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SPECTRAL ESTIMATION OF HAWKES PROCESSES FROM COUNT DATA

BY FELIX CHEYSSONa AND GABRIEL LANGb

UMR MIA-Paris, Université Paris-Saclay, AgroParisTech, INRAE, afelix@cheysson.fr, bgabriel.lang@agroparistech.fr

This paper presents a parametric estimation method for ill-observed lin-
ear stationary Hawkes processes. When the exact locations of points are not
observed, but only counts over time intervals of fixed size, methods based
on the likelihood are not feasible. We show that spectral estimation based on
Whittle’s method is adapted to this case and provides consistent and asymp-
totically normal estimators, provided a mild moment condition on the repro-
duction function. Simulated data sets and a case-study illustrate the perfor-
mances of the estimation, notably of the reproduction function even when
time intervals are relatively large.

1. Introduction. Hawkes processes, introduced in (Hawkes (1971a, 1971b)), form a
family of models for point processes, which exhibit both self-exciting (i.e., the occurrence
of any event increases temporarily the probability of further events occurring) and clus-
tering properties: they are special cases of the Poisson cluster process, where each cluster
is a continuous-time Galton–Watson tree with a Poisson offspring process, the intensity of
which is called the reproduction function (Hawkes and Oakes (1974)). As they exhibit self-
exciting and clustering properties, Hawkes processes are appealing in point process mod-
eling, and while first applications concerned almost exclusively seismology (Adamopoulos
(1976), Ogata (1988)), their use quickly spread to many other disciplines, including neu-
rophysiology (Chornoboy, Schramm and Karr (1988)), finance (Bacry, Mastromatteo and
Muzy (2015), Bowsher (2003), Chavez-Demoulin, Davison and McNeil (2005)), genomics
(Reynaud-Bouret and Schbath (2010)) and epidemiology (Meyer, Elias and Höhle (2012));
see also Reinhart (2018) for a review of Hawkes processes and their applications.

Parameter estimation of Hawkes processes has been studied thoroughly when events are
fully observed, relying mainly on maximum likelihood methods (Ogata (1978, 1988), Ozaki
(1979)). Here, we consider that the arrival times are not observed, but interval censored: the
timeline is cut into regular bins corresponding to, for example, days or weeks and the numbers
of events in each bin is counted. Exact maximum likelihood methods are no more applicable
to such bin-count data: since the resulting process is no longer a point process but a time
series, either the point process must be reconstructed from the count data, or the estimation
method of the process must be adapted to time series.

For the first strategy, one could assign arbitrarily to each point a location within its inter-
val, for example, by uniformly drawing them in the interval (Meyer, Elias and Höhle (2012)),
or attempt a more sophisticated approach such as an expectation maximization algorithm.
Historically for Hawkes processes, this algorithm has been used for multivariate processes
(Olson and Carley (2013)) or when the immigration intensity is a renewal process (Wheatley,
Filimonov and Sornette (2016)), treating the genealogy as a latent variable. For an interval
censored process, an analogous approach which would consider the arrival times as latent
variables is unfortunately not adapted, since there is no closed form for the conditional dis-
tribution of the arrival times given the event counts. Stochastic expectation maximization
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algorithms (Celeux, Chauveau and Diebolt (1995)), which approximate this conditional dis-
tribution, do not alleviate this issue since usual convergence results and simulation methods
are based on likelihoods of the exponential families (Delyon, Lavielle and Moulines (1999)),
which excludes Hawkes processes.

For the second strategy, Kirchner (2016) showed that the distribution of the bin-count se-
quence of the Hawkes process can be approximated by an INAR(∞) sequence and proposed
a nonparametric estimation method for the Hawkes process. In particular, the conditional
least-square estimates of the INAR process yields consistent and asymptotically normal esti-
mates for the underlying Hawkes process when the bin size tends to zero (Kirchner (2017)).
Unfortunately, while this method is adapted when the bin size can be chosen arbitrarily small,
for example, when the data are collected continuously (seismology, finance, etc.), it is biased
when the data has been collected with large bin size or when the events cannot precisely be
located in time (Kirchner (2017)), as is often the case for biological, ecological and health
data sets. In particular, when the bin size is larger than the typical range of the reproduction
function, this strategy is not satisfactory, since the INAR model ignores the interaction within
bins.

In this article, as in Kirchner (2017), we adapt an existing time series estimation method to
the case of bin-count sequences from Hawkes processes. Following Adamopoulos (1976), we
use the Bartlett spectrum of the Hawkes process (i.e., the spectral density of the covariance
measure of the process) to define as an estimator the minimizer of the log-spectral likelihood,
first introduced by Whittle (1952). To establish the asymptotic properties of the Whittle esti-
mator, we look at strong mixing properties for the Hawkes processes.

Rosenblatt (1956) introduced the strong mixing coefficient to measure the dependence
between σ -algebras, which sparked decades of interest in the theory of weak dependence for
time series and random fields (see Bradley (2005) for a review of mixing conditions). The
mixing conditions provide very strong inequalities and coupling methods (Doukhan (1994),
Rio (2017)) to achieve proofs of asymptotic properties for parameter estimates, provided that
the mixing coefficients decrease fast enough. However, these coefficients are formulated with
respect to rich σ -algebras and, therefore, difficult to bound even for very simple models.

Westcott (1972) extended the definition of mixing to point processes proving, for example,
that cluster Poisson point processes are mixing in the ergodic sense (Westcott (1971)). Yet,
without precise information on strong mixing coefficients, the weak dependence framework
did not lead to much statistical development in the modeling of point processes. Recent works
addressed the computation of strong mixing coefficients for some classes of point processes
(Heinrich and Pawlas (2013), Poinas, Delyon and Lavancier (2019)), building on the results
for time series and random fields and using the fact that the σ -algebras generated by countable
sets are poorer than those generated by continuous sets.

For practical reason, the absolute regularity mixing coefficients are often preferred since
they can be easily computed for Markov processes and functions thereof (Davydov (1974)).
Notably, Hawkes processes with exponential reproduction function are piecewise determinis-
tic Markovian processes (Oakes (1975)), and one would hope to compute absolute regularity
mixing coefficients. However, since this would not extend to other reproduction functions,
we instead establish a strong mixing condition with polynomial decay rate, which holds for
any reproduction function, provided it has a finite moment of order 1 + δ, δ > 0. In turn, this
proves that our proposed estimation method leads to consistent and asymptotically normal
estimators for the parameters of Hawkes processes from bin-count data.

