary
number, this approximation is valid only when h/R & 3 for a
capillary number one order of magnitude larger.
The same range of transition distance between the far-field

regime and a more complex set of contributions has been
highlighted the same year in Ref. [134], where capsules with
different viscosity contrasts are also considered. Again, the lift
velocity close to the wall is smaller than the far-field contribu-
tion. Phenomenological correction to account for this effect is
proposed by the authors.
It should be kept in mind that the vicinity of the wall does

not necessarily lead to a decrease of the lift velocity, compared
to the far-field contribution: it also depends on the specific
interplay between particle dynamics and the presence of the
wall. In Ref. [151], a 2D capsule that would tumble in an
unbounded flow is maintained close to a wall by a gravity force
of varying intensity. The proximity with the wall induces a
change in the dynamics that switches from tumbling to tank
treading as the force is increased. As a result, the lift velocity
increases, such that, in the rather narrow range of parameters
explored by the authors, a quasi constant equilibrium height is
observed while the force is multiplied by a factor 4.
Finally, for capsules, we have not found any experimental

study regarding their lift under simple shear flow.
Drops. Lift on drops of viscosity contrast 0.083 has been

experimentally measured by Smart and Leighton in 1991
[152]. Since then, we have found no record of another at-
tempt to measure directly this lift in a simple shear flow ; other
works include drop-drop interactions, that will be discussed
further. They found that the far-wall velocity follows Eq. 30,
and more precisely that

UL = αCa γ̇
R3

z2
. (36)

The capillary number Ca reads, in the case of drops, Ca =

µγ̇R/σ, where σ is the surface tension. The dependency of
the prefactor with the capillary number indicates that upon an
increase of the flow stress (compared to the elastic restoring
force), the drop elongates more, thus inducing a larger lift
force.
Expression 36 is similar to that theoretically derived both by
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Figure 16. Lift velocity in simple shear flow for a capsule with a mem-
brane following Neo-Hookean law. Dots and full lines correspond
to simulations while the doted line is the far-field approximation (Eq.
30). Figure adapted from [124].

Chan and Leal [153] and Smart and Leighton [152], under the
hypothesis of large distance to the wall and small deformation
(hence the linear dependency with Ca). They both proposed
an expression for α, which depends on the remaining charac-
teristic parameters λ, the viscosity contrast between the inner
and the outer fluids. Both expressions are different but vary
by at most 2 % on the whole range of viscosity contrast. α(λ)
was found to be an increasing function of λ, yet with small
variations, from 0.58 when λ → 0 to 0.69 when λ → ∞.
These theoretical results do not match the experimental re-
sults, where the lift amplitude is found to be almost 2 times
stronger.

Numerical simulations generally find a lift velocity that is
slightly smaller than in theoretical works, therefore they agree
even less with experiments [128, 134, 154, 155]. These sim-
ulations also explored the short-distance behaviour, where a
decrease of the lift velocity is observed, compared to the far-
wall expression. As for the lipid vesicles of Ref. [126], and as
shown in [124] for capsules, we found that the remaining con-
tribution, once the extrapolation of the far field contribution is
subtracted, is negative and scales like (z/R)−4 (data from Ref.
[128], Fig. 5).

With drops, another configuration of interest has been stud-
ied by Smart and Leighton, that of a free surface instead of a
rigid wall [152]. In this case, the overall expression for the far-
surface lift velocity (Eq. 30 is unchanged, but a multiplicative
factor 2/3 is introduced. As the stresslet Σ33 is that given by
the bulk flow, we expect the expression given by the authors
to be valid not only for the drops they study. Experimentally,
as for the lift due to a rigid wall, their experimental results are

above the theoretical prediction.

Lift in unbounded Poiseuille flow: "soft-lubrication without
walls"?

Lift in channel flow is the other configuration explored in the
literature, as it is relevant for particle handling in microfluidic
devices, and to understand biological flows such as blood flow
especially.
These flows are characterized by the increased presence of

walls but also by linear variations of the shear rate. For large
channels (compared to particle size) and in order to gain fun-
damental understanding of the lift mechanism, it is insightful
to consider the case of an unbounded Poiseuille flow that is, a
parabolic velocity profile with no walls imposing a condition
of zero velocity.
In the soft lubrication framework, the necessary breaking

of the bottom-up symmetry in terms of pressure (see Fig. 2
for convention on directions) is obtained by the presence of
a wall. The pressure gradient that is created between the
particle and the wall is different from that on the other side
of the particle, leading to different deformations patterns at
the bottom and at the top of particles, eventually leading to
the fore-aft asymmetry that induces an overpressure below the
particle and makes the apparition of the lift force possible.
This sequence is indeed also possible in the configuration of

an unbounded Poiseuille flow where a particle is surrounded
by different shear rates on both sides, except when it is located
on the central line of the flow. This situation can create an
asymmetry in the deformation patterns along the flow direc-
tion, making thus possible the apparition of a net lift force.
Notably, while in the soft-lubrication framework the creation
of a gap resembling that of the Reynolds slider makes it intu-
itive the sign of the lift force, the deformation arising on both
sides of the particle leads to a less clear situation.
Indeed, several scenarii have been predicted. For a drop in

a 2D parabolic flow, Chan and Leal have predicted that a drop
would migrate outward for a viscosity ratio 0.71 . λ . 11.35
but towards the central line for other values of λ [153, 156].
For an axisymmetric Poiseuille flow, the interval for outward
migration becomes 0.56 . λ . 10.2.
Theoretical and numerical studies on vesicles have shown

that vesicles apparently behave differently: in [157], 2D nu-
merical simulations of vesicles with λ = 1 have evidenced
inward migration at almost constant velocity along the trajec-
tory but at the very end, when the particle meets the central
line. This results have been confirmed in [158] through a
theoretical approach valid in the small deformation approxi-
mation. For all λ such that a tank-treading motion takes place,
an inward migration is predicted. A tentative physical argu-
mentation in favor of this migration has been given in this
paper, which is reported in Fig. 17. Similarly, capsules have
been theoretically shown to migrate towards the centerline, in
the limit of small deformation (small capillary number) and
viscosity contrast smaller than 1 [159].
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More systematic theoretical studies performed in [123, 160]
for a 3D, axisymmetric flow has however revealed a much
more complex situation, for a vesicle of given reduced volume
ν = 0.9. The behaviour strongly depends on the capillary
number Ca and on the viscosity ratio λ. For λ = 1, vesi-
cles migrate towards the center at high capillary number, at
a constant velocity but in the vicinity of the center. This sit-
uation corresponds to the case most easily studied by theory
as a stationary shape can be considered (due to large Ca), as
in [123, 158]. At lower Ca , i.e. when the particle has no
time to adjust its shape to the surrounding local flow before
being advected further, an equilibrium position away from the
center is found. For larger viscosity contrasts, outward motion
is observed at large Ca whereas metastability was observed at
smaller Ca , the vesicle migrating outward or toward a posi-
tion close to (but not on) the center, depending on its initial
position.

A similar study on 2D vesicles with no viscosity contrast
has reached similar conclusions [161]: upon a decrease of
capillary number a deflated enough vesicle do not converge
towards the center but stays at a finite distance from it, adopt-
ing an asymmetric shape described as a slipper shape. This
situation is also favored by a deflation of the vesicle. A ten-
tative explanation for this phenomenon is proposed by the
authors, based on their numerical observation: the transition
towards an off-center, asymmetric shape is accompanied by
a reduction of the lag, which is anticipated to be a favorable
configuration by the authors, despite the increase in internal
dissipation inside the particle not being symmetric anymore.

However, arguments based on a minimization of energy or
of dissipation are not supported by any fundamental principle
in this viscoelastic problem with moving boundaries. Indeed,
in Ref. [160], the authors discard both possibilities by showing
they are not compatible with their numerical observations —
though in the meantime arguments of that kind are being used
in Ref. [162]. Improper use of arguments based on dissipation
consideration is also discussed in Ref. [163].

A question naturally arises: does this complex behaviour
survives in more realistic situations where walls are present
? Walls induce additional lift forces but also additional space
dependency of the shape. A secondary question is, how do lift
forces due to flow curvature and lift forces due to the presence
of wall compare to each other in intensity ? An attempt to
answer partly this question can be found in the 2D numerical
simulations of Ref. [164] where a vesicle with no viscosity
contrast is placed in a semi-bounded parabolic flow, i.e. where
only one wall is present (say, at position z = −z0 while the
centerline is at z = 0). In this case, a vesicle placed at a distance
z > 0 from the center larger than its typical radius migrates
outwards, while it would migrate inwards in the absence of the
opposite wall. This indicates, at least in this specific situation,
that the lift due to the presence of the wall overcomes that due
to the flow curvature, at a distance from the center large than
a particle radius.

