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ABSTRACT
Fair algorithm evaluation is conditioned on the existence of high-
quality benchmark datasets that are non-redundant and are repre-
sentative of typical optimization scenarios. In this paper, we evalu-
ate three heuristics for selecting diverse problem instances which
should be involved in the comparison of optimization algorithms in
order to ensure robust statistical algorithm performance analysis.
The first approach employs clustering to identify similar groups
of problem instances and subsequent sampling from each cluster
to construct new benchmarks, while the other two approaches use
graph algorithms for identifying dominating and maximal indepen-
dent sets of nodes. We demonstrate the applicability of the proposed
heuristics by performing a statistical performance analysis of five
portfolios consisting of three optimization algorithms on five of the
most commonly used optimization benchmarks.

The results indicate that the statistical analyses of the algorithms’
performance, conducted on each benchmark separately, produce
conflicting outcomes, which can be used to give a false indication
of the superiority of one algorithm over another. On the other hand,
when the analysis is conducted on the problem instances selected
with the proposed heuristics, which uniformly cover the problem
landscape, the statistical outcomes are robust and consistent.

CCS CONCEPTS
• Theory of computation→ Continuous optimization.

KEYWORDS
benchmarking, black-box optimization, single-objective optimiza-
tion, optimization algorithm performance evaluation

1 INTRODUCTION
Reliable and unbiased algorithm performance evaluation plays an
indispensable role in the analysis of the strengths and weaknesses
of existing algorithms, tracking improvements, and establishing
future research efforts [4].

The main task of benchmarking in evolutionary computation
involves evaluation of the performance of an algorithm against
other algorithms. To do this, three main questions should be taken

with great care: i) which problem instances should be selected for
the comparison study, ii) how to design the experiments that lead
to reproducible and replicable results, and iii) which performance
measures should be analyzed and with which statistical approach.

Even though great progress has been achieved by proposing
more robust statistical methodologies for benchmarking, those ap-
proaches focused only on the third question of the benchmarking
theory, with the assumption that the first and the second one are
already done with great care. However, the selection of the problem
instances (i.e., the benchmark suite) that will be included in the
analysis can have a huge impact on the experimental design and
statistical analysis performed using the performance data. It can
happen that the same algorithm portfolio (i.e., set of algorithm in-
stances) evaluated using some statistical methodology on different
sets of problem instances results in different winning algorithms.
This means that the selection of the problem instances can lead to
biased performance analysis (i.e., selecting problem instances in
favor of the winning algorithm). This allows researchers to present
results that make their algorithm look superior to the others.

In the field of single-objective optimization, algorithm per-
formance is commonly assessed experimentally, for example on
the benchmarks provided by the IEEE Congress on Evolutionary
Computation (CEC) Special Sessions and Competitions on Real-
Parameter Single-Objective Optimization [20–22, 39] and the Ge-
netic and Evolutionary Computation Conference (GECCO) Black-
box Optimization Benchmarking (BBOB) [11, 12] workshops. How-
ever, recent studies suggest that the CEC and the BBOB benchmark
suites may provide poor coverage of the space of numerical opti-
mization problems [18, 27, 35]. Even more, it has also been shown
that the benchmark problem classes are highly correlated from the
perspective of the performance space [5, 42].

In this paper, we address the selection of problem instanceswhich
should be involved in the comparison of optimization algorithms in
order to ensure robust statistical algorithm performance analysis.

One approach to select the problem instances is the Instance
Space Analysis (ISA) methodology [36], which uses visualization
to assess the effect of instance characteristics on algorithm per-
formance, by finding areas in the problem landscape space where
some algorithms perform better than the others. The idea is to
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select instances that maximize the performance difference between
algorithms to highlight their strengths and weaknesses [33, 40].
Racing has also been explored for the selection of problems that
highlight performance differences between algorithms [41]. An
alternative approach was proposed in [38] where instances are se-
lected based on clustering applied in performance space, i.e., they
were selected to maximize the diversity of the comparisons that one
could perform between the algorithms. While our approach has a
stronger motivation in selecting instances for robust comparisons,
the approach in [38] has a stronger motivation in benchmarking
for algorithm analysis.

