The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants

Ana Kostovska
  • Fonction : Auteur
JSI
Diederick Vermetten
  • Fonction : Auteur
  • PersonId : 1148405
Sašo Džeroski
  • Fonction : Auteur
JSI
Carola Doerr
Peter Korosec
  • Fonction : Auteur
JSI
Tome Eftimov
  • Fonction : Auteur
  • PersonId : 1099541
JSI

Résumé

Selecting the most suitable algorithm and determining its hyperparameters for a given optimization problem is a challenging task. Accurately predicting how well a certain algorithm could solve the problem is hence desirable. Recent studies in single-objective numerical optimization show that supervised machine learning methods can predict algorithm performance using landscape features extracted from the problem instances. Existing approaches typically treat the algorithms as black-boxes, without consideration of their characteristics. To investigate in this work if a selection of landscape features that depends on algorithms' properties could further improve regression accuracy, we regard the modular CMA-ES framework and estimate how much each landscape feature contributes to the best algorithm performance regression models. Exploratory data analysis performed on this data indicate that the set of most relevant features does not depend on the configuration of individual modules, but the influence that these features have on regression accuracy does. In addition, we have shown that by using classifiers that take the features' relevance on the model accuracy, we are able to predict the status of individual modules in the CMA-ES configurations.
Fichier principal
Vignette du fichier
GECCO-FeatureImportance-2204.07431.pdf (877.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03718887 , version 1 (13-07-2022)

Identifiants

Citer

Ana Kostovska, Diederick Vermetten, Sašo Džeroski, Carola Doerr, Peter Korosec, et al.. The Importance of Landscape Features for Performance Prediction of Modular CMA-ES Variants. GECCO '22: Genetic and Evolutionary Computation Conference, Jul 2022, Boston, United States. ⟨10.1145/3512290.3528832⟩. ⟨hal-03718887⟩
43 Consultations
53 Téléchargements

Altmetric

Partager

More