A more detailed study regarding this question has been car-
ried out by Nix et al. with capsules [132]. They quantified

Figure 17. Creation of an inward lift force in Poiseuille flow for a
tank-treading vesicle located at a position y > 0 from the central line,
according to [158]. The local velocity field can be decomposed into
a local shear that dictates the shape of the vesicle and local quadratic
correction (blue arrows). The normal contribution of this flow field
points downward on segments AB and CD and upward on the two
other segments, which are smaller. Hence a negative lift force acting
on the particle. This argument is debatable as it does not take into
account either the part of the flow that modifies the particle shape but
not its position, or the relative intensity of the normal contribution
on each segment. In addition, it should also apply per se for liquid
drops, and would contradict the finding of Chan and Leal [153]. This
illustrates the difficulty in getting an intuitive picture for migration in
quadratic flows. Figure taken from [158].

the ratio of the contributions arising from the shear gradient
and from the presence of a wall, that grows as the particle ap-
proaches the center of a channel. An interesting output of their
study is that the drift velocity due to shear gradient hardly de-
pends on the viscosity ratio (in the explored range 1 < λ < 5)
while the effect of the wall diminishes with increasing λ – as
already discussed here. As a result, the effect of shear gradient
is predominant on a larger area within the channel for more
viscous particles.

Migration in a channel

In a channel, using boundary integral method to solve the
flow field requires to incorporate more complex Green’s func-
tion. Even in a 2D case where only two opposite walls are
needed, this requires to incorporate multiple image systems
[165, 166]. An alternative method consists in considering
wall as soft boundaries of known rheological property, such
that additional integrals must be considered, with the advan-
tage to handle only the Green’s functions for unbounded flow
[167]. In all cases, the strong impact of continuous shape evo-
lution due to non-homogeneous shear rates makes it difficult to
exhibit a simple scaling for the lift velocity: one cannot simply
plunged a particle of given shape into the desired geometry.
Yet, several experiments and simulations tend to prove that a
scaling UL ∝ γ̇(z)/zα , with the exponent α close to 1, holds
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Figure 18. Lift of a red blood cell in a microchannel: snapshots at
different positions along the channel. Figure taken from Ref. [168].

for several types of particles. In the following, we will denote
by r the radius of the channel, and r̂ = r/R its dimension-
less form, that accounts for the degree of confinement of the
particle.

Such a scaling has been first proposed by Coupier et al. for
lipid vesicles [130]. By varying experimentally the confine-
ment (2 . r̂ . 9), they showed that, in the range of viscosity
contrast 1 ≤ λ ≤ 10 and of reduced volume ν ≥ 0.92, tra-
jectories from the wall to the center are well described by the
law

ż = ξ
Rδ+1γ̇(y)
(z − zw )δ

, (37)

where δ is close to 1 and ξ a dimensionless parameter that
depends on the vesicle properties, similar to A for the drift
under simple shear rate (Eq. 10). zw is the position of the
center of mass when the particle is as close as possible to the
wall. For the quasispherical vesicles considered in [130], zw ∼
R but in general, it may depend on particle deformability. 2D
numerical simulations have provided a similar scaling [130].
Having δ close to 1 can somehow be viewed as an intermediate
case between the unbounded parabolic flow (where δ = 0) and
the shear flow in presence of a wall (where δ = 2).
The alternative law

ż = ξ
Rδ+10 γ̇(z)

zδ
, (38)

is formally simpler and has been proposed in subsequent
papers [168, 169] to allow for comparison between different
situations with no need to take into account the detail of the
near-wall interactions.

Simulations of red blood cells yet having a non-
physiological viscosity contrast of 1 (and therefore in tank-
treading regime) have highlighted an exponent that is essen-
tially in the range 1.2-1.3 for r̂ = 6 and 8.8 [169].
Similarly to what was found for simple shear flows, the

more complex dynamics followed by red blood cells in physi-
ological conditions do not prevent them to follow similar law.
Losserand et al. found experimentally through in vitro exper-
iments that on a large range of confinements (1.5 . r̂ . 10),
Eq. 38 was followed with an exponent δ ' 1.3 (Fig. 18). They
also mentioned that a fit of experimental data by a trajectory
obtained through Eq. 38 poses practical issue as parameters ξ

and δ are strongly correlated: several pairs of values for these
parameters indeed lead to reasonable fits. Discussions on the
exact value of exponent δ should probably be considered with
care.
Regarding the dependency with the particle mechanical

properties, the overall picture is that an increase in deformabil-
ity (through an increase of capillary number or a decrease of
the viscosity ratio) leads to an increase in migration velocity
towards the center, be it for capsules [169, 170], vesicles [130]
or red blood cells [168].
The above mentioned studies focus on the migration from

the wall towards the center. As pointed out in [132, 164], this
migration is dominated by the wall effect in its vicinity. When
the particle approaches the center, shear gradient contribution
will become dominant. As discussed previously, the direction
of the transverse migration might be reversed. In addition,
since the shear rate decreases as the particle approaches the
center, the capillary number decreases therefore the particle
shape is not any more in a quasi-steady configuration, leading
to a more complex coupling between shape and migration.
This aspect is discussed in particular in the last pages of Ref.
[171].

Shape-lift coupling and instability in channels

While particles approach the centerline, the presence of
walls seem not to destroy the complexity seen in unbounded
Poiseuille flow. It rather complexifies the picture. In Ref.
[167], 2D vesicles with no viscosity contrast are considered,
and their behaviour while the confinement and the capillary
number are varied is scrutinized. As shown in Fig. 19, in-
creasing the confinement leads to the apparition of another
kind of behaviour, which is an oscillation in the lateral posi-
tion, which can be centered or not, which is called snaking.
The possibility to de-stabilize this state towards a stationary
shape through a time-varying flow has been explored in Ref.
[172].
Remarkably, while a transition from symmetric, centered

shape to off-center slipper shape is observed upon a decrease
of the capillary number, a transition from symmetric shape to-
wards slipper is also observed upon an increase of the capillary
number, as long as a more viscous inner fluid is considered:
in Ref. [162], a 2D vesicle with a viscosity contrast of 5
exhibits such a behaviour, which encourages the authors to
establish a similitude with experimental observations on red
blood cells. The latter indeed exhibit the apparition of slip-
per shapes upon an increase of flow velocity, in very confined
situations [173, 174].
This behaviour for high viscosity contrast particles has been

confirmed by 3D numerical simulations of red blood cells
[163, 174, 175], but also of vesicles [176]— thus disregarding
shear elasticity as an important parameter in this problem. In
Ref. [174], the authors explore the full range of parameters rel-
evant for microcirculation, and have furthermore shown that
most configurations in the parameter space lead to bistabil-
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Figure 19. Diagram for the behaviour of 2D vesicles in a channel, as
a function of confinement ratio r̂ and capillary number Ca . Figure
taken from [167].

ity between the centered, parachute-like shape and the slipper
shape, whose existence depend on the initial condition [174].
Noteworthy, the snaking behaviour observed in 2D simula-
tions, but also in another 3D study [177] does not seem to take
place in their study. Similarly, a study of a vesicle placed in a
confined simple-shear flow has exhibited similar centered/off-
centered transition without snaking dynamics. A very recent
study based on experiments and numerical simulations of red
blood cells has however highlighted slight oscillation in lateral
position of slipper-shaped cells [178]. They could be inter-
preted as a signature of off-centered snaking. These oscilla-
tions are obtained after the flow velocity has been increased
progressively, and they tend to disappear after a while, on a
time scale that depends on the viscosity contrast. These results
suggest that the discussions on the existence of stable states
should include the question of the relaxation time needed to
exit or enter a given state, which calls for longer simulation
times and also makes the comparison with experiments more
delicate.