Section 2 recalls definitions and sets notation used in the paper. Section 3 contains our first
important result: we establish strong mixing properties for the Hawkes process and its bin-
count sequences. Using the cluster and positive association properties, we relate the strong
mixing coefficients to those of a single time-continuous Galton–Watson tree, then control
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the covariance between arrival times using results from elementary Galton–Watson theory.
In Section 4, we focus on the estimation of Hawkes processes from bin-count data. We de-
rive the spectral density function of the bin-count sequence, taking into account the aliasing
caused by sampling the process in discrete time. Then, using the strong mixing condition and
the work of Dzhaparidze (1986) on Whittle’s method, we propose a consistent and asymp-
totically normal estimator to the parameters of the Hawkes process. Sections 5 and 6 provide
respectively some numerical experiments and a real-life case study to illustrate the results of
the two preceding sections. Finally, in Section 7, we discuss some of the appealing features
and extensions of this approach. The code used in the paper, both for the simulation and the
case study, is publicly available (https://github.com/fcheysson/code-spectral-hawkes).

2. The Hawkes process and its count process.

2.1. Notation. In this paper, we consider simple locally finite point processes on the mea-
sure space (R,B(R), �), where B(A) denotes the Borel σ -algebra of A and � the Lebesgue
measure. A point process N on R may be defined as a measurable map from a probability
space (X ,F,P) to the measurable space (N,N ) of locally finite counting measures on R.
The corresponding random set of points, that is, the set of the atoms of N , is denoted {Ti}.
For a function f on R, we write

N(f ) :=
∫
R

f (t)N(dt) = ∑
i

f (Ti)

the integral of f with respect to N . Finally, for a Borel set A, the cylindrical σ -algebra E(A)

generated by N on A is defined by

E(A) := σ
({

N ∈ N : N(B) = m
}
,B ∈ B(A),m ∈ N

)
.

2.2. The stationary linear Hawkes process. A stationary self-exciting point process, or
Hawkes process, on the real line R is a point process N with conditional intensity function

λ(t) = η +
∫ t

0
h(t − u)N(du)

= η + ∑
Ti<t

h(t − Ti)

for t ∈ R. The constant η > 0 is called the immigration intensity and the measurable function
h : R≥0 → R≥0 the reproduction function. The reproduction function can be further decom-
posed as h = μh∗, where μ = ∫

R
h(t)dt < 1 is called the reproduction mean and h∗ is a true

density function,
∫
R

h∗(t)dt = 1, called the reproduction kernel.
Moreover, the linear Hawkes process is a specific case of the Poisson cluster process

(Hawkes and Oakes (1974)). Briefly, the process consists of a stream of immigrants, the clus-
ter centers, which arrive according to a Poisson process Nc with intensity measure η. Then
an immigrant at time Ti generates offsprings according to an inhomogenous Poisson process
N1(·|Ti) with intensity measure h(· − Ti). These in turn independently generate further off-
springs according to the same law, and so on ad infinitum. The branching processes N(·|Ti),
consisting of an immigrant at time Ti and all their descendants, are therefore independent.
Finally, the Hawkes process N is defined as the superposition of all branching processes:

∀A ∈ B(R), N(A) = Nc

(
N(A|·)).

This cluster representation links to the usual Galton–Watson theory. Without loss of gener-
ality, consider one branching process whose immigrant has time 0. Define Zk as the number

https://github.com/fcheysson/code-spectral-hawkes
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of points of generation k, that is, Z0 = 1 for the immigrant, then Z1 denotes the number of
offsprings that the immigrant generates, Z2 the number of offsprings that the offsprings of
the immigrants generate, etc. Then (Zk)k∈N is a Galton–Watson process.

In particular, (Zk+1|Zk = z)(k, z ∈ N) follows a Poisson distribution with parameter zμ.
Then, by the usual Galton–Watson theory, a sufficient condition for the existence of the
Hawkes process is μ < 1, which ensures that the total number of descendants of any im-
migrant is finite with probability 1 and has finite mean. This condition also ensures that the
process is strictly stationary.

2.3. Count processes. We are interested in the time series generated by the event counts
of the Hawkes process, that is, the series obtained by counting the events of the process on
intervals of fixed length. We give a definition for both time-continuous and discrete time
bin-count processes, according to whether the interval endpoints live on the real line or on a
regular grid, respectively.

DEFINITION 1. The bin-count process with bin size � associated to a point process N is
the process (Xt)t∈R = {N((t�, (t + 1)�])}t∈R generated by the count measure on intervals
of size �. The restriction of the bin-count process on Z, (Xk)k∈Z, is called the bin-count
sequence associated to N .

3. Strong mixing properties. Here, we control the strong mixing coefficients of Hawkes
processes and their associated bin-count processes. We recall that, for a probability space
(X ,F,P) and A,B two sub σ -algebras of F , Rosenblatt’s strong mixing coefficient is de-
fined as the measure of dependence between A and B (Rosenblatt (1956)):

α(A,B) := sup
{∣∣P(A ∩ B) − P(A)P(B)

∣∣ : A ∈ A,B ∈ B
}
.

This definition can be adapted to a point process N on R, by defining (see Poinas, Delyon
and Lavancier (2019))

αN(r) := sup
t∈R

α
(
E t−∞,E∞

t+r

)
,

where Eb
a stands for E((a, b]), that is, the σ -algebra generated by the cylinder sets on the

interval (a, b], and E∞
a = σ(

⋃
b>a Eb

a ). For the corresponding sequence (Xk)k∈Z, the strong
mixing coefficient takes the form

αX(r) := sup
n∈Z

α
(
Fn−∞,F∞

n+r

)
,

where Fb
a stands for the σ -algebra generated by {Xk : k ∈ Z, a ≤ k ≤ b}.

The point process N (resp., the sequence (Xk)) is said to be strongly mixing if αN(r) (resp.
αX(r)) → 0 as r → ∞. Intuitively, the strong mixing condition conveys that the dependence
between past and future events decreases uniformly to zero as the time gap between them
increases. Note that, since Fb

a ⊂ E((a�, (b + 1)�]), we have that αX(r) ≤ αN((r − 1)�) for
all r > 1.

We here state the first important result of this article.

THEOREM 1. Let N be a stationary Hawkes process on R with reproduction function
h = μh∗, where μ = ∫

R
h(t)dt < 1 and

∫
R

h∗(t)dt = 1. Suppose that there exists δ > 0 such
that the reproduction kernel h∗ has a finite moment of order 1 + δ:

ν1+δ :=
∫
R

t1+δh∗(t)dt < ∞.
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Then N is strongly mixing and

αN(r) = O
(
r−δ).

Furthermore, if h∗ admits finite exponential moments, that is, there exists a0 > 0 such that∫
R

ea0|t |h∗(t)dt < ∞,

then there exists a ∈ (0, a0] such that

αN(r) =O
(
e−ar).

Notably, this theorem can be extended in the case where the immigration intensity η is
allowed to vary with respect to time.

COROLLARY 1. Let N be a Hawkes process on R with reproduction function as in The-
orem 1, and with nonconstant immigration intensity η : t �→ η(t). Suppose that there exists
δ > 0 such that the reproduction kernel h∗ has a finite moment of order 1 + δ, and that η(·)
is nonnegative and bounded. Then N is strongly mixing and

αN(r) = O
(
r−δ).