Other studies explore the diversity of single-objective optimiza-
tion problems [19, 25, 34], without focusing on selection heuristics
that can produce more comprehensive benchmark datasets.

The main difference of our approach with the aforementioned
approaches is that the selection is done based on landscape charac-
teristics of the problem instances, without investigating the rela-
tions with the performance space. Consequently, our approach is
not affected by the selection of the algorithm portfolio which will
be included in the analysis and it enables the selection of diverse in-
stances based on the landscape characteristics, regardless of which
optimization algorithms will be further run and compared.

Our contribution: We evaluate three approaches for the selec-
tion of problem instances, which should be involved in the compar-
ison of optimization algorithms in order to ensure robust statistical
algorithm performance analysis, all of which first involve gener-
ating a numerical representation of the problem instances using
exploratory landscape analysis (ELA). The first approach then em-
ploys clustering to identify similar groups of problem instances
and subsequent uniform sampling from each cluster to construct
new benchmarks. The other two approaches are based on graph
theory algorithms for finding a dominating set (DS) and a maximal
independent set (MIS) of nodes in a graph.

We show that the results of the statistical algorithm performance
analysis executed on a single benchmark (e.g., BBOB, CEC2013,
CEC2014, CEC2015, and CEC2017) are not consistent when a dif-
ferent benchmark is being used. Such results allow researchers to
select the benchmark where their algorithm is superior, which are
bias to the researchers’ preference. On the other hand, the subsets
of problem instances produced by the proposed approaches provide
a robust, consistent, and reproducible statistical analysis.

Outline: The reminder of the paper is organized as follows: Sec-
tion 2 provides the background, Section 3 presents three different
sampling heuristics to select problem instances that guarantee re-
producible statistical outcomes. Our key results are presented in
Section 4. We conclude the paper in Section 5.

Reproducibility: The performance data as well as the landscape
data used in this study are available online at https://zenodo.org/
record/5940558. The code is available at https://anonymous.4open.
science/r/SELECTOR-80F1.

2 BACKGROUND
In this section, we present two core components of our analysis:
exploratory landscape analysis (Section 2.1, used to characterize

the problem instances via numerical representations) and statis-
tical performance assessment (Section 2.2, used to compare the
algorithms).

2.1 Exploratory Landscape Analysis
Exploratory landscape analysis (ELA) [24] is an approach to char-
acterize black-box optimization problem instances via numerical
measures (features) that each describe a different aspect of the
problem instances. A convenient way to compute ELA features is
provided by the flacco R package [17]. This packages offers 343
different feature values split into 17 features groups, including dis-
persion, information content, meta model, nearest better clustering,
principal component analysis.

2.2 Performance Assessment
Once the benchmark problems are selected, the performance assess-
ment can be done in a fixed-budget or fixed-target scenario. The
fixed-budget scenario measures the quality of the solution achieved
with a given computational budget, while the fixed-target scenario
returns the budget required to achieve a certain target.

The quality of a solution in single-objective optimization can be
expressed in terms of absolute fitness value or in terms of target
precision, i.e., the difference of this absolute fitness to that of an
optimal solution. After selecting the performance measure, statis-
tical analyses play an important role in the interpretation of the
obtained results. A common practice is use a non-parametric test
on the mean results obtained from multiple runs of each algorithm
on each problem instance [9]. Recent advances involve the use of
Deep Statistical Comparisons (DSC) [7]. In comparison to using
individual descriptive statistics, such as the mean or median, from
multiple independent runs on a benchmark problem, DSC is based
on the whole distribution of the independent runs, with the goal to
ensure a more robust statistical analysis, as the mean can be affected
by outliers (i.e., poor runs) and the medians can be in some small
𝜖-neighbourhood of the performance space, which is practically
insignificant.

3 METHODOLOGY
Figure 1 gives an overview of the proposed methodology. Given a
set of benchmarks, the first step involves generating a vectorized
representation for each problem instance using ELA features.