More recently, several experimental developments have
taken place for better characterization of shape zoology, in-
cluding careful design of chips to control initial conditions
[179], 3D tomography of flowing cells [180], and machine-
learning based methods for high throughput classification
[180–182]

While the behaviour of these confined cells may be used
as a tool to characterize their individual mechanical proper-
ties, it should also be noted that it has direct consequences
on the collective behaviour, since the cell shape will directly
influence the flow pattern around it, therefore the aggregation-
disaggregation dynamics of a train of cells [183–189]

Curved streamlines

Curved channels are frequent in microsystems. While more
marginally studied, this configuration has attracted some at-

tention, in particular because this geometry leads to interesting
features when inertia comes into play (Dean vortices).
Before considering this complex geometry, Ghigliotti et al.

have first considered amodel configuration with an unbounded
flow consisting in circular streamlines [190]. When placing
a 2D vesicles is this flow, they observed that tank-treading
vesicle migrate towards the center while tumbling one hardly
migrated. They demonstrated that the inward migration ve-
locity is proportional to N R2γ̇/(r − R), where r is the radial
position of the vesicle, and N is the normal stress difference,
that is related to the cell mechanical properties. Such a result
was also predicted by Chan and Leal for a drop [153]. In real
systems, be it a curved channel or a Couette device, a wall
would be present at some point, therefore inducing outward
migration.
Ebrahimi, Balogh and Bagchi have recently demonstrated

that indeed a capsule would converge towards an intermediate
position between the wall and the centre line, for a channel of
circular [191] or rectangular [192] cross section. Being the
result of two competing effects lying on the same mechanism,
the resulting position is independent from the capillary num-
ber. Higher curvature leads to a final position closer to the
inner wall.
These studies are, to our knowledge, the sole ones account-

ing for migration in curved channels at zero Reynolds number.
It remains to be determined whether this would greatly affect
the flow of particles in channels, where the curved part has
necessarily a finite length. In Ref. [192], Fig. 3b, a capsule
starting on the central line of the channel is shown to have
moved by 5% of the distance to the inner wall after the channel
has turned by 180◦, for a very sharp turn of curvature radius
of 5 times the cell radius. While this will probably lead to
negligible effect in most channels of interest, one may still use
this effect to induce particle separation by considering chan-
nels in spirals. Such a geometry may also be used to validate
the above mentioned numerical studies.

Oscillating flows

The case of near centerline migration has shown us that the
interplay between migration and shape leads to complex be-
haviour when a stationary shape cannot be reached. Another
way to produce a time lag between shape relaxation and par-
ticle migration is to force changes in the applied flow. These
changes can be triggered by time varying boundary condi-
tions or by the geometry, a typical situation being structured
microchannels.
Following a series of studies on particles dynamics under

oscillating unbounded flows [94, 193–197], this more recent
field of research has now been explored through several kind
of particles and geometries and will probably meet growing
interest in the next years, for the rich behaviours that emerge
and the potential applications that could be developed.
We first consider a particle placed in a time-periodic har-

monic shear flow bounded by a wall. In this problem, a new
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dimensionless parameter must be added, which is the ratio ω̂
between the oscillation pulsation and the maximal shear rate.
At high enough capillary number such that the particle shape
relaxation time is set by the shear rate, the intuitive picture
is that, if ω̂ is increased from 0 (corresponding to stationary
flow), the particle will face situations where it does not have
enough time to re-orient itself after flow reversal, such that
it will migrate towards the wall. On average though, the net
migration should be positive. In the large ω̂ limit, the picture
is that of a fixed shape in a time varying flow, which recovers
a fore-aft symmetry when time-averaging is made.

In Ref. [198], 3D simulations of a capsule with no vis-
cosity contrast are considered. In addition to confirming the
decrease of the mean migration velocity with ω̂, they also
highlighted a non monotonous evolution of this mean velocity,
when rescaled by the typical flow velocity, with the capillary
number, at given ω̂. This is due to the plateauing of the mean
deformation upon an increase in capillary number (in practice,
upon an increase in maximal shear rate), because the capsule
fails to reach its potential maximal deformation, due to flow
reversal. Is is found that the optimal capillary number scales
linearly with ω̂−1, in line with the idea that at high capillary
number the deformation is not limited by its own deformability
but rather by the time ∝ ω−1 during which the shear is applied
in a given direction.

It is interesting to observe that the notion of time lag
between shape deformation and surrounding flow is sufficient
to create an effective asymmetry leading to migration even in
an unbounded shear flow, providing the particle presents an
initial asymmetry, as discussed in Ref. [199] where a wide
class of particle is considered.

We are not aware of studies with flow reversal in a Poiseuille
flow. Periodic spatial modulation of the channel have instead
attracted some attention in the last 10 years, but most focus
was on shape changes of centered vesicles or red blood cells
[200, 201]. Yet, such a sawtooth channel is argued to be
an efficient way to center cells in a microfluidic devices in
[202]. However, the picturemight turn out to bemore complex,
according to recent numerical simulations of vesicles in awavy
channel, that have exhibited off-centered equilibrium positions
in a configuration where the same vesicles would be centered
if the channel was straight [203].

Particle-particle interactions

As two particles cross each other in a flow, they may ex-
perience a lift force of similar nature as that induced by the
presence of a neighbouring wall. The induced normal dis-
placement has been documented by several experimental and
numerical studies. Such fluid-mediated scattering events in a
suspension induce a diffusion in all directions. This diffusion
has two consequences: mixing in the suspension, and flux
along concentration gradients. Contrary to Brownian diffu-
sion, these two phenomena are characterized by coefficients

Figure 20. Fundamental configuration for pair interaction studies

that are a priori independent [204], the down-gradient diffu-
sion coefficient being expected to be several times larger than
the self-diffusion coefficient [146, 204, 205]. They can, in
principle, be deduced from the knowledge of the displacement
map of the two particles as a function of their initial relative
position [204, 206]. However, this approach poses conver-
gence issues due to the slow decrease of the interaction force
with lateral distance between particles [206, 207].

Pair interaction

By comparison with the lift of a particle close to a wall, the
finite extent in all directions of the interacting particles makes
this interaction problem even richer. We will first consider two
particles in an unbounded shear flow of flow direction x, shear
direction z and vorticity direction y, one of them placed at
an initial position (x0, y0, z0) from the other, whose center of
mass is taken as the origin, with x0 < 0 of large absolute value
(see Fig 20). If z0 , 0 (for further discussion, we will consider
z0 > 0), the two particles will eventually cross each other,
which may result in a net displacement (∆y,∆z) in the two
directions perpendicular to flow. This displacement depends
a priori on both initial coordinates of the first particle. Along
the flow direction, an additional displacement ∆x will also
be found. Compared to the differential displacement between
the particles due to advection, it is however quite small and is
seldom commented.
Before turning to deformable particles, it is worth mention-

ing that the finite duration of the interaction between particles
makes it possible to obtain a net separation between solid parti-
cles. da Cunha and Hinch proposed a model for the interaction
between rough spherical particles, assuming that the approach
phase builds up a repulsive force while the separation phase
does not [204]. However simple this assumption might seem,
the existence of this separation effect was letter on proved
experimentally [208].
Pair interaction of identical drops in simple shear flow has

been numerically studied in Ref. [206], for different values
of viscosity contrast and capillary number. A representative
set of their data is shown in Fig. 21. The relative trajectories
shown in Fig. 21A show that, for particles not separated in
the vorticity direction, a significant shift of order one radius is
observed, if the initial position in the shear direction is also of
the order one radius. For drops, this shift decreases upon an
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(A) (B)

Figure 21. Pair interaction between two droplets in unbounded shear flow. Adapted from [206]. (A) Evolution of the shift z/R in the shear
direction versus time, for a fixed capillary number and various viscosity contrasts indicated on the figure. The fine solid curve corresponds to
rigid sphere, and illustrates the absence of net lift, for symmetry reasons similar to that discussed in Fig. 2. The fine dash-dotted curve refers
to a configuration not relevant here. The representation in (B) is commonly used in these problems to depict the final position in the z and y
directions as a function of initial position. The vertices of the light gray grid indicate the initial positions that were tested, while the vertices of
the thick, deformed, one indicate the final positions far from the reference particle. Here, λ = 1 and in (b) the capillary number is larger than
in (a).

increase of viscosity contrast, which marks a strong difference
with the case of a drop above a flat wall, for which the de-
pendency of the lift velocity with λ is weak. The synthesis of
the final positions reached depending on the initial positions
shows several interesting features that illustrate the complexity
of this problem. First, a larger capillary number do not nec-
essarily induce a larger displacement. For small initial z, the
contrary even occurs (see Fig. 5 in Ref. [206]). Again, this is
in marked contrast with the results for a particle near a wall.
This points to a more complex view from the geometrical point
of view, since the incoming particle do not only flow above the
other one but also hits it initially: in Ref. [206], it is argued
that the increased deformability reduces somehow the cross
section for near contact interaction at collision.

Though not commented by the authors, a weak attraction in
the y direction can be seen for a drop initially located at position
(2R, R), in Fig. 21B(b). This phenomenon also appeared later
on in other studies.

Fig. 21B also shows that net displacements are much larger
in the shear gradient than in the vorticity direction. This
implies that diffusion due to collisions in strongly anisotropic,
as will be discussed later.