Furthermore, if h∗ admits finite exponential moments, then there exists a > 0 such that

αN(r) =O
(
e−ar).

In brief, the proof has two parts: first, we rescale the problem to a single continuous-time
Galton–Watson tree using the cluster representation of the Hawkes process; second, we derive
an upper bound for the strong mixing coefficients of the tree. The idea for the latter is that
since the Galton–Watson process goes extinct almost surely and the reproduction kernel h∗
has a finite moment, then the probability that there exists an offspring of generation k at a far
distance from the immigrant goes quickly to 0 when k increases. We refer to Appendix A for
the detailed proof of the theorem.

Finally, as an immediate consequence of Theorem 1, we get the following corollary for
Hawkes bin-count process.

COROLLARY 2. Let N be a Hawkes process as in Corollary 1, and (Xk)k∈Z =
{N((k�, (k + 1)�])}k∈Z its associated bin-count sequence. Then (Xk) is strongly mixing
and

αX(r) = O
(
r−δ).(1)

Furthermore, if h∗ admits finite exponential moments, then there exists a > 0 such that

αX(r) =O
(
e−a�r).

4. Parametric estimation of bin-count sequences. In this section, we apply the strong
mixing properties of the Hawkes bin-count sequence to parametric estimation using a spectral
approach. First, we derive the spectral density function for both the time-continuous and dis-
crete time Hawkes bin-count processes. Then using Whittle’s method, we define a parametric
estimator of a Hawkes process from its bin-count data.
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4.1. Spectral analysis. We recall that the Bartlett spectrum of a second-order stationary
point process N on R is defined as the unique, nonnegative, symmetric measure 
 on the
Borel sets such that, for any rapidly decaying function ϕ on R (see Daley and Vere-Jones
(2003), Proposition 8.2.I, equation (8.2.2))

Var
(
N(ϕ)

) =
∫
R

∣∣ϕ̃(ω)
∣∣2
(dω),(2)

where ·̃ denotes the Fourier transform

ϕ̃(ω) =
∫
R

ϕ(s)e−iωs ds.

By polarising relation (2), we get, for any rapidly decaying functions ϕ and ψ on R:

Cov
(
N(ϕ),N(ψ)

) =
∫
R

ϕ̃(ω)ψ̃∗(ω)
(dω),(3)

where ψ∗(u) = ψ(−u), so that ψ̃∗ is the complex conjugate of ψ̃ .
For the stationary Hawkes process, the Bartlett spectrum admits a density given by (see

Daley and Vere-Jones (2003), Example 8.2(e))

γ (ω) = m

2π

∣∣1 − h̃(ω)
∣∣−2

,(4)

where m := E[N(0,1]] = η(1 − ∫
R

h(t)dt)−1.
For a time-continuous process, the spectral density fc forms a Fourier pair with the auto-

covariance function rc:

fc(ω) =
∫
R

rc(u)e−iωu du, rc(u) = 1

2π

∫
R

fc(ω)eiωu dω.

Using the second relation with the Bartlett spectrum of a stationary Hawkes process, we
derive the spectral density of the time-continuous bin-count process with bin size �.

PROPOSITION 1. Let N be a stationary Hawkes process on R, and {Xt }t∈R =
{N(t�, (t + 1)�]}t∈R the associated bin-count process. Then Xt has a spectral density func-
tion given by

fc(ω) = m� sinc2
(

ω

2

)∣∣∣∣1 − h̃

(
ω

�

)∣∣∣∣−2
.(5)

PROOF. Let ϕ = 1(0,�] and ψ = 1(�u,�(u+1)]. We have

ϕ̃(ω) =
∫ �

0
e−iωs ds = i

ω

[
e−iω� − 1

]
,

ψ̃∗(ω) =
∫ −�u

−�(u+1)
e−iωs ds = i

ω
eiω�u[

1 − eiω�]
.

Then, using (3) and (4), the autocovariance function of Xt is

rc(u) = Cov(X0,Xu)

= Cov
(
N(ϕ),N(ψ)

)
=

∫
R

1

ω2 eiω�u
∣∣eiω� − 1

∣∣2
(dω)

= 1

2π

∫
R

m� sinc2
(

ω

2

)∣∣∣∣1 − h̃

(
ω

�

)∣∣∣∣−2
eiωu dω. �



1728 F. CHEYSSON AND G. LANG

For a discrete-time process, the spectral density fd once again forms a Fourier pair with
the autocovariance function rd :

fd(ω) = ∑
k∈Z

rd(u)e−iωu, rd(u) = 1

2π

∫ π

−π
fd(ω)eiωu dω.

It turns out that the spectral density fd of a time-continuous process sampled in discrete time
can be related to the density fc of the process, by taking into account spectral aliasing, which
folds high frequencies back onto the apparent spectrum:

rc(u) = 1

2π

∫
R

fc(ω)eiωu dω

= 1

2π

∑
k∈Z

∫ (2k+1)π

(2k−1)π
fc(ω)eiωu dω

= 1

2π

∑
k∈Z

∫ π

−π
ei2kπufc(ω + 2kπ)eiωu dω

= 1

2π

∫ π

−π

∑
k∈Z

fc(ω + 2kπ)eiωu dω,

where the last equality follows when u ∈ Z and from an application of Fubini’s theorem.
For the bin-count sequence associated with a stationary Hawkes process, this leads to the

following corollary.

COROLLARY 3. Let N be a stationary Hawkes process on R, and (Xk)k∈Z = {N((k�,

(k + 1)�])}k∈Z the associated bin-count sequence. Then Xk has a spectral density function
given by

fd(ω) = ∑
k∈Z

fc(ω + 2kπ),

where fc(·) is the function defined in (5).

4.2. Whittle estimation. For a stationary linear process (Xk)k∈Z with spectral density
fθ (·), θ an unknown parameter vector, both Hosoya (1974) and Dzhaparidze (1974), building
on the cornerstone laid by Whittle (1952), proposed as an estimator of θ the minimizer

θ̂n = arg min
θ∈�

Ln(θ),(6)

where

Ln(θ) = 1

4π

∫ π

−π

(
logfθ (ω) + In(ω)

fθ (ω)

)
dω(7)

is the log-spectral likelihood of the process, and In(ω) = (2πn)−1|∑n
k=1 Xke

−ikω|2 is the
periodogram of the partial realization (Xk)1≤k≤n. They also gave the asymptotic properties
of the estimator under appropriate regularity conditions.

Dzhaparidze (1986) extended these results to more general cases, and in particular to sta-
tionary processes verifying Rosenblatt’s mixing conditions. The following conditions and
theorems are thus adaptations of those found in Dzhaparidze (1986), Theorem II.7.1 and
II.7.2, for stationary Hawkes bin-count sequences.