The heuristic which performs instance selection using cluster-
ing then proceeds to cluster the representations of all problem
instances and perform sampling to identify a set of instances which
will uniformly cover the problem landscape. On the other hand,
the heuristics which perform instance selection using graph the-
ory algorithms construct a graph based on the similarity of the
problem instances, and identify a subset of instances on which the
algorithms should be compared, by applying the algorithms for
finding DS and MIS in the graph. Once the instances are selected by
each heuristic, a statistical algorithm performance analysis is con-
ducted by comparing the algorithms’ performance on the instances
selected by each heuristic independently. We further show that
the selected instances from each heuristic enable a consistent and
robust statistical analysis, as opposed to using a single benchmark.
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Figure 1: Overview of the proposed methodology.

3.1 Problem Instance Representation
We extract the ELA features using flacco’s implementation of the
improved Latin Hypercube sampling technique [2].We use a sample
size of 𝑁 = 800 × 𝐷 = 8000, because it was shown in [19] that this
sample size enables robust generation/calculation of ELA features.

As mentioned in Section 2.1, flacco provides a number of ELA
feature sets. In this study, a total of 64 features are included: 16
dispersion measures [23], three y-distribution measures [24], 18
level-set measures [24], nine meta-model measures [24], five infor-
mation content measures [26], five nearest better clustering mea-
sures [16], and eight principal component analysis measures [17].
These ELA features have been selected, as they do not require ad-
ditional sampling beyond the initial design. Out of these features,
the ic.eps.s feature is removed, as it contains null values for some
of the instances. The features are calculated 30 times, and each
problem instance is represented by a 63-dimensional numerical
vector, obtained as the median of the features obtained in the 30
runs of the feature calculation.

3.2 Instance Selection Using Clustering
Hierarchical agglomerative clustering is used to partition the entire
set of problem instances. The problem instances are represented
using the previously described ELA features, and cosine similarity
of the ELA features is used to calculate the similarity of two prob-
lem instances. Cosine similarity is used as it is dependent only on
the direction of vectors and not their length, rendering them less
sensitive to outliers compared to other similarity measures [32].

We selected the hierarchical clustering, since in k-means clus-
tering one starts with a random choice of clusters, and the results
produced by running the algorithm many times may differ. Hierar-
chical clustering thus ensures better reproducibility of our results.

To estimate the number of clusters we used the silhouette score.
In addition, when determining the number of clusters and the num-
ber of instances that will be sampled from each cluster, one has
to make sure that the total number of sampled instances will be
enough to perform the statistical analysis.

To construct an unbiased benchmark set of problem instances
that will provide a more uniform coverage of the feature space, we
sample an equal number of problem instances from each cluster to
make each of the landscape they cover represented with the same
number of instances. To see if the sampling ensures reproducible
statistical outcome, we should repeat the sampling several times
and perform the statistical analysis.

3.3 Instance Selection Using Graph Theory
Algorithms

In order to select diverse instances from all of the instances in
the benchmarks, we explore two graph theory algorithms, which
involve finding the dominating and independent sets of nodes in a
graph, respectively.

3.3.1 Definition of Dominating and Maximal Independent Sets.
Given an undirected, acyclic, finite graph𝐺 with no multiple edges,
represented with a set of vertices 𝑉 and a set of edges 𝐸, one can
define a dominating set (DS), 𝐷 , as a subset of the nodes in𝐺 , such
that every node not in 𝐷 is adjacent to at least one member of
𝐷 [1]. Formally, a dominating set 𝐷 is a subset of𝑉 such that for all
𝑣 ∈ 𝑉 − 𝐷 its neighborhood set 𝑁 (𝑣) has non-empty intersection
with 𝐷 , i.e., 𝑁 (𝑣) ∩ 𝐷 ≠ ∅.

On the other hand, an independent set 𝐼 is a set of nodes such that
the subgraph of 𝐺 induced by these nodes contains no edges, i.e.,
none of the nodes in 𝐼 are adjacent to each other in 𝐺 , or formally,
∀𝑢, 𝑣 ∈ 𝐼 , 𝑁 (𝑣) ∩ {𝑢} = ∅. A maximal independent set (MIS) is then
defined as an independent set such that no node can be added to it
without violating independence [14].

3.3.2 Application of Dominating and Maximal Independent Sets
Algorithms for Benchmark Sampling. The first step in our proposed
methodology based on graph theory involves the construction of a
homogeneous graph where the nodes represent problem instances,
and an edge between two nodes indicates that they are similar
according to some similarity measure.