As for lift above a wall, experimental studies on droplet in-
teraction are scarce. In Refs. [209, 210], some trajectories are
shown, and confirm the typical trajectories shown in Fig. 21A
and the weak net displacement as soon as the initial distance is
larger than a few radii, as in Fig. 21B. As can be seen in Fig.
22, the collision between the particles result in the creation
in an extended and long-lasting contact between the particles,
with the creation of lubrication film. Loewenberg and Hinch
have exhibited different scalings for the duration of the ap-
proach sequence and have showed that the separation stage is

(a () b)

(c) (d)

(e) ( f )

Figure 22. Succesive snapshots of interacting drops with λ = 1.4 and
R = 20 µm. The scale bar is 25 µm. Adapted from [209].

much shorter [206].
Capsules are again widely ignored by experimentalists,

while several numerical simulations shed light on the detail
of their interactions under shear flow. Lac et al. have asked
themselves whether the presence of a membrane modifies the
drift observed for droplets [211]. Their numerical simulations
showed that for capsules with no viscosity contrast placed in
the same xz plane, the net displacement is smaller. They also
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found a weak effect of the capillary number and of the initial
deflation. The same team published a complementary study
where they studied the consequence of the capsules not being in
the same shear plane (i.e. y0 , 0) [212]. By contrast with what
is observed on drops, a clear attraction in the vorticity direc-
tion is observed for initial separation in the vorticity direction
of order the capsule radius and small separation in the shear
direction (i.e., small velocity difference). In this situation, the
displacement depends strongly on the capillary number, and
increases with it. The authors provided no explanation for this
phenomenon.

Lac et al. also highlighted the fact that even if the capsule
are placed on the same streamline of the unperturbed flow,
they may still interact and cross each other. This is due to the
flow perturbation associated with the tank-treading motion of
the membrane, which have the effect to shift the particle apart:
the particle located at x0 < 0 and z0 = 0 will see its z position
increasing because of the clockwise tank-treading motion of
the membrane of the particle located at the origin.

Another numerical study by Singh and Sarkar confirmed
the difference between drops and capsules, the latter showing
less cross-stream separation, for viscosity contrast equal to 1.
The difference turns out to decrease upon an increase of this
viscosity contrast.

Le and Chiam have considered a refined model for cap-
sules that includes bending elasticity (while previous one only
included shear elasticity) [213]. They also considered differ-
ent initial shapes, one of them being the biconcave shape of
red blood cells. Finally they considered a viscosity ratio of 4,
closer to physiological values for red blood cells. The capsules
were kept in the same shear plane.

Instead of particle crossing, they observed for small initial
z0 a motion called spiraling, that consists in oscillations of the
particle positions at finite distance from each other. In this
paper, the origin of this effect is particularly unclear, as the po-
sitions around which oscillations take place correspond to an
equilibrium configuration induced by the periodic boundary
condition. Moreover, the viscosity ratio apart, the configura-
tion is quite similar to that studied in Ref. [211], where no
such motion was described.

Fore small capillary numbers, more deflated capsules ex-
hibit interaction patterns, like a swapping of positions as they
collide, or a pairing followed by a rotation of the couple as a
whole. This happens in conditions where the capsule would
tumble, if isolated in the flow. As these behaviours take place
in the middle of the simulation box, they are probably more
trustful. This possibility of more complex interactions has
been confirmed by other numerical simulations of capsules
with no viscosity contrast [214]: for an initial position defined
by small enough |x0 |, z0 close to 0 and y0 , 0, the initial
shift in the z direction due to the flow induced by the reference
capsule is not large, essentially because the studied capsule
can flow straight. However, the attraction after interaction, as
observed in Fig. 21A, is maintained, such that the sign of z
is changed, implying a backward motion of the capsule and a
new crossing. In the meantime, it is, on average, attracted in

the y direction (as already seen in Ref. [212]). Depending
on deformability, the interaction might end up there (thus re-
sembling the swapping motion described in Ref. [213]), or go
on for one or more additional interaction, leading to what the
authors called minuet motion. In agreement with Ref. [213],
swapping or multiple swapping (i.e. minuet) is favored by low
capillary number.
Pair interaction of vesicles has been studied through exper-

iments, numerical simulations and theory. Using the far field
perturbation due to one vesicle (which is proportional to its
stresslet and decays as the inverse of the distance squared),
Farutin and Misbah proved that, for weakly deformed vesicles
with no viscosity contrast, placed in the same shear plane, the
net displacement scales as the inverse of the initial position z0
squared. They also provided an expression for the prefactor,
as a function of reduced volume. Their result agrees quantita-
tively with their own simulations. They did not study the case
of initial offset in the y direction. Following the same theoret-
ical framework, Vesicles with high viscosity contrast (but not
tumbling) were shown in Ref. [215] to exhibit attraction in
both directions as soon as |y0 | > |z0 |. The range of validity of
this theory makes it however weekly amenable to experimental
check.
The case of vesicles with no viscosity contrast not initially

placed in the same shear plane was studied through numerical
simulations in Ref. [216]. They found that for vesicles with
initial position y0 larger than a threshold which is of order
the vesicle radius, attraction in the vorticity direction takes
place, while almost no net displacement is observed in the
shear direction. The author notes that, while in Ref. [215]
the attraction can be interpreted in terms of contribution of the
far field perturbation due to the other vesicle, here the small
distance between the vesicles makes it necessary to consider
additional forces due to the fluid flow in the thin film created
between the vesicle, that are deformed by their interaction.
This soft-lubrication approach may follow the guidelines of
Loewenberg anf Hinch [206]. Numerically, the additional
pressure that builds up was particularly discussed in the study
of capsules dancing menuet [214].
Experiments between vesicles with 0.28 < λ < 3.8, and

reduced volume ν & 0.75 placed in the same shear plane were
also presented in Ref. [216]. Their main results are shown
in Fig. 23. As for most previous studies, a maximal shift of
the order one radius is found. Remarkably, and in the limit
of the experimental uncertainty the net displacement does not
seem to depend much either on the reduced volume or on the
viscosity contrast, though both are varied in a large range. The
experimental results match well with simulations of vesicles
with no viscosity contrast.
In an attempt to rationalize this weak dependency on theme-

chanical properties of the vesicles, it was proposed to model
the interaction between the vesicles as the lift of one vesicle
above a wall of finite length 2R. Assuming the vesicle starting
at z0 moves with velocity γ̇z relatively to the vesicle of refer-
ence, Eq. 10 leads to dz/dx = AR3/z3. Integration along the
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Figure 23. Net displacement ∆z as a function of initial offset z0
for vesicles places in the same shear plane. Dots correspond to
experimental data for vesicles with 0.98 > ν & 0.75 and λ = 0.28
(black squares), λ = 1 (red disks), and λ = 3.8 (open squares).
Dashed line, full line and dotted line: simulations for λ = 1 and ν =
0.95 with increasing capillary number. Dash-dotted line: simplified
model (Eq. 39). Adapted from [216]

trajectory leads to the net displacement

∆z = (z40/R4 + 8A)1/4 − z0/R. (39)

A fit of experimental data with this rough model, shown
in Fig. 23, showed good agreement with single fitting pa-
rameter A close to the typical values found by Olla. The
overall amplitude of the interaction curve is set by the max-
imal displacement (8A)1/4. This 1/4 exponent explains why
the variations of Awith cell mechanical property are smoothed
out when net displacement is considered. Note that the long
distance limit z0/R � 1 of Eq. 39 is ∆z ∼ 2AR3/z3, which
is not in agreement with more accurate theoretical derivations
[123]. Yet, this law can serve as a good proxy for estimating
the drift due to interaction.

The collision between particles of different properties is of
great interest to understand segregation mechanisms within a
suspension. A key example is that of blood, where platelets
and white cells are often met in the edges of the channels.

In Refs. [217, 218], pairs of capsuleswith different rigidities
are studied ; the key finding is that the stiffer particle is more
displaced, although the relative displacement remains quasi
constant, in line with the result that for similar capsules the net
displacement depends only weakly on the capillary number.

In Ref. [219], interactions between red blood cells and
platelets (modeled as smaller and 10 times stiffer particles
than red blood cells) are simulated. The displacement of the
red blood cell is found to be negligible, while the platelets can
be displaced by around 2 of their radii. There is no quantitative
study of the interaction process in this paper.

At the level of a suspension, these asymmetric mechanisms
lead to segregation effects, as discussed in several recent nu-
merical simulation papers [217, 220–224].