THEOREM 2. Let N be a Hawkes process on R with reproduction function h = μh∗,
where μ = ∫

R
h(t)dt < 1 and

∫
R

h∗(t)dt = 1, and (Xk)k∈Z = (N(k�, (k + 1)�])k∈Z its
associated bin-count sequences with spectral density function fθ . Assume the following reg-
ularity conditions on fθ :
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(A1) The true parameter θ0 belongs to a compact set � of Rp .
(A2) For all θ1 �= θ2 in �, then fθ1 �= fθ2 for almost all ω.
(A3) The function f −1

θ is differentiable with respect to θ and its derivatives (∂/∂θk)f
−1
θ

are continuous in θ ∈ � and −π ≤ ω ≤ π .

Further assume that there exists a δ > 0 such that the reproduction kernel h∗ has a finite
moment of order 2 + δ. Then the estimator θ̂n defined as in (6) (with Ln(θ) given by (7)), is
consistent, that is, θ̂n → θ0 in probability.

PROOF. The only condition from Dzhaparidze (1986), Theorem II.7.1, that we need to
verify is that there exists a γ > 2 such that E[|Xk|2γ ] is finite and the following inequality
holds:

∞∑
r=1

(
αX(r)

)1−2/γ
< ∞.(8)

Since the stationary Hawkes process admit finite exponential moments if h∗ has a moment
of order δ ∈ (0,1] (Roueff, von Sachs and Sansonnet (2016), Theorem 4), E[|Xk|2γ ] is finite
for any γ . Then using equation (1) from Corollary 2 there always exists a γ > 2 that satisfies
(8). �

Define the matrix 
θ , which would actually be the limit as n → ∞ of the Fisher’s infor-
mation matrix if the process (Xk) were Gaussian (Dzhaparidze (1986), Section II.2.2), by the
relation:


θ =
(

1

4π

∫ π

−π

∂

∂θk

logfθ (ω)
∂

∂θl

logfθ (ω)dω

)
1≤k,l≤p

.

Since (Xk) is not Gaussian, the asymptotic properties of the Whittle estimator depends on
the fourth-order statistics of the process and we define the following matrix:

C4,θ =
(

1

8π

∫ ∫ π

−π
f4,θ (ω1,−ω1,−ω2)

∂

∂θk

1

fθ (ω1)

∂

∂θl

1

fθ (ω2)
dω1 dω2

)
1≤k,l≤p

,

where f4,θ (·, ·, ·) is the fourth-order cumulant spectral density of the process. We have the
following result.

THEOREM 3. Let N be a Hawkes process as in Theorem 2, and (Xk)k∈Z = (N(k�, (k +
1)�])k∈Z its associated bin-count sequences with spectral density function fθ . Assume con-
ditions (A1), (A2), (A3) and:

(A4) The function fθ is twice differentiable with respect to θ and its second derivatives
(∂2/∂θk∂θl)fθ are continuous in θ ∈ � and −π ≤ ω ≤ π .

Then the estimator θ̂n is asymptotically normal and

n1/2(θ̂n − θ0) ∼
n→∞ N

(
0,
−1

θ0
+ 
−1

θ0
C4,θ0


−1
θ0

)
.

REMARK. The computation of the integral of the fourth-order cumulant spectra in C4,θ0

is not straightforward. We refer to the work of Shao (2010) for an elegant way to compute an
estimate of this integral.
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5. Simulation study. We illustrate the estimation procedure and asymptotic properties
of the spectral approach for Hawkes bin-count sequences. To highlight the different theorems
of the previous sections, we consider two kernels h∗ for the reproduction function: the expo-
nential kernel for which all moments exist and the power law kernel whose higher moments
are not finite.

The following simulations and estimations have been implemented with our package
hawkesbow, freely available online (https://cran.r-project.org/web/packages/hawkesbow/
index.html), written in both R (R Core Team (2019)) and C++ using Rcpp (Eddelbuettel
and François (2011)).

5.1. Simulation procedure.

5.1.1. Exponential kernel. We first consider a stationary Hawkes process with exponen-
tially decaying reproduction function:

λ(t) = η + μ

∫ t

−∞
βe−β(t−u)N(du), t ∈ R,

that is, with reproduction kernel h∗(t) = βe−βt for t ≥ 0. Note that the process verifies the
conditions of both Theorems 2 and 3.

Using the cluster representation of the Hawkes process, we simulated 1000 realizations of
the Hawkes process on the interval [0, T ] with parameter values η = 1, μ = 0.5 and β = 1
and a burn-in interval [−100,0]. For each of the simulations, we created four time series by
counting the events in bins of size � = 0.25, 0.5, 1 or 2, respectively. We then estimated the
parameters η, μ and β as in Section 4.2 for each of the four time series. We compared these
estimates to the usual maximum likelihood estimates (Figure 1(a)), for which it is assumed no
event lies outside of [0, T ]. Since the latter use the full information on the location of events,
they are arguably better that any estimate based on the bin-count sequences, and provide a
best case scenario for the Whittle estimates when the bin size tends to 0. Minimization of the
log-spectral likelihood, respectively, maximization of the likelihood, was carried out using
a limited-memory BFGS optimisation algorithm with bound constraints (Liu and Nocedal
(1989), Nocedal (1980))—0 < μ < 1 and η,β > 0—available in function optim from R,
respectively, in function nloptr from package NLOPTR (Johnson). With an exponential kernel,
a set of 1000 simulations and their Whittle estimation with T = 1000 and bin size � = 1 takes
approximately 2 minutes on a laptop computer with an i5-6300HQ Intel CPU.

5.1.2. Power law kernel. We now consider a stationary Hawkes process with a power
law reproduction kernel: h∗

γ (t) = γ aγ (a + t)−γ−1 for t ≥ 0. We recall that the moments
of a power law distribution are all finite up to, but not including, the order γ . We illustrate
the theorems of the previous sections by considering three cases for the shape, with each
increasingly satisfying the necessary assumptions: (i) γ = 0.5, the process does not satisfy
the condition of Theorem 1; (ii) γ = 1.5, the process is strongly mixing and satisfies the
condition of Theorem 1, but not the assumptions of Theorem 2; (iii) γ = 2.5, the process is
strongly mixing and satisfies the assumptions of Theorems 1, 2 and 3.

As for the exponential kernel, we simulated 1000 realizations of the Hawkes process for
each γ ∈ {0.5,1.5,2.5}, with parameter values η = 1, μ = 0.5, and scale parameter a = 1.5
chosen such that the power law kernel h∗

2.5 and the exponential kernel have the same first-
order moment. For the power law kernels h∗

1.5 and h∗
0.5, we kept the scale parameter the

same so that the simulations can be compared with the kernel h∗
2.5. As for the exponential

kernel, the Whittle estimates of η, μ and γ were compared to the usual maximum likelihood
estimates, with the scale parameter kept fixed to its true value a = 1.5. Estimation figures can

https://cran.r-project.org/web/packages/hawkesbow/index.html
https://cran.r-project.org/web/packages/hawkesbow/index.html
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FIG. 1. Performance of the Whittle estimates for the stationary Hawkes process with immigration intensity
η = 1, reproduction mean μ = 0.5 and reproduction kernel h∗(t) = βe−βt , where β = 1.

be found in Appendix B. The constraint bounds for the optimisation routines were 0 < μ < 1
and η, γ > 0. With a power law kernel, a set of 1000 simulations and their Whittle estimation
with T = 1000 and bin size � = 1 takes approximately 14 minutes on a laptop computer
with an i5-6300HQ Intel CPU.
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5.2. Results and interpretation.