We define a pair of problem instances to be similar if the cosine
similarity of the ELA features used to represent the two instances
exceeds a certain threshold. For this purpose, we evaluate several
values for the similarity threshold.

When the graph is constructed in such a manner, the application
of the DS and MIS algorithms produces a subset of diverse problem
instances from the considered benchmarks. Both algorithms ensure
that instances which are not similar to any of the other instances
(nodes with no neighbours in the graph) will be part of the extracted
set. The DS algorithm selects instances so that all the instances
which are not selected, are similar to at least one of the selected
instances, while the MIS algorithm selects instances which are not
similar to each other.

For our experiments, we use the implementation of the DS and
MIS algorithms provided by the networkx python library [10]. Since
these algorithms are stochastic in nature (in particular due to the
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random selection of the initial node set), we repeat the experiment
30 times with different random seeds, and each algorithm produces
30 different sets of problem instances.

3.4 Statistical Analysis
The sets of problem instances produced with both the clustering
and the graph theory approaches are evaluated in terms of the
robustness and consistency of the statistical algorithm performance
analysis which can be executed when the algorithms are compared
on the performance they achieve on these instances.

The Deep Statistical Comparison (DSC) raking scheme [7] is
used to rank the algorithms on each problem instance selected in
the benchmark suite. The rankings determined by DSC are ana-
lyzed with the Friedman non-parametric statistical test. The null
hypothesis of the Friedman test states that all of the investigated
algorithms achieve equivalent performance.

If the null hypothesis of the Friedman test is rejected, i.e. the
algorithm performances are not equivalent, the Nemenyi post-hoc
test [28] is used to identify the algorithm pairs which provide sta-
tistically different performance (i.e., multi-hypothesis correction
scenario performed for each selected benchmark suite) [6]. To de-
termine the robustness of the evaluation done on the benchmarks
produced in each of the 30 different executions of the sampling
process in the clustering approach and the 30 different executions
of the DS and MIS algorithms, we keep track of the number of times
(out of 30) that the Nemenyi test indicates that each algorithm pair
produces an equivalent performance. The counting approach is only
an indicator if the statistical results are robust if we repeat it using
different problem instances selected by the proposed heuristics.

The Nemenyi test provides a 𝑝-value for each pair of algorithms.
If the 𝑝-value is greater or equal than the significance level, the
null hypothesis is not rejected, and (i.e., we translate this to 1, no
statistical significance between the performance of the algorithms),
otherwise there is a statistical significance between the performance
of the compared pair of algorithms (i.e., we translate this to 0, a
statistical significance is detected). A significance level of 0.05 is
used in the experimental procedure.

We use the implementation of the Friedman test provided by the
scmamp R package [3] (version 0.2.55) and the Nemenyi post-hoc
test from the PMCMR R package [30] (version 4.3).

4 RESULTS AND DISCUSSION
This section presents the data used to evaluate the proposed ap-
proach, followed by the statistical results obtained when selecting
a representative benchmark suite.

4.1 Data
The benchmark suites used in this study are a subset of those utilized
in [19]. Specifically, the BBOB [11, 12] and CEC [20–22, 39] bench-
mark suites from the 2013, 2014, 2015, and 2017 single-objective
competitions are used. The BBOB benchmark suite defines 24 base
problems, fromwhich different instances can be generated by apply-
ing transformations, such as rotation and scaling. The first five in-
stances of the BBOB functions are used, resulting in 120 benchmark
problems. The CEC2013 benchmark suite contains 28 problems,
CEC2014 contains 30 problems, CEC2015 contains 15 problems,

and CEC2017 contains 29 problems. All CEC problems are included
only with a single instance. Therefore, a total of 222 benchmark
problems are investigated. For the experimental procedure, the
dimensionality of the decision variable space is set to 10.

To illustrate the rankings of optimization algorithms on the
benchmark problems, an algorithm portfolio of three single-
objective optimization algorithms is selected: the CovarianceMatrix
Adaption Evolutionary Strategy (CMA-ES) [13], RealSpace Parti-
cle Swarm Optimization (RSPSO) [15], and Differential Evolution
(DE) [37]. This algorithm portfolio was chosen somewhat arbitrar-
ily, as the key interest in this study is in presenting the general
landscape-aware instance selection pipeline itself, and in analyz-
ing whether it can provide reproducible statistical outcomes rather
than an in-depth study of any particular algorithm portfolio. For
validation of the results, we have repeated the experiments for
four additional algorithm portfolios of three randomly selected
algorithms (results/tables are available in our GitHub repository).