(A)

(B)

Figure 24. Shear induced diffusion of interacting particles. (A) A jet
of red blood cells injected in a flat channel diffuses in the y direction
because of shear in the z direction, thus allowing to determine the f3
coefficient experimentally. Picture taken from [146]. (B) Simulations
of red-blood-cell-like capsules diffusing in a simple shear flow. The
cross-stream concentration profile is the truncated parabola expected
from the model. Proper rescaling shows a collapse indicating that
the width increases as a function of time with exponent 1/3. Picture
taken from [225].

Diffusion in suspensions

In a semi-dilute suspension (such that interactions involving
more than 2 particles can be neglected), the effect of multiple
pair interactions with random initial relative positions, is to
give birth to a diffusive flux.
This flux is one of the ingredients that can be incorporated

in continuous models to describe the distribution of concen-
trations across a flow chamber. It will tend to oppose to
the advection due to wall repulsion. As a pair interaction
is needed for lateral displacement to occur, the diffusion con-
stant depends linearly on the concentration of diffusing species.
Furthermore, the diffusion is anisotropic, due to the inequal
displacements in shear and vorticity direction. This results
in anisotropic non-linear advection-diffusion equations which
can only be analytically solved in some few cases. The type of
solutions strongly depends on the boundary conditions of the
problem.
For instance, in [226], an initial step function of concen-

tration of asymmetric particles is flowing in a channel where
its interface diffuses. The authors found that the widening of
the interface is characterized by an exponent 1/2, as for Brow-
nian diffusion. By contrast, it was shown in several studies
that a narrow stream of red blood cells [146, 225], or droplets
[227] injected in a channel diffuses with an exponent 1/3 (Fig.
24). The difference between the two experiments lies in the
boundary conditions: a step function that becomes smoother
and smoother can be considered, as long as diffusion hasn’t
reached its edges, as a function with fixed maximal amplitude.
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By contrast, an initially narrow distribution sets a condition
of constant integral, and not of constant maximal value. The
subdiffusive behaviour is accompanied by the existence of a
different family of self-similar distributions, which are trun-
cated parabolas (Fig. 24). This subdiffusion can be understood
by the fact that the more the cells diffuse, the less they interact,
so the less lateral displacement is produced.

For particles placed in a simple shear flow, the down-
gradient diffusive flux for a suspension of local concentration
φ can be written as

J = − f R2 |γ̇ |φ∇φ. (40)

The term |γ̇ |φ accounts for the frequency of collisions. The
dimensionless prefactor f is related to the detail of the inter-
action, as described previously for different kind of particles.
If the gradient of concentration is in the shear direction, this
coefficient is often denoted f2, and f3 is the gradient is in the
vorticity direction. Although it is possible to describe locally
the flow in a channel as a simple shear flow (whose axis de-
pend on the position in the channel) [146], this description in
terms of two different coefficients is certainly not sufficient to
account for diffusive processes in channels, where shear gra-
dients must also be taken into account. For that reason, most
characterization of fluxes were run in simple shear flows, to the
exception of the experiments channels of Ref. [146], where
simplifying hypothesis had to be made.

While looking at the time-evolution of concentration pro-
files allows to determine these unknown coefficients f i , this
method becomes more complex if other effects have to be
considered, in particular that of the presence of walls. If the
time-evolution equation becomes difficult to solve analytically,
it is still possible to solve for the resulting stationary distribu-
tion, assuming the the diffusive flux and convective flux due to
the wall-induced lift can be simply added. If the lift velocity
due to the walls is known, this distribution is a function of f2
only [141, 205, 227, 228].

For droplets, a coefficient f2 of order 0.2 was experimen-
tally found by Hudson, for drops of viscosity ratio close to 0.2.
The dependency with the capillary number was not studied.
In the numerical simulations of Malipeddi et al., f2 is a non
monotonous function of the capillary number taking values
between 0.2 and 0.45, this maximal value being reached for
intermediate capillary number [227]. This behaviour agrees
with the calculation of Ref. [206] for the self-diffusivity coef-
ficient, and can be understood as follows: for small capillary
numbers, the drops stay spherical and do not diffuse. For large
capillary numbers, their deformation is so strong that they
elongate in the flow, which results also in a quasi-symmetric
situation. This discussion is similar to that held for vesicles
near a wall, where such a non monotonous behaviour was ob-
served as a function of reduced volume, that controls their
ability to deform.

Coefficient f2 was experimentally determined for slightly
deflated lipid vesicles with no viscosity contrast, and a coeffi-
cient 0.06 ± 0.02 was found by two different methods.

For red blood cells, experiments for cells under moderate
shear rate — such that they are in a tumbling-like regime —
have lead to f3 ' 0.2 and f2 ' 2.7 [146] [229]. The latter
value is strongly different from that found for drops or vesicles
; however, a renormalization of the concentrations by con-
sidering the effective volume occupied along time by these
tumbling cells lead to find closer results, though the diffusion
of red blood cells still appears as stronger. In their numeri-
cal simulations, Malipeddi and Sarkar found that f2 increases
from 0.3 to 0.6 as the capillary number increases and allows for
transition between a tumbling-like to a tank-treading regime
[230]. A small decrease is however observed as the cell transits
between the two regimes. These values are much smaller than
that found experimentally. A potential explanation could be
that the experiments were run in a Poiseuille flow and simpli-
fications in the modeling had to be made to lead to equations
that could be solved. Also, the authors mainly studied the
non-physiological case λ = 1, but they showed on selected
cases that the diffusion coefficient does not vary much with
λ. Considering that strong modifications in a red blood cell
dynamics are expected upon a transition to physiological to
unity viscosity contrast [108, 116], this point would deserve
to be further elucidated.
Regarding self-diffusivity, the difficulty of tracking particles

among others makes numerical methods the tool of choice for
the determination of diffusion coefficients. Conclusions on the
effect of mechanical properties are in line with the previous
discussions, see e.g [225].
Finally, we remark that f3 coefficient has, in general, sel-

dom been measured. In particular, consequences of attraction
in the vorticity direction has never been observed, nor intro-
duced inmodels. As it would reinforce concentration gradients
rather than smooth them out, it may lead to interesting prob-
lems where initially homogeneous suspensions could become
unstable.

Creation of cell free layers in blood flow

The flow of red blood cells in microcirculation is marked by
the existence of a cell-free layer (CFL) near the walls [231?
–234], which has first been observed by Poiseuille almost two
centuries ago [235]. This CFL has been acknowledged to be at
the origin of the decrease of the apparent viscosity referred to
as Fåhræus-Lindquist effect [236] as well as the decrease of the
hematocrit in small vessels compared to large ones [237, 238].
In a first approach, one can quantify this depletion layer by

zeroing the sum of the advection flux φUL and of the diffusive
flux (Eq. 40), for a given mean volume fraction.
Using such amodel, one can calculate an analytical relation-

ship between mean concentration and thickness of the CFL, in
a simple shear flow where the lift velocity is assumed to be the
sum of the lift velocities due to each wall. Doing so, a fit of
several data coming from previous simulations or experiments
was proposed in Ref. [222]. This result was obtained with a
fit parameter A/ f2 of order 0.5 (where A is the constant of Eq.



28

10 and f2 that of Eq. 40). This value deserves a comment:
in Ref. [222], agreement is found in particular with numerical
simulations run by the same group [221], where capsules are
considered, whose characteristics are such that they are in a
tank-treading regime. For vesicles in tank-treading regimes,
the A/ f2 ratio is of order 0.1/0.06 ∼ 1.7 which is indeed of
the same order of magnitude as the ratio obtained from the
fit. On the other hand, red blood cells in microcirculation are
clearly not in such a regime, when isolated. Indeed, for red
blood cells, the ratio becomes 0.016/2.7 ∼ 0.006 [146], which
is much lower and would lead, when used in the theoretical
model, to the absence of CFL.

In summary, using an advection-diffusion model based on
the lift of isolated cells and the interaction of isolated pairs
leads to correct predictions if one replaces the red blood cells
by particles that do not lift and interact by pairs as red blood
cells. This questions the relevance of such a modeling whose
goal is indeed to establish a micro-meso link between cell
mechanical properties and structure of the suspension.

Regarding modeling flux models, this shows that additional
ingredients should be considered. In particular, the simple
model above neglects several features: the modification of
cell-cell interactions in the vicinity of walls, the screening of
lift forces by neighboring cells, and the modification of cell
dynamics due to the presence of neighboring cells. In this
spirit, an attempt to determine the lift force on a cell under an
external force directed towards the wall that mimics the effect
of neighboring cells can be found in Ref. [151].