5.2.1. Exponential kernel. For T = 100 and small bin sizes, the Whittle estimates fare
almost as well as the maximum likelihood estimates (see Figure 1(a)). The estimation de-
teriorates massively for higher bin sizes, notably for the exponential kernel rate β . This is
intuitive, since large bin sizes with respect to the kernel scale make it difficult to detect inter-
actions between points. This can be related to the probability that an offspring and its parent
belong in the same bin: assuming the stationarity of the process, this probability is equal to
�−1 ∫ �

0
∫ �
u βe−β(t−u) dt du = 1 − (β�)−1(1 − e−β�). For example, with β = 1 and � = 2,

we get a probability of 0.57, that is, 57% of the information about the interaction of the
Hawkes process is located within bins, with only 43% remaining between bins. Thankfully,
by increasing T , the asymptotic properties ensure that the Whittle estimates improve, even
for large bin sizes.

To further illustrate the asymptotic properties of the estimation, notably its rate of con-
vergence, we compute the mean square error, defined by MSE = S−1 ∑

(θ̂n − θ0)
2, for the

estimates of each set of S = 1000 simulations at given T s and bin sizes (Figure 1(b)). For
large T s, the slope of the mean square error with respect to T reaches −1 (in log-log scale)
for all parameters and almost all bin sizes, illustrating the O(n−1) rate of convergence stated
in Theorem 3. For small T s and both the Whittle and the maximum likelihood estimation
methods, the estimates of the immigration intensity η and reproduction mean μ have already
reached the optimal rate of convergence, while the MSE for the exponential kernel rate β is
up to one and a half orders of magnitude higher than what would be expected by extrapo-
lating the MSE for large T s. Finally note that, for reasonable bin sizes (� ≤ 1), the Whittle
estimates of the reproduction mean μ have a MSE comparable to those of the maximum
likelihood.

5.2.2. Power law kernel. Performances for the point estimates are remarkably similar
for γ = 2.5 and γ = 1.5. As in the exponential case, both the immigration intensity η and
the reproduction mean μ exhibit the optimal rate of convergence O(n−1) throughout all T s
considered for all bin sizes, while the shape parameter γ exhibits this asymptotic regime for
sufficiently large T s (T ≥ 400). When γ = 0.5, the Whittle estimates for both the immigra-
tion intensity η and the reproduction mean μ do not considerably improve for the range of
T s considered, in contrast to the maximum likelihood estimates which approach the optimal
asymptotic regime for large T s. For all three kernels, the estimates show a curious behavior:
for large T s, almost all estimates for the bin size 0.25 have larger MSE than for bin sizes 0.5
and 1.

Interestingly, the point estimates exhibit good asymptotic behaviors for γ = 1.5 even
though the power law kernel h∗

1.5 does not satisfy the assumptions of Theorems 2 and 3,
but do not for γ = 0.5. This could suggest that the condition on the kernel moments in Theo-
rem 1 is too restrictive, and probably lies between 0.5 and 1.5. Nevertheless, it is mild enough
that the spectral approach developed in this article can be useful for applications in many dis-
ciplines.

6. Case study: Transmission of measles in Tokyo. Measles is a highly contagious viral
disease, primarily transmitted via droplets and manifesting as a febrile rash illness. Despite
worldwide efforts to eradicate the disease, it has sprung back in developed countries mainly
through imported cases and nonvaccinated individuals, generating minor outbreaks. As the
infectious period of measles begins before symptoms are first apparent, in some cases the
carriers may be diagnosed after their offsprings. For this reason, we propose to adapt the
Hawkes process to reflect this apparent noncausal situation.
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FIG. 2. Weekly count of measles cases in Tokyo. Between the third week of August, 2012 and the third week of
February, 2020, 264 cases of measles have been declared in the prefecture of Tokyo.

6.1. Extension to a noncausal framework. We consider a natural extension of linear
Hawkes processes by relaxing the condition that the reproduction kernel h∗ has support on
R≥0. Such a process can be defined through the cluster representation presented in Section 2.2
by allowing the offsprings to be generated in the past, that is, by allowing h∗ to take positive
values on R<0. We will call this process a noncausal Hawkes process, even if its conditional
intensity function is intractable.

The results proved in Section 3 can be directly extended to noncausal Hawkes processes.
Indeed, all proofs but those of Lemmas 7 and 8 from Appendix A remain identical. For
Lemma 8, split the integral into two: one from −∞ to t + r/2, the other from t + r/2 to +∞.
The first integral is treated as written. For the second integral, Lemma 7 can be adapted using
a symmetry argument regarding the location of the immigrant and the interval considered.
In consequence, the spectral estimation procedure proposed in Section 4 remains applicable,
with consistent and asymptotically normal estimators.

6.2. Estimation of the contagion function. In Japan, measles is a notifiable disease: all
diagnosed cases must be reported to the government, then investigated to contain potential
outbreaks. The Japanese National Institute of Infectious Diseases publishes weekly reports
as well as surveillance data tables for all notifiable diseases (https://www.niid.go.jp/niid/en/
survaillance-data-table-english.html). We here consider the number of measles cases in the
prefecture of Tokyo, from August 2012 to today (Figure 2). We model the weekly count data
using a Hawkes process with Gaussian kernel:

h∗(t) = 1

σ
√

2π
exp

(
−(t − ν)2

2σ 2

)
, t ∈ R,

where ν can be related to the incubation period and σ to the transmission period, then estimate
the parameters η, μ, ν and σ as in Section 4.2. We treat the process as stationary because the
impact of the seasonality was small compared to local variability.

For the Gaussian kernel, we find ν̂ = 9.8 days and σ̂ = 5.9 days, corresponding to an
interquartile range of 7.9 days. These estimates can be related to clinical features of the virus:

https://www.niid.go.jp/niid/en/survaillance-data-table-english.html
https://www.niid.go.jp/niid/en/survaillance-data-table-english.html
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the incubation period of measles averages 10–12 days, while the transmission occurs usually
from 4 days before to 4 days after rash onset (Centers for Disease Control and Prevention
(2015)). For the immigration intensity and reproduction mean, we find η̂ = 0.040 day−1

and μ̂ = 0.72. Interestingly, we find that cases with unknown source of transmission (i.e.,
immigrants of the model) represent 1 − μ̂ = 28% of all measles cases, a figure close to the
data found in (Nishiura, Mizumoto and Asai (2017), Figure 3), which reports 23 imported
cases amongst 106 contagious events in Japan, 2016.