The Nevergrad [31] library is used for its implementations of
the optimization algorithms with the default hyperparameter con-
figurations provided in the library. All algorithms are run for a
fixed budget of 100,000 function evaluations. An algorithm run is
terminated either if the function evaluation budget is exhausted, or
if the algorithm reaches within 𝜖 = 10−8 of the function’s known
global minimum. Due to the stochastic nature of the investigated
algorithms, each algorithm is run for 30 independent runs on each
problem instance.

4.2 Benchmarking using already established
benchmark suites

The best practices of comparing the performance of a newly devel-
oped algorithm involve using an already established benchmark
suite. However, one of the issues is which benchmark suite to be in-
volved, since some of them can be in favour of the newly developed
algorithm. To show the difference between different benchmark
suites, we compare the three algorithms separately on each bench-
mark suite. The results from the comparison, after the Nemenyi
post-hoc test, are presented in Table 1. We report the raw p-values,
along with a binary indicator of statistical significance, which has
a value of 1 when no statistical significance between the difference
in performance of the algorithms has been found, and a value of 0,
when a statistical significance is detected.

Using the obtained statistical outcomes across the benchmark
suites, it is obvious that different statistical outcomes are produced.

On the BBOB benchmark suite, there is no statistical significance
between the performance of the CMA and DE, however their per-
formances differ statistically significantly from the performance of
RSPSO. When applying the mean DSC ranking on the BBOB and
CEC2017 benchmarks, the results suggest that RSPSO is better than
CMA and DE, while no statistical significance is found between the
performance of CMA and DE.

On the CEC2013 and CEC2014 benchmark suites, there is no
statistical significance between the performance of any pair of
algorithms. The results obtained on CEC2015 benchmark suite
indicate that there is a statistically significant difference between
the performance of the pairs of algorithms (DE, RSPSO) and (DE,
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Table 1: Statistical comparison of the three algorithms on already established benchmark suites.

BBOB CEC 2013 CEC 2014 CEC 2015 CEC 2017 All
DE RSPSO DE RSPSO DE RSPSO DE RSPSO DE RSPSO DE RSPSO

RSPSO 0.00/0 0.95/1 0.29/1 0.02/0 0.00/0 0.00/0
CMA 0.33/1 0.00/0 0.47/1 0.65/1 0.75/1 0.07/1 0.04/0 0.98/1 0.97/1 0.00/0 0.06/1 0.00/0

CMA), while there is no statistical significance between CMA and
RSPSO.

Using all problem instances from all benchmark suites, the
RSPSO is the superior algorithm, and there is no statistical dif-
ference between the performances of CMA and DE.

Looking at the results, the crucial question is what one wants to
show as the outcome of the statistical comparison. One option is
to show that DE is superior and for this purpose we could select
CEC2015 benchmark suite. Another option is to show that all algo-
rithms have hardly distinguishable performance, by selecting the
CEC2013 or the CEC2014 suite. A third option is to select BBOB
or CEC2017 and show that RSPSO is the superior one. This kind of
manipulation with the results allows publishing biased statistical
results or presenting results based on the researchers’ preference.

To overcome this issue, we propose three heuristics for selecting
problem instances that provide reproducible statistical outcomes.

4.3 Instance Selection Using Clustering
To cluster the problem instances, agglomerate hierarchical clus-
tering was applied using the scikit-learn python library [29]. We
estimate the number of clusters to be 12, based on the silhouette
score and the fact that a minimum of 10 samples are needed to
execute the statistical analysis.

Figure 2a visualizes these 12 clusters, as computed by the ag-
glomerate hierarchical clustering approach. We easily spot that the
number of problem instances per cluster is not balanced: There
are six clusters that consist of a single instance, while the largest
cluster contains 190 instances. We therefore took the instances that
belong to the largest cluster and we further clustered them to find
subclusters. Looking at the silhouette scores obtained when the
large cluster is broken up, we ended up with 10 subclusters, leaving
us with a total number of 21 clusters. These clusters are visu-
alized in Figure 2b and Figure 3 features the number of instances
from each benchmark suite in each cluster.