Another ingredient may also be considered: in a Poiseuille
flow, collisions between globules induce a transverse flow be-
cause of the concentration gradient, but also because of the
shear rate gradient, which also makes the collision probability
asymmetric. One can show that the associated flux reads [222]

−( f2 − 2 f2s )R2
Φ

2 ∂ |γ̇ |

∂z
, (41)

where f2s is the f -coefficient associated with self-diffusion.
As f2 is always greater than 2 f2s [204], this flux is directed
towards the center of the channel. In a channel of radius r , the
ratio ζ between the convective flux and this new diffusive flux
reads

ζ =
ξ

R1−δ ( f2 − 2 f2s )
×

r − z
zδΦ

' 0.007
r − z
zδΦ

, (42)

where the last equation was obtained using R = 2.8 µm, ξ =
1.1× 10−2 and δ1.3 [168], f2 = 2.7 and f2/( f2 − 2 f2s ) ' 9/7
[146]. For a channel radius of order some tens of microns,
a cell even quite close to the wall (z ' R) and a volume
fraction of some 10%, this ratio is . 1, meaning that the
effect of asymmetric collision due to shear gradient cannot be
omitted and may deserve to be considered as a contributor to
the creation of cell free layers.

Finally, modeling the core of the suspension, where the
highest concentrations are expected, as a suspension where

only pair interactions take place, is probably not relevant. In
addition, the modification of the local rheology due to this
concentration leads in practice to a plug flow with high shear
region near the walls (see, e.g. [239]).

The agreement between the numerical simulations of Ref.
[221] — which are not based on red-blood-cell-like objects
— and experimental observations on red blood cells, as far
as CFL thickness is concerned, leads to question the abil-
ity of these to predict other phenomenon impacted by the
cell mechanical properties ? More generally, benchmarking
of numerical methods on the behaviour of the particles un-
der flow is often partial. Regarding capsules, this can be
explained by the lack of experiments quantifying lift, but
experimental results on red blood cells under flow do exist
[105, 107, 110, 116, 146, 168, 202]. Nevertheless, numerical
methods are often validated only through quasi-static standard
configurations like micropipette aspiration or optical tweezers
stretching — as in Ref. [225] or in Ref. [240] which is used
in Ref. [241] to set exhaustive discussion on the dynamics
of creation of the CFL in complex networks — or by con-
sidering simpler objects like quasi-spherical capsules — as
in Ref. [242] — or through the observation of a collective
behaviour — as in Refs. [223, 240, 243] — which may hide
several offsetting issues. More precisely, it has been shown in
Ref. [244] that agreement on quasi-static load is not sufficient.
Agreement with experiments under flow would therefore be a
plus, keeping in mind that, quoting Ref. [245], " this is in fact
not always sufficient as the robustness of the numerical results
to physical/numerical parameters may be so large that a good
agreement may be reached by chance". Efforts in running
comparison with single cell dynamics results has been noticed
in the recent literature [219, 224].

ELECTROKINETIC LIFT

Context

In relation to the flow properties of fluid-suspended objects
mentioned before, it is of interest to note that, for suspensions
of charged particles in an electrolyte, a phenomenon known as
the “primary electroviscous effect” has been identified since
the 50s (see [246] and references therein), which points to
the importance of the coupling between flow and ionic trans-
port near the surface of the particles, resulting in an enhanced
viscosity of such suspensions compared to uncharged ones.
Along this line, we describe in the following section the elec-
trokinetic effects that give rise to lift forces at play at low
Reynolds numbers with rigid objects bearing surface charges.

Experimental observations

In an article published in 1987, Alexander and Prieve de-
scribed an experimental method designed to determine the
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Figure 25. Histograms of bead/wall distances obtained at two differ-
ent shear rates Γ in water/glycerol mixtures of (a) µ = 2.9 × 10−3
Pa.s−1 and K = 2 µS.cm−1, and (b) µ = 630 × 10−3 Pa.s−1 and
K = 0.046 µS.cm−1. Adapted from [247].

interaction potential between a colloidal particle and a surface
[247]. Their approach consisted in measuring the temporal
fluctuations of the translation velocity of a bead driven by a
shear flow near a flat wall, and to rely on theoretical results
established previously by Goldman, Cox and Brenner [248] in
order to infer, from their velocity measurements, the distance
between the bead and the wall, using the following relation-
ship between bead velocity V , shear rate γ̇, bead radius R and
bead/wall distance h [248]:

V (h) ' γ̇R
0.7431 (1 + h/R)

0.6376 − 0.2 ln (h/R)
(43)

Doing so, they assumed that the shear flow did not perturb
the equilibrium colloidal forces to be characterized (arising
from electrostatic double layer interactions in their experi-
ments). In order to validate experimentally such a hypothesis,

they performed a series of measurements in which they varied
the strength of the shear flow (the shear rate at the wall, γ̇),
and the viscosity of the suspending fluid (working with vari-
ous water/glycerol mixtures). While they indeed measured no
effect of γ̇ in low viscosity fluids, they unexpectedly observed
that, in liquids with high glycerol contents, the flowing beads
travelled at a larger distance from the wall at higher shear rates
(Fig. 25).
This first observation was followed bymore systematic stud-

ies by Bike and Prieve [249] and Wu et al. [250], who investi-
gated in more details the role of shear rate and suspending fluid
composition on the observed lift of flowing particles. Their
findings are summarized in Fig. 26: both groups of authors
observed, as initially found by Alexander and Prieve, that the
bead/wall distance increases as the shear rate is increased, this
effect beingmuchmore pronounced in fluids of higher glycerol
content.

Origin

The observed phenomenon being amplified in high glycerol
content fluids, this rules out hydrodynamic inertial effects to be
at the origin of the lift, as those would rather be weakened upon
increasing the fluid viscosity, which is the case at increasing
concentrations of glycerol. As noted already by Alexander and
Prieve [247], high glycerol content fluids also exhibit lower
conductivities, which rather hints to an electrokinetic origin,
with a lift force associated to the streaming potential arising
from the relative motion of two charged surfaces.
Indeed, when a solid bearing surface charges is in motion

relative to a polar liquid, the fluid flow associated with this
motion induces currents of ions within the near-surface Debye
layer that screens the surface charges from the electroneutral
bulk liquid. Such a charge transport within the Debye layer
is compensated for by the buildup of currents in the bulk of
the surrounding fluid (Fig. 27a). An electric field is induced
by these streaming currents, which has two consequences: (i)
it sets the Maxwell (electrical) stress acting on the body; and
(ii) it creates an electro-osmotic flow that perturbs the initial
driving flow. In addition, polarization of the ionic concen-
trations in the liquid surrounding the particle gives rise to
a diffusio-osmotic flow perturbing further the driving flow.
These osmotic phenomena thus contribute to the net hydrody-
namic stress acting on the solid. For a charged sphere purely
translating in an unbound polar fluid, all these effects result in
an extra drag acting on the sphere, along the direction of mo-
tion, but no force acting transverse to the motion of the bead.
Any factor breaking the axial symmetry of this situation will
induce a force transverse to the motion, i.e a lift force: this can
be for instance an angular velocity imposed to the bead [251],
or the presence of another solid/liquid boundary (electrically
charged or not) near the flowing particle (Fig. 27b).
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Figure 26. (a) bead/wall gap distance as a function of imposed fluid
shear rate, taken from references [247] (red symbols), [249] (blue
symbols), and [250] (green symbols). (b) distance as a function of
carrying fluid conductivity, taken from [249] (blue symbols), and
[250] (green symbols). In (a) and (b), lines correspond to theoretical
predictions using a lift force as computed from Eq. 46, as described
in the text. Theoretical curves in (a) were obtained with ψ = −40 mV
and ionic strength C∞ = 2×10−4 M (model A&P), ψ = −45 mV and
C∞ = 10−4 M (model B&P), ψ = −40 mV and C∞ = 1.6 × 10−4 M
(model Wu). Curves in (b) were obtained with ψ = −30 mV (model
B&P) and ψ = −40 mV (model Wu), with C∞ varied in the range
10−4 − 2.5 × 10−3 M.