6.3. Goodness-of-fit diagnostics. Assessing the goodness-of-fit of a Hawkes model to
the observed data is usually achieved via residual analysis (Ogata (1988)) where the resid-
uals, which are obtained through an application of the random time change theorem (see
Papangelou (1972) or Daley and Vere-Jones (2003), Theorem 7.4.IV), are expected to be-
have like a unitary Poisson point process. Here, since the arrival times of the process are not
observed, we instead use the spectral approach to goodness-of-fit diagnostics for time series
models proposed by Paparoditis (2000).

Using the notation of Section 4.2, the test is based on the distance between a kernel esti-
mator of the normalized periodogram ordinates,

q̂(ω, θ̂) = 1

nh

m∑
j=−m

K

(
ω − ωj

h

)
In(ωj )

fθ̂ (ωj )
,(9)

and its expected value under the null hypothesis, leading to the test statistic given by

Sn,h(θ̂) = nh1/2
∫ π

−π

(
1

nh

m∑
j=−m

K

(
ω − ωj

h

)(
In(ωj )

fθ̂ (ωj )
− 1

))2

dω,

where ωj = 2πj/n are the studied frequencies, m = �(n − 1)/2�, K denotes the kernel and
h the bandwidth used to smooth the rescaled periodogram ordinates. Then, under some regu-
larity assumptions on the studied process (Xk) and the kernel K , as n → ∞ and h ∼ n−ρ for
some 0 < ρ < 1 (Paparoditis (2000), Theorem 2),

Sn,h(θ̂) − μh → N
(
0, τ 2)

,

where

μh = h−1/2
∫ π

−π
K2(x)dx and τ 2 = 1

π

∫ 2π

−2π

[∫ π

−π
K(u)K(u + x)du

]2
dx.

Then the null hypothesis, that is, that the true density function of the process lies in the
postulated class of density functions,

H0 : f ∈ F� = {fθ , θ ∈ �},
can be rejected at an asymptotical α-level if Sn,h(θ̂) > μh+u1−ατ , where u1−α is the (1−α)-
th quantile of the standard normal distribution.

For the measles data set, we calculated the test statistic using the Epanechnikov ker-
nel given by K(x) = 3(1 − (x/π)2)/2 for |x| ≤ π . With this choice of kernel, μh =
(12π/5)h−1/2 and τ 2 = 2672π2/385. This leads to the asymptotic p-values p = 0.61 and
p = 0.96 for the bandwidths h = 0.05 and h = 0.10, respectively. Bootstrap approximation
of the distribution of the test statistic under the null (Paparoditis (2000), Section 4) using
1000 replicates yields similar p-values: p = 0.55 and p = 0.97, respectively. Hence the
chosen Hawkes model seems to correctly reproduce the spectral characteristics of the data
(Figure 3(a)).
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Additionally, it is possible to derive a goodness-of-fit diagnostic plot, which gives helpful
information were the postulated model to be rejected, by looking at the asymptotic behavior
of the statistic q̂ given in (9). Indeed, under the null (Paparoditis (2000), Section 5),

Q2(ω, θ̂) = nh(q̂(ω, θ̂) − sh(ω))2

1
2π

∫ π
−π K2(u)du

→ χ2
1 ,

where sh(ω) = (nh)−1 ∑m
j=−m K((ω − ωj )/h). Then a plot of the test statistic Q2(·, θ̂ ) can

be used to diagnose the frequencies at which the fit of the model must be reevaluated by
comparing the values of Q2(ω, θ̂) against the (1 − α)-th quantile of the χ2

1 distribution (Fig-
ure 3(b)).

7. Conclusion. In this article, we establish a strong mixing condition with polynomial
decay rate for stationary Hawkes processes, then propose a Whittle estimation procedure
from their count data. To our knowledge, this is the first work investigating strong mixing
conditions for the estimation of Hawkes processes. This approach has appealing features: (i)
it has good asymptotic properties, similar to maximum likelihood estimation; (ii) it is easy to
implement and flexible, since the only user-specified input is the Fourier transform h̃ of the
reproduction kernel h∗; (iii) it is computationally efficient, with a complexity of O(n logn), n
the number of bins, from calculating the periodogram with a fast Fourier transform, compared
to O(p2), p the number of events, for the maximum likelihood method (except when the
kernel is exponential, in which case the complexity is reduced to O(p) with minimal efforts
(Ozaki (1979)), making it more efficient than our approach); (iv) it is particularly well adapted
to applications where the bin size cannot be chosen arbitrarily, that is, the events are only
counted in bins of fixed size.

APPENDIX A: PROOF OF THEOREM 1 AND COROLLARY 1

By definition, for a given Hawkes process N , we have

αN(r) := sup
t∈R

α
(
E t−∞,E∞

t+r

) = sup
t∈R

sup
A∈E t−∞
B∈E∞

t+r

∣∣Cov
(
1A(N),1B(N)

)∣∣,
where 1A(N) is the indicator function of the cylinder set A, that is, for an elementary cylinder
set AB,m = {N ∈ N : N(B) = m}, 1AB,m

(N) = 1 if N(B) = m and 0 otherwise.
We recall that a point process N is said to be positively associated if, for all families of

pairwise disjoint Borel sets (Ai)1≤i≤k and (Bj )1≤j≤l , and for all coordinatewise increasing
functions F :Nk →R and G :Nl →R, it satisfies

Cov
(
F

(
N(A1), . . . ,N(Ak)

)
,G

(
N(B1), . . . ,N(Bl)

)) ≥ 0.

We start by stating a useful property (see Gao and Zhu (2018), Section 2.1, key property (e)),
which follows from Hawkes processes being infinitely divisible processes:

PROPOSITION 2. The Hawkes process is positively associated.

Using this proposition and Poinas, Delyon and Lavancier’s work on associated point pro-
cesses (Poinas, Delyon and Lavancier (2019)), the following lemma controls the covariance
of the indicator functions by the covariance of the count measure of the process, then rescale
the problem to a single branching process, thanks to the independence between clusters of a
Hawkes process.
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FIG. 3. Goodness-of-fit diagnostic plots for the measles data set.