As can be seen from Figure 3, the BBOB benchmark covers 19
out of the 21 clusters with at least one instance. On the other hand,
the CEC2013, CEC2014, CEC2015 and CEC2017 benchmarks cover
6, 4, 3, and 2 clusters, respectively, and are mostly distributed in
the subclusters obtained with the second clustering. This suggests
that the BBOB benchmark covers more of the landscape, however
it should be combined with some of the CEC benchmark suites to
cover a larger portion of the problem landscape.

From Figure 3, we can see that there are six clusters with a single
problem instance, indicating that we need to sample one instance
from each cluster. The question that arises here is which instance
should be selected from the larger clusters. If we select the instance
randomly, it can be closer to some of the other clusters and will not
represent the cluster structure. For this purpose, we need to find
the problem instance that is closest to the centroid of each cluster.
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Figure 2: Visualization of the clustering, obtained by pro-
jecting the ELA instance features into 2 dimensions using
t-distributed stochastic neighbor embedding with cosine sim-
ilarity. Different colors indicate different clusters, while dif-
ferent shapes indicate different benchmarks.

To calculate the centroids, we use all instances that belong to each
cluster and calculate the mean value of each ELA feature. Next,
using cosine similarity we find the closest problem instance to the
centroid of each cluster. These problem instances are selected as
representatives and further involved in the benchmark suite.

The results of comparing the algorithms using the Friedman
and Nemenyi post-hoc tests on the selected problem instances are
presented on the left of Table 2, where we can see that only RSPSO
and CMA have a statistically significant performance difference.

We repeated the experiment when the largest cluster is split into
15 clusters instead of 10, since the silhouette score is similar. In this
case, we ended up with 26 clusters. The results of this experiment
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Figure 3: Number of instances from each benchmark suite,
and total number of instances in each cluster.

Table 2: Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected from the 21 and the 26
clusters, respectively.

21 clusters 26 clusters
DE RSPSO DE RSPSO

RSPSO 0.24/1 0.28/1
CMA 0.48/1 0.02/0 0.51/1 0.02/0

are reported on the right part of Table 2. They are consistent with
those of the 21 clusters, i.e., statistical significance is reported only
between the algorithms RSPSO and CMA.

Furthermore, we have also tested the statistical outcome when
median values instead of mean values of the ELA features are used
to select the centroids, but the same statistical outcome has been
achieved as in the case with the mean values.

To explore the sensitivity and flexibility of selecting the repre-
sentatives for each cluster, instead of selecting the instance that
is the closest to the cluster centroid, we can set a percentage of
the instances closest to the cluster centroid that can be used as
a representatives for the larger clusters. Furthermore, to create a
benchmark suite, we should uniformly select one instance form
the representatives per each cluster. To show if this leads to repro-
ducible results, we repeat the selection several times, 15 (not 30
since we can not produce 30 different benchmark suites) and see if
involving different representatives for the same cluster changes the
statistical outcome. For this purpose, we have tested the following
percentages: 12.5%, and 25%. The statistical outcomes are presented
in Table 3, where the results show that reproducible statistical out-
comes are obtained no matter which percentage is selected to define

the representative instances for the larger clusters. Even more, the
results are statistically the same as the results obtained when the
closest instance to the centroid from each cluster is selected and
involved in the benchmark suite.

Table 3: Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected by using different per-
centage of representatives for the larger clusters.

12.5% repres. 25% repres.
DE RSPSO DE RSPSO

RSPSO 15.00 15.00
CMA 14.00 0.00 14.00 0.00

4.4 Instance Selection Using Graph Theory
Algorithms

Table 4 displays the number of edges in the graphs produced with
each similarity threshold, as well as the minimum, maximum and
median of the number of problem instances produced by the DS and
MIS algorithms in the 30 independent runs, respectively. As evident
from the table, increasing the threshold results in a reduction of
the number of edges in the graph, and an increase in the number
of instances produced by the DS and MIS algorithms. Since the
algorithms produce a maximum of 4 and 8 instances when run
on the graphs constructed with a similarity threshold of 0.50 and
0.70, respectively, we do not consider these results in the statistical
analysis, since they do not provide enough samples for the safe
execution of the Friedman test.