Modelling

Soon after the initial observations described above, several
groups of authors have attempted to establish a theoretical de-
scription of the phenomenon for a bead of radius R translating
at velocity V at a distance h from a flat wall (see Fig. 27).
This formally amounts to solving a set of equations consisting

Figure 27. (a) A charged particle of radius R translating in a fluid at
velocity V and at a distance h of a flat surface. The bead/fluid relative
motion sweeps charges within the Debye layer that screens the bead
surface charges, resulting in near-surface currents (Is). (b) The field
associated to the dipole induced by the streaming currents displays a
non-axial symmetry due to the proximity of the wall, which results in
a force acting transversally to the bead motion. Adapted from [252].

of (i) the Nernst-Plank equation describing the convection-
diffusion of ionic species, (ii) the Poisson equation relating
the electric potential to the density of charges in the fluid, (iii)
the Stokes equation accounting for Coulomb forces, balancing
pressure, viscous and electrostatic forces, and (iv) the conti-
nuity equation (fluid incompressibility). These are associated
to boundary conditions imposing no slip, no normal current,
and electric potential on each solid surfaces.
Such coupled electro- and hydrodynamic problems are

mathematically quite involving. We skip here all the technical
aspects related to solving, present qualitatively the assump-
tions made in the various theoretical studies and provide the
analytical expressions obtained for the lift force under these
assumptions.
As summarized by Cox [253], the solutions of such a type

of problems depend, in addition to the distance between the
solids, their shape and relative motion, on the following pa-
rameters:

• the Peclet number Pe = V R/D1, with D1 the diffusion
coefficient of (say) cations, comparing convection to
diffusion effects,

• D1/D2, the ratio of cation to anion diffusivities,

• the Debye length κ−1 =
√
εkBT/(2z2e2c∞), i. e. the

extension of the ion cloud screening surface charges,
with ε the fluid permittivity, kBT the thermal energy, z
the valency of the ions, e the elementary charge, and c∞
the bulk (number) ion concentration,

• the Hartmann number λ = 2c∞kBT R/(µV ), with µ the
fluid dynamic viscosity, giving the relative importance
of electrical body forces on fluid flow,

• the particle, ψp , and wall, ψw , surface potentials (or
their dimensionless forms ψ̃p,w = ψp,w ze/(kBT )

A number of attempts have been made in order to determine
the normal force that could arise from electro- and hydrody-
namic couplings when a bead flows near a flat wall.
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Bike and Prieve [254] employed the lubrication approxima-
tion combined with the assumption that the Debye layer κ−1 is
smaller than the gap h, i.e. κ−1 � h � R (this is the so-called
“thin Debye layer limit”), and computed an electrokinetic lift
force FBP1 reading:

FBP1 =

(
ε

4π

)3 πRV 2

K2h3
[
0.384ψ2

+0.181ψ∆ψ + 0.0242(∆ψ)2
]

(44)

where ε and K are the fluid permittivity and conductivity,
ψ = (ψw + ψs )/2 and ∆ψ = ψw − ψs . The above expression
was obtained by accounting only for theMaxwell stress arising
from the streaming potential, and neglecting a priori other
electro-osmotic perturbations of the driving flow.

The same authors also derived, in a subsequent article [255]
in which they relaxed the lubrication approximation, an ex-
pression for the lift force that holds for h & R:

FBP2 =

(
ε

4π

)3 27πR2V 2

16K2(R + h)4
(ψs + 2ψw ) ψs (45)

This expression coincides with that obtained by Van de Ven et
al. when ψw = 0 [252].

Equations (44) and (45) both capture qualitatively the fact
that the lift force, hence the bead/wall distance, is expected
to be larger at larger shear rates (recalling that V ∼ γ̇R) and
for lower solution conductivity K . However, when used with
physically sound values for ψ, ε and K , none of the above ex-
pressions allows to quantitatively account for the steady-state
bead/wall distances measured experimentally, with computed
lift forces several orders of magnitude too low to explain ob-
servations [252, 254–256] (see Fig. 26).

The problem was tackled later by Cox [253], who pointed
out that, in contrast to what was assumed in previous works,
the dominant contribution is not due to the Maxwell stress
alone but arises from the electro-osmotic flow generated by the
streaming potential, which perturbs the driving flow. Cox de-
rived a general solution scheme, using asymptotically matched
expansions in δ = 1/(κR), which is valid in the thin-Debye-
layer limit. This framework was employed by several authors
in order to address the specific problem of a charged sphere
translating at speed V and rotating at angular velocity Ω in the
vicinity of a charged wall [250, 257, 258]. In references [250]
and [257], derivations were made for a cylinder/flat geometry,
followed by the use of Derjaguin approximation to convert the
obtained result to the sphere/flat situation, whereas the work
reported in [258] was obtained directly for a sphere. We thus
provide below the expression for the electrokinetic lift force
derived by Tabatabaei et al. [258] [259]:

FTaba =
12πε2(kBT )3R2

25(ze)4c∞h2

×



[(
Gp

D1
+

Hp

D2

)
+

(
Gw

D1
+

Hw

D2

)]2
(V + RΩ)2

−α3

[(
Gp

D1
+

Hp

D2

)
−

(
Gw

D1
+

Hw

D2

)]2 (
V 2 − R2

Ω
2
)


(46)

with α3 ' −1.66678, and the quantities Gi and Hi defined as:

Gi = ln
1 + e−ψ̃i /2

2
, Hi = ln

1 + eψ̃i /2

2
(47)

where i = (w, p) stands for wall and particle. The above
expression was shown by the authors to hold valid for low and
moderate (of order a few unities) Peclet numbers [258].

Figure 28. Comparison of lift force predictions computed using Eq.
46 (Tabatabaei et al., red line), Eq. 44 (Bike & Prieve, blue dashed
line), and Eq. 45 (Bike & Prieve 2, green short-dashed line), in the
case of a pure translation motion (Ω = 0 in Eq. 46). Computation
were done using R = 5 µm, a salt concentration C∞ = 10−5M (with
the number concentration per cubic meter c∞ = C∞ × 103 × NA),
T = 300 K, ψw = ψs = −50 mV, and ε = 80ε0 taken for aqueous
suspending fluid. A shear rate γ̇ = 10 s−1 was used to compute
V (h) according to Eq. 43. Diffusion coefficients were set to D1 =
1.33 × 10−9 m2.s−1 and D2 = 2 × 10−9 m2.s−1 (typical for Na+
and Cl− in water), and solution conductivity K estimated as K =
e2c∞(D1 + D2)/kBT .

For the sake of comparison, we have plotted on Fig. 28
the electrokinetic lift forces predicted by Eqs. 44, 45 and 46,
as a function of bead/wall gap distance h. It clearly appears
that, in addition to the different h-dependence predicted by the
theories, the lift force computed by Tabatabaei et al. using
Cox’s framework is several orders of magnitude larger than
that computed by Bike and Prieve.
More recently, Yariv, Schnitzer and Frankel pointed out an
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inconsistency in Cox’s solution scheme [260]. These authors
noted that the Hartmann, λ, and Peclet, Pe, numbers are not
independent, but linked via λPe ∼ 1/δ2, with δ = κ−1/R.
Therefore, in the δ → 0 limit used in [253], λ and Pe cannot
be both of order 1, contrary to what was assumed by Cox.
Yariv et al. therefore revisited Cox’s scheme in a series of
papers treating the two cases {Pe � 1, λ = O(1)} [260, 261]
and {λ � 1, Pe = O(1)} [262, 263] separately.
In the {Pe � 1, λ = O(1)} limit, they find a lift force

which, as assumed by Bike and Prieve, is governed by the
contribution of the Maxwell stress, and derive an expression
that reduces to Eq. 44 above [261]. In the opposite limit where
λ � 1 and Pe = O(1), Schnitzer and Yariv demonstrate
that the leading contribution to electroviscous effects is due
to the diffusio-osmotic flow resulting from salt concentration
polarization, and derive an expression for the lift force that is
identical to the one obtained by Tabatabaei et al. [263]. It
thus appears that, in spite of the improper assumption made by
Cox, a fortuitous cancellation of errors in the solution scheme
has led Tabatabaei et al. to reach a valid expression for the lift
force.

Comparison with experiments

Let us now estimate the order of magnitude of λ and Pe
typically encountered in the experiments described in the first
section: with beads of radius R of micrometric size, flowing
at a velocity V being a fraction of γ̇R, and an ionic diffusion
coefficient in high viscosity solutions of D ' 10−12 m2.s−1,
one finds a Peclet number in the range 0.5 − 10 for shear rates
in the range 1 − 10 s−1. Conversely, with salt concentration
of about 10−4 M in solutions of viscosity µ ∼ 1 Pa.s, the
Hartmann number falls in the range 100 − 1000 for the same
range of shear rate. Under such conditions, the {λ � 1, Pe =
O(1)} limit identified by Yariv et al. seems appropriate for a
direct comparison of theoretical predictions with experimental
observations.

As was done in previous studies [250], we compute the
bead/wall distance at steady-state from the following force
balance:

Fl i f t + FDebye = Fgrav (48)

in which the electrokinetic force Fl i f t and the double-layer
force FDebye both repel the bead from the surface and balance
the gravity Fgrav that brings the bead towards the wall. The
latter merely reads:

Fgrav =
4π
3

R3g∆ρ (49)

with g = 9.81 m.s−2 and ∆ρ ' 200 kg.m−3 for polystyrene
beads in glycerol.