LEMMA 1. Let s, t, u ∈ R and r > 0 such that s < t < t + r < u, and let A ∈ E t
s ,B ∈

Eu
t+r . Then,

∣∣Cov
(
1A(N),1B(N)

)∣∣ ≤
∫ ∣∣Cov

(
N

(
(s, t]|y)

,N
(
(t + r, u]|y))∣∣Mc(dy),

where N(·|y) denotes the branching process consisting of an immigrant at time y and all its
descendants, and Mc(·) refers to the first-order moment of the centre process Nc.
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PROOF. Using Proposition 2 and (Poinas, Delyon and Lavancier (2019), Theorem 2.5),
we have ∣∣Cov

(
1A(N),1B(N)

)∣∣ ≤ ∣∣Cov(N
(
(s, t]),N(

(t + r, u]))∣∣.
Then, conditioning on the cluster centre process Nc (see, e.g., Daley and Vere-Jones (2003),
Exercise 6.3.4):

Cov
(
N

(
(s, t]),N(

(t + r, u]))
=

∫
Cov

(
N

(
(s, t]|y)

,N
((

t + r, u]|y))
Mc(dy)

+
∫

E
[
N

(
(s, t]|x)]

E
[
N

(
(t + r, u]|y)]

Cc(dx × dy),

where Mc(·) and Cc(·) refer to the first-order moment measure and the covariance measure
of the centre process Nc, respectively. Since the centre process is Poisson, Cc ≡ 0 and the
second term is zero. �

We are now interested in deriving an upper bound for the covariance of counts of a typical
single branching process N(·|y). Without loss of generality, we consider a cluster whose
immigrant is located at time y = 0. Let Zk denote the number of points of generation k, and
by Z

(s,t]
k those that are located in the interval (s, t] (s, t ∈ R). Note that, for generation 0,

there is a single immigrant located at time 0. By definition, we have

N
(
(s, t]|0) =

+∞∑
k=0

Z
(s,t]
k .

Then the covariance between two intervals for a branching process is

Cov
(
N

(
(s, t]|0)

,N
(
(t + r, u]|0)) =

+∞∑
k=0

+∞∑
l=0

Cov
(
Z

(s,t]
k ,Z

(t+r,u]
l

)
.

Before continuing further, we will need a few results on the Galton–Watson process
(Zk)k∈N:

LEMMA 2. For k ≥ 0, the expectation, variance and second-order moment of Zk are

E[Zk] = μk,

Var(Zk) = μk
k−1∑
j=0

μj = μk 1 − μk

1 − μ
,

E
[
Z2

k

] = μk
k∑

j=0

μj = μk 1 − μk+1

1 − μ
.

PROOF. Call φk the probability-generating function of Zk :

∀s ∈ [0,1], φk(s) = E
[
sZk

]
.

It is well known for a Galton–Watson process that (φk)k∈N verifies

∀k ∈ N, φk+1 = φk ◦ φ1,
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where in our case φ1 is the probability-generating function of a Poisson process with param-
eter μ. Differentiating the recurrence relation up to order 2 then evaluating it at s = 1 gives
the following relations:

φ′
k+1(1) = φ′

1(1)φ′
k(1),

φ′′
k+1(1) = φ′′

1 (1)φ′
k(1) + (

φ′
1(1)

)2
φ′′

k (1),

where φ′
k(1) and φ′′

k (1) are related to the moments of the process by

E[Zk] = φ′
k(1), Var(Zk) = φ′′

k (1) + φ′
k(1) − (

φ′
k(1)

)2
.

Finally, plugging in the initial conditions for the Poisson variable Z1, φ′
1(1) = μ and φ′′

1 (1) =
μ2, yields the expected result. �

LEMMA 3. For 0 ≤ k ≤ l, the covariance and second-order product moment of (Zk) are

Cov(Zk,Zl) = μl
k−1∑
j=0

μj = μl 1 − μk

1 − μ
,

E[ZkZl] = μl
k∑

j=0

μj = μl 1 − μk+1

1 − μ
.

PROOF. This is a straightforward recurrence, noting that

Cov(Zk,Zk+h) = Cov

(
Zk,

+∞∑
i=1

1{Zk+h−1≥i}Z1,i

)

= E[Z1,1]Cov

(
Zk,

+∞∑
i=1

1{Zk+h−1≥i}
)

= μCov(Zk,Zk+h−1),

wherein Z1,i denotes the number of offsprings of the point i of generation k + h − 1, is
independent of Z1,j (i �= j ), of Zk+h−1 and of Zk , and has the same distribution as Z1. �

Let T k
i denote the time of arrival of the ith point of generation k. It has a parent T k−1

j

(when k > 0). Let �k
i be the associated inter-arrival time, that is, �k

i = T k
i − T k−1

j . Then, for

each point i of generation k, there exists a sequence (α
(j)
i,k )1≤j≤k , with α

(k)
i,k = i, denoting the

indices of the ancestors of T k
i , such that

T k
i =

k∑
j=1

�
j

α
(j)
i,k

.

As a consequence, we get the following lemma.

LEMMA 4. For k ∈ N and 1 ≤ i, j ≤ Zk :

(i) T k
i and T k

j are identically distributed, with distribution function equal to the k-
multiple convolution of h∗ with itself,

(ii) For δ > 0, there is an upper bound on the mth moment of T k
1 :

E
[(

T k
1

)1+δ] ≤ k1+δ
E

[(
�1

1
)1+δ] = k1+δν1+δ,

where ν1+δ := ∫
R

t1+δh∗(t)dt .
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PROOF. Statement (i) follows from the variables �k
i being independent of �l

j for (i, k) �=
(j, l), and identically distributed with density function h∗. For statement (ii), the upper bound
of the (1+δ)-th order moment of T k

1 can be obtained using the following Hölder’s inequality:

T k
1 =

k∑
j=1

�
j

α
(j)
1,k

≤
(

k∑
j=1

1

) δ
1+δ

(
k∑

j=1

(
�

j

α
(j)
1,k

)1+δ

) 1
1+δ

.
�

Additionally, since for any point of the branching process offsprings are generated by a
Poisson process, the arrival times, say �k

i , are independent from the number of offsprings
generated at the current or past generations. Conversely, since the reproduction mean μ does
not depend on the time, the number of offsprings generated at any generation, say Zl , are
independent from the past arrival times. Consequently, we have the following lemma.

LEMMA 5. For k, l ∈N and 1 ≤ i ≤ Zk , T k
i and Zl are independent.

REMARK. This lemma separates the genealogy of the Galton–Watson process (Zk) from
the arrival times (T k

i ) of the branching process, analogously to how the Poisson process is a
binomial process with Poisson-distributed number of points. Then a cluster in a Hawkes pro-
cess is equivalent to a Galton–Watson process (Zk), upon which the ancestors (α

(k−1)
i,k ) are

drawn equiprobably from the Zk−1 possible ancestors and the (�k
i ) independently with dis-

tribution function h∗. Intuitively, since each point j of generation k − 1 generates offsprings
according to the same intensity measure, then each point of generation k has ancestor j with
equiprobability.

Finally, we will need the following identity for the covariance of the product of indepen-
dent random variables.

LEMMA 6. Let (Xk
i )i,k∈N and (Y l

j )j,l∈N be two collections of random variables such

that, for all i, j, k, l ∈N, the variables Xk
i and Y l

j are independent. Then

Cov
(
Xk

i Y
k
i ,Xl

jY
l
j

) = E
[
Xk

i X
l
j

]
Cov

(
Y k

i , Y l
j

) +E
[
Y k

i

]
E

[
Y l

j

]
Cov

(
Xk

i ,X
l
j

)
.