Figure 4 depicts the graph of instances constructed with a mini-
mum similarity threshold of 0.9, meaning that each of the connected
nodes have ELA features with a cosine similarity of at least 0.9. The
orange nodes are the instances selected only by the DS algorithm,
the green nodes are the instances selected by the MIS algorithm,
while the purple nodes are the instances that were selected by both
the MIS and the DS algorithm. The graph contains 9 connected
components, with the 3 largest components containing 201, 11 and
3 nodes, respectively. There are also 6 zero-degree nodes (nodes

Table 4: Descriptive statistics of the benchmark suites se-
lected using the DS and MIS algorithms.

similarity
threshold

edge
count

algorithm min max mean

0.50 20821 DS 2 4 3.30
MIS 3 4 3.37

0.70 19940 DS 5 8 7.07
MIS 5 8 6.90

0.90 19119 DS 11 12 11.43
MIS 11 13 11.47

0.95 17460 DS 16 18 17.37
MIS 16 19 17.27

0.97 15116 DS 20 24 22.13
MIS 21 24 22.63
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Figure 4: Visualization of the instances selected by the DS and
MIS algorithms on the graph constructed with a minimum
similarity threshold of 0.9.

without have any edges) that form an individual connected com-
ponent. As can be seen from Figure 4, all of these nodes represent
instances from the BBOB benchmark. We can note that all of the
zero-degree nodes are selected by both algorithms.

These solutions are based on only one run of the algorithm. The
algorithms can produce different results depending on the initially
selected nodes. For instance, if we take a look at the connected
component of size 3, depicted in the lower left part of Figure 4,
in this run of the algorithms, the MIS algorithm selected the in-
stance BBOB_16_5. In another run, the algorithm could select either
one of the other two instances in the component, BBOB_23_1 or
BBOB_23_2, however, it will ensure that two of these instances
will never be selected together, which will prevent redundancy and
encourage diversity in the benchmark.

Figure 5 features the distribution of the node degrees in the
graphs constructed with each of the thresholds. As can be seen, a
large portion of the nodes have degrees in the range (170,200). This
indicates that the problem instances are highly similar to each other,
and further explains the large cluster obtained with the clustering,
and the large connected component obtained in the graphs.

Next, we compare the algorithms using all benchmark suites
selected for each combination of a graph heuristic selection (DS or
MIS algorithm) and each similarity thresholds 0.90, 0.95, and 0.97.
Table 5 presents the results obtained for comparing the algorithms
on benchmark suites selected by the DS and MIS algorithms.

We need to point out that in this experiment we do not report
the p-values, because we would like to trace the information if the
same statistical outcome is achieved if we repeat the comparison
on different benchmark suites selected by the same graph heuristic,
as in a bootstrapping evaluation process.

The results in Table 5 show that the statistical outcome is re-
producible when the benchmark suites are selected by the graph
heuristics. For example, when the comparison is performed using
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Figure 5: Empirical cumulative distribution plot of the node
degrees for the graphs constructed with each similarity
threshold, indicating the proportion of nodes having a node
degree falling below each value on the x-axis.

Table 5: Results of the Friedman test and the Nemenyi post-
hoc test for the statistical comparison of the three algorithms
using the benchmark suites selected by theMIS and DS graph
algorithms, for different cosine similarity measures. The
numbers indicate the number of times in which no statis-
tical significance was identified between the performance
of a pair of algorithms, out of 30 independent executions of
the statistical analysis, on 30 different subsets of instances
produced by 30 runs of the algorithms.