The repulsive double-layer force is given by [250]:

FDebye =

128πRkBTc∞κ−1 tanh
(

zeψw

4kBT

)
tanh

(
zeψp

4kBT

)
exp(−κh).

(50)

The lift force is computed from Eq. 46, in which we sub-
stitute Eq. 43 for V (h) and use the following result from
reference [248] in order to compute the angular velocityΩ(h):

Ω(h) ' γ̇
0.4218

0.6376 − 0.2 ln (h/R)
(51)

We then solve Eq. 48 numerically for h, for a given set of
parameters {R, γ̇, T , c∞, ε , z, D1, D2, ψp , ψw}. Quantitative
comparison between predictions and observations is done by
taking the values of R and γ̇ reported in the experimental
studies, T = 300 K, ε = 43ε0 for the permittivity of glycerol,
and z = 1 for monovalent salts. Diffusion coefficients of ionic
species are estimated from their known values in water divided
by the dynamic viscosity of the suspending fluid reported in
the experimental studies, which leads to D1 and D2 ∼ 10−12
m2.s−1 (see caption of Fig. 26 for detailed values). Once
D1 and D2 are set, concentration c∞ is chosen in order to
match the reported value of solution conductivity using K =
e2c∞(D1 + D2)/kBT . Finally, for the sake of simplicity we
set ψp = ψw = ψ, and use ψ as the only free parameter in the
model.
Doing so, we find that the lift force derived by Tabatabaei

et al. [258] or Schnitzer and Yariv [263] allows us to quantita-
tively account for the various experimental observations, using
sensible values for ψ ranging from -30 mV to -45 mV. Such
an agreement is illustrated on Fig.26. It is, to the best of our
knowledge, the first comparison of the theoretical predictions
of electroviscous lift effects with the whole set of available
experimental data obtained by different groups.

Concluding remarks

We have shown in the previous section that electrokinet-
ics can indeed account quantitatively for the lift of a charged
sphere flowing near a surface in a polar fluid. The recent
theoretical work by Yariv et al., revisiting the pioneer study
of Cox, allows identifying the relevant mechanisms underly-
ing the buildup of an electrokinetic lift force. It thus appears
that the symmetry breaking of the linear Stokes flow in such
problems is associated to the streaming potential that builds
up when counterions in the Debye layer are swept by the flow.
This potential gives rise to both a non linear Maxwell stress
and to osmotic flows controlled by the non linear transport of
charges in the vicinity of the flowing object, both contributing
to the lift force, with weight depending on the Peclet number,
i.e. on the relative importance of convection and diffusion of
ions.
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In the context of particle sorting, the study performed
by Hollingsworth and Silebi directly points to the relevance
of such flow-induced electrokinetic lift forces [264]. The
authors performed capillary hydrodynamic fractionation of
submicron-sized particles suspended in low conductivity aque-
ous media, and showed that a proper theoretical description of
their measurements of separation factors required accounting
for electrokinetic lift forces between the flowing beads and the
walls of the capillary.

It is important to recall however that, in practice, such
electrokinetic lift phenomena are of sizeable magnitude only
in low conductivity fluids. As a consequence, fluidic ap-
plications relying on electrokinetics for e.g. particle separa-
tion/manipulation in aqueous medium often do not rely solely
on flow-induced electrokinetic effects but rather exploit non-
inertial lift forces arising in the presence of an externally ap-
plied electric field [265].

The above point also implies for example that in biological
situations, at ionic strength ' 150 mM and D ' 10−9 m2.s−1,
electrokinetic lift of cell-sized objects is essentially not rele-
vant. As an illustration of this, we have plotted on Fig. 29 a
series of force/separation distance curves for a bead carried by
a fluid containing 100 mM of monovalent salt, computed for
various values of the ion diffusion constant. The steady-state
distance between the bead and the wall can be read off the
graphs as the point at which the normalized interaction force
crosses the horizontal dashed line. It can thus be seen that
deviations from the static equilibrium distance, due to elec-
trokinetic lift, are observable only for diffusion coefficients
below 10−11 m2.s−1.

While we have, in this section, focused our attention on the
generation of lift forces of electrokinetic origin when a bead
moves parallel to a wall in a shear flow, it is worth mention-
ing that recent works have addressed, both experimentally and
theoretically [266–268], the issue of electrokinetic effects in
squeeze-flow geometries, i.e. when a bead moves perpendic-
ularly close to a wall, and their role on the overall repulsion
between the surfaces. Finally, it is of interest to note, in the
framework of this review, that theoretical efforts have recently
been made in order to provide a description of the combined
effects of electrokinetics and elastohydrodynamics in the emer-
gence of lift forces [269, 270].

CONCLUSION AND PERSPECTIVES

From the above review, we understand that there exists sev-
eral mechanisms for lift forces at zero Reynolds number. They
invariably involve viscous flows as well as soft or charged
boundaries – which are all widespread ingredients in the
physics of transport and mobility at small scales. These mech-
anisms are thus highly-relevant to micro- and nanofluidics
as well as for biological flows. In some cases, the magni-
tudes of these lift forces are comparable to surface and bi-
ological forces, and might thus have been overlooked in the
interpretation of some results and phenomena. Besides, such

Figure 29. (FDebye + Fl i f t )/Fgrav as a function of h for beads of
R = 5 µm, γ̇ = 10 s−1, C∞ = 0.1 M (physiological range). Intersec-
tion with horizontal line shows the steady-state (or static equilibrium)
value of h. No differences between static and D = 10−9 m2.s−1 (or-
der of magnitude for sodium in water), so no effect of electrokinetic
lift. Effect visible only for D < 10−11 m2.s−1.

effectsmight be controlled and employed towards applications,
through e.g. rheology, transport, filtering... In the reminder,
we list a few elements of perspective.
Regarding interactions in shear flows, our review highlights

the necessity to better understand interactions in the crossover
zone z ∼ R between soft-lubrication effects and shear-induced
lift. Interactions between particles exhibit a rich variety of
behaviours, including attraction, whose impact at the level of
a suspension have not yet been discussed. As noted above,
the creation of a cell-free layer in a blood stream (and, by
extension, in any other confined flow of deformable particles)
has not yet been modeled in a framework that relies on what
is known about cell-cell and cell wall interaction. Layering
effects have been reported in such suspensions, which are still
unexplained [271–276].
Besides, lift forces may play some role in the fascinatingly-

low and puzzling effective friction coefficients of mammalian
cartilaginous joints, among other possible mechanisms [277].
They might also allow for a smart tuning of the bulk and in-
terfacial rheology of dense suspensions [278], including the
shear-thickening effect. Indeed, if a lubricated-to-dry-contact
transition [279] is proved to be the microscopic mechanism
of such a macroscopic manifestation, then the soft-lubrication
lift between soft particles might repel/remove that transition.
Besides, wall softness is expect to play a role too [280]. More
marginally, landslides are resulting from flows in poroelastic
rocks and their mechanism remains a puzzle [5]. Elastohydro-
dynamic couplings may contribute as well.
Also, as a symmetry-breaking mechanism is a central in-

gredient for the appearance of lift forces at zero Reynolds
numbers, one could design in future new lift strategies inde-
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pendently of softness and charges. Slip inhomogeneities [281],
surfactant gradients and thus Gibbs elasticity at capillary in-
terfaces, as well as compressibility effects in gaseous layers,
are possible examples among numerous others.

Beyond lift forces, other non-trivial EHD couplings have
been revealed [44, 50–52], with important consequences in-
cluding adhesive-like forces and enhanced sedimentation ef-
fects, among others. The experimental investigations of these
scenarios is an important task for the future. Similarly, looking
for an active soft-lubrication lift is an exciting perspective as
e.g. bacterial colony formation might be affected by it.

EHD couplings are effective ways to reduce or optimise
frictional properties [4]. This has been investigated both ex-
perimentally and theoretically with rough or patterned sub-
strates [282–284] and might have important implications for
robotics [285]. Moreover, prey capture by animals can be asso-
ciated to lubrication through viscous adhesion [286]. A natural
question emerges on if, and how, elasticity of the tongue/prey
could play a role and modify the picture of the capture dynam-
ics.

Finally, a route previously followed by hydrodynamics –
through nanofluidics and beyond – was to investigate the ef-
fects of system downscaling and hence the limits of the classi-
cal continuum description at small scales due to e.g. surface
forces, thermal fluctuations and eventually quantum effects.
We expect a similar interest in investigating nanoconfined
EHD, with fascinating perspectives for fundamental physics
and biophysics.
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