PROOF. Writing the expression of the covariance then adding and substracting the term
E[Xk

i X
l
j ]E[Y k

i ]E[Y l
j ] yields the relation. �

We can now derive an upper bound for Cov(Z
(s,t]
k ,Z

(t+r,u]
l ).

LEMMA 7. Let s, t, u ∈ R and r > 0 such that s < t < t + r < u. Suppose that there
exists δ > 0 such that ν1+δ < ∞. Then∣∣Cov

(
Z

(s,t]
k ,Z

(t+r,u]
l

)∣∣ ≤ 2
l1+δν1+δ

(t + r)1+δ
μk∨l 1 − μk∧l+1

1 − μ
,

where k ∨ l = max(k, l) and k ∧ l = min(k, l).

PROOF. We have

Cov
(
Z

(s,t]
k ,Z

(t+r,u]
l

) = Cov

(
Zk∑
i=1

1{T k
i ∈(s,t]},

Zl∑
j=1

1{T l
j ∈(t+r,u]}

)

=
+∞∑
i=1

+∞∑
j=1

Cov(1{Zk≥i}1{T k
i ∈(s,t]},1{Zl≥j}1{T l

j ∈(t+r,u]}).
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Then, by Lemmas 5 and 6,

Cov(1{Zk≥i}1{T k
i ∈(s,t]},1{Zl≥j}1{T l

j ∈(t+r,u]})

= E[1{Zk≥i}1{Zl≥j}]Cov(1{T k
i ∈(s,t]},1{T l

j ∈(t+r,u]})

+E[1{T k
i ∈(s,t]}]E[1{T l

j ∈(t+r,u]}]Cov(1{Zk≥i},1{Zl≥j }).

For the first term,

Cov(1{T k
i ∈(s,t]},1{T l

j ∈(t+r,u]})

= E[1{T k
i ∈(s,t]}1{T l

j ∈(t+r,u]}] −E[1{T k
i ∈(s,t]}]E[1{T l

j ∈(t+r,u]}]
≤ E[1{T l

j ∈(t+r,u]}]
≤ P

(
T l

j ≥ t + r
)

≤ E[(T l
1)1+δ]

(t + r)1+δ

≤ l1+δν1+δ

(t + r)1+δ
,

using Markov’s inequality for the second to last inequality, and Lemma 4 for the last one.
Similarly,

Cov(1{T k
i ∈(s,t]},1{T l

j ∈(t+r,u]})

= E[1{T k
i ∈(s,t]}1{T l

j ∈(t+r,u]}] −E[1{T k
i ∈(s,t]}]E[1{T l

j ∈(t+r,u]}]
≥ −E[1{T l

j ∈(t+r,u]}]

≥ − l1+δν1+δ

(t + r)1+δ
.

The second term is straightforward,

∣∣E[1{T k
i ∈(s,t]}]E[1{T l

j ∈(t+r,u]}]
∣∣ ≤ E[1{T l

j ∈(t+r,u]}] ≤ l1+δν1+δ

(t + r)1+δ
.

Then ∣∣∣∣∣
+∞∑
i=1

+∞∑
j=1

Cov(1{Zk≥i}1{T k
i ∈(s,t]},1{Zl≥j}1{T l

j ∈(t+r,u]})
∣∣∣∣∣

≤ l1+δν1+δ

(t + r)1+δ

∣∣∣∣∣
+∞∑
i=1

+∞∑
j=1

E[1{Zk≥i}1{Zl≥j}] +
+∞∑
i=1

+∞∑
j=1

Cov(1{Zk≥i},1{Zl≥j })
∣∣∣∣∣

= l1+δν1+δ

(t + r)1+δ
|E[ZkZl] + Cov(Zk,Zl)|

≤ 2
l1+δν1+δ

(t + r)1+δ
μk∨l 1 − μk∧l+1

1 − μ
,

using Lemma 3 for the last inequality. �
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Straightforwardly, since
∑

μk and
∑

l1+δμl are summable for δ > 0, we get the following
lemma.

LEMMA 8. Let s, t, u ∈ R and r > 0 such that s < t < t + r < u. Suppose that there
exists δ > 0 such that ν1+δ < ∞. Then∣∣Cov(N((s, t]|0),N

(
(t + r, u]|0)

)∣∣ = O
(

1

(t + r)1+δ

)
.

All that is left to prove Theorem 1 and Corollary 1 is to integrate the upper bound with
respect to the first-moment measure of the center process. Using the notation of Lemmas 1
and 8, and with Mc(·) = η(·)�(·) where �(·) is the Lebesgue measure,∣∣Cov

(
1A(N),1B(N)

)∣∣ ≤
∫
R

∣∣Cov(N((s, t]|y),N
(
(t + r, u]|y)

)∣∣Mc(dy)

=
∫ t

−∞
∣∣Cov(N((s, t]|y),N

(
(t + r, u]|y)

)∣∣Mc(dy)

= O
(∫ t

−∞
1

(t + r − y)1+δ
η(y)dy

)
=O

(
r−δ),

where the last inequality follows from the boundedness of η(·). This upper bound is valid for
any s, u ∈R therefore holds for A ∈ E t−∞,B ∈ E∞

t+r .
We now turn to an upper bound for the strong mixing coefficient when the reproduction

kernel h∗ admits a finite exponential moment, that is, there exists a0 > 0 such that

M(a0) :=
∫
R

ea0|t |h∗(t)dt < ∞.

Choose a ∈ (0, a0] such that 1 < M(a) < μ−1. Then, by substituting in Lemma 7 the Markov
inequality with

P
(
T l

j ≥ t + r
) ≤ E

[
exp

(
a
∣∣T l

1

∣∣)]e−a(t+r)

≤ E
[
exp

(
a
∣∣�1

1
∣∣)]le−a(t+r)

= M(a)le−a(t+r),

the term
∑

M(a)lμl is again summable, and Lemma 8 turns into∣∣Cov(N((s, t]|0),N
(
(t + r, u]|0)

)∣∣ =O
(
e−a(t+r)).

Finally, by integrating with respect to the first-moment measure of the centre process, we get
the desired result: ∣∣Cov

(
1A(N),1B(N)

)∣∣ = O
(
e−ar).
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APPENDIX B: FIGURES OF SECTION 5

FIG. 4. Performance of the Whittle estimates for the stationary Hawkes process with immigration intensity
η = 1, reproduction mean μ = 0.5, and reproduction kernel h∗(t) = γ aγ (a + t)−γ−1, where γ = 2.5 and
a = 1.5.
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FIG. 5. Performance of the Whittle estimates for the stationary Hawkes process with immigration intensity
η = 1, reproduction mean μ = 0.5, and reproduction kernel h∗(t) = γ aγ (a + t)−γ−1, where γ = 1.5 and
a = 1.5.
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FIG. 6. Performance of the Whittle estimates for the stationary Hawkes process with immigration intensity
η = 1, reproduction mean μ = 0.5, and reproduction kernel h∗(t) = γ aγ (a + t)−γ−1, where γ = 0.5 and
a = 1.5.
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