DS 0.9 DS 0.95 DS 0.97
DE RSPSO DE RSPSO DE RSPSO

RSPSO 30.00 30.00 30.00
CMA 27.00 5.00 26.00 3.00 22.00 0.00

MIS 0.9 MIS 0.95 MIS 0.97
DE RSPSO DE RSPSO DE RSPSO

RSPSO 30.00 30.00 30.00
CMA 27.00 3.00 30.00 0.00 24.00 0.00

problem instances selected with the DS algorithm and a similar-
ity threshold of 0.90 used for generating the graph, in 30 out of
30 independent comparisons (i.e., comparing the algorithms on
30 benchmark suites selected by the DS algorithm with different
random seeds) there is no statistical significance between the per-
formance of DE and RSPSO. The same holds for the pair (DE, CMA),
since in 27 out of 30 selected benchmark suites the same statistical
outcome was achieved. Finally, the statistical outcome of the com-
parison between CMA and RSPSO is also robust since it shows that
in 30-5=25 out of 30 comparisons a statistical significance between
their performance was found (resulting in 0 in our counting process,
so the end results presented in the table is 5).

From Table 5 we can conclude that both graph heuristics gen-
erate a selection of representative benchmark suites that provide
reproducible statistical outcomes from comparison studies. We need
to point out that in the proposed approach the statistical analysis

7
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Figure 6: Visualization of the statistical outcomes of the Fried-
man and Nemenyi tests from the analysis on all five algo-
rithm portfolios. Each row represents a different algorithm
portfolio. The columns indicate the set of instances used for
comparing the algorithms. Experiments were conducted on
all benchmarks (column 1), on each benchmark separately
(columns 2-6), on the instances selected by the clustering
using 21 clusters (column 7) and the instances selected by
the DS and MIS algorithms with a similarity threshold of
0.9 (columns 8-9). The analysis with the instances obtained
with the clustering is performed 15 times, while the analysis
with the instances from the DS and MIS algorithms are per-
formed 30 times. The binary outcomes from individual runs
are summed and normalized in the range [0,1] to enable a
comparison with the rest of the approaches for which the
analysis is executed once. Lighter values indicate that no sta-
tistical significance has been found between the difference in
performance of the algorithms, while darker values indicate
that the algorithms are statistically different.

should be done several times in order to guarantee the robustness
and reproducibility of the statistical outcomes.

4.5 Generalization of the proposed heuristics
In this paper, we demonstrated the applicability of the proposed
heuristics with the statistical analysis of the DE, CMA and RSPSO
algorithms. To prove the generalization of the proposed heuristics,
we conducted the same analysis for four additional portfolios, each
containing three arbitrarily chosen optimization algorithms. We
used the same approaches for selecting the problem instances inde-
pendently from the algorithm portfolio involved in the comparison.
Further, we compared each algorithm portfolio and for each one we
generated all tables that are presented for the portfolio presented
in the paper. Figure 6 summarizes the results for all five algorithm
portfolios by depicting the statistical outcomes of the pairwise com-
parisons of the algorithms. The full results can be found in our
GitHub repository. For the second portfolio, for which we do not
report all of the tables in the paper, we can see that the outcomes
obtained on BBOB and CEC2013 are different from the rest. For
the third portfolio and fifth portfolio, the evaluations done on a
single benchmark produce conflicting results. In all portfolios, the
evaluation done using the subsets of instances produced by the
proposed heuristics produce consistent and reliable results.

5 CONCLUSION
In this paper, we propose three approaches for selecting benchmark
subsets which uniformly cover the problem landscape and can
provide a reliable and robust statistical analysis of algorithm perfor-
mance. We show that when the statistical analysis is conducted on a
single benchmark set, one can obtain different outcomes regarding
the superiority of one algorithm over another, when a different
already established benchmark set is used. The benchmark subsets
produced by the three proposed approaches provide a consistent
and reliable evaluation.

Our study uses the landscape features computed in [19]. This
work includes 118 miscellaneous functions, which we did not in-
clude in our study because no performance data was available for
them. An extension of our work to include these functions is a
straightforward next step, as is the coverage of a larger algorithm
portfolio, and testing the sensitivity of themethodologywhen differ-
ent similarity measures will be applied instead of cosine similarity
and transformation of the ELA representations [8].

The existing optimization benchmarks are developed to under-
stand algorithms’ strengths and weaknesses, and not to achieve
results that show better transferability to other problems using ma-
chine learning (ML) approaches [18, 43]. The proposed approaches
can also be used to select problem instances for training ML models
with better transferability to other problems in automated perfor-
mance prediction, selection, or configuration.
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