
HAL Id: hal-03718821
https://hal.science/hal-03718821v1

Submitted on 9 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of a Robot Axis with Effort Feedback
Sofia Torres, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier, Jorge

Martins

To cite this version:
Sofia Torres, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier, Jorge Martins. Control of a
Robot Axis with Effort Feedback. MIM2022, IFAC (Internationl federation of automatic control, Jun
2022, Nantes, France. �hal-03718821�

https://hal.science/hal-03718821v1
https://hal.archives-ouvertes.fr


Control of a Robot Axis with Effort
Feedback

Sofia Torres ∗∗ Pierre-Philippe Robet ∗ Yannick Aoustin ∗

Maxime Gautier ∗ Jorge Martins ∗∗

∗ Nantes Université, LS2N (Laboratoire des Sciences du Numérique de
Nantes), UMR CNRS 6004, Nantes, 44300 France (e-mail:

(Pierre-philippe.Robet, Yannick.Aoustin,
Maxime.Gautier)@univ-nantes.fr).

∗∗ IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa,
Portugal (e-mail: jorgemartins@tecnico.ulisboa.pt)

Abstract: This paper tackles the control design of a robot to handle said interaction. A new
model is written of an EMPS Prototype to emulate a robot-environment scenario, including
now two masses and with their interaction translated as a spring and damper system, followed
by the implementation of a cascaded loop of force-velocity control of the robot axis. A new
formulation of the force control is also designed and implemented considering the impedance
control theory. Finally, this model and its cascaded loop control is validated against real values
through the experiment proving its accuracy.
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1. INTRODUCTION

The world of robotics has evolved through multiple fields
since Isaac Asimov formulated the Three Laws of Robotics
in 1942 and coined the word "robotics". Depending on
which task the robot has to deal with, environment inter-
action can be a big issue or not. For example, the KUKA
robot can be used for welding in the automotive industry,
where it is taught a specific trajectory and velocity profile,
since its environment is unchanged throughout time. Since
its interaction with its environment is already predefined,
the robot-environment question is not necessarily an issue.
In the robotic-surgery field, the DLR-MIRO is an example
of a robot system designed to "assist a surgeon directly at
the operating table where space is scarce". In this case, its
environment is not necessarily straightforward and cannot
be fully defined prior to its interaction, creating a new
questions to its designers, like: How can we control the
robot to perform a specified task? How will the environ-
ment respond? Or how can we control said response?
When the environment response comes into play, it will
depend immensely on the system’s surroundings. A stiff
object can be easily thought as a spring with a high value,
in the other hand a soft tissue interaction can be very un-
predictable. How we control a robot-environment response
can be through hybrid force/velocity control when the case
is well structured and geometrically defined environments.
In this case, with a structured environment, force profiles
are easily designed as reference for the robot to follow,
but if the environment is unstructured and dynamically
changing, impedance control will be more adequate, where
we define the kind of dynamic response we desire from the
interaction robot-environment instead of a specific force
profile.

Impedance control has now been the focus of research in
works like Albu-Schaffer et al. (2007), Albu-Schaffer et al.
(2003), Albu-Schaffer and Hirzinger (2002), where light-
weight robots are the focus and torque-feedback controllers
as well as impedance schemes are implemented and tested.
In the work of Devie et al. (2017) and Devie et al. (2018),
the robot in question is a one-axis system with a force
sensor. So far a cascaded force-velocity control loop has
been designed to answer question number 1 and also some
strides have been made to answer question 3 through the
force control but also with an impedance control, like the
one described in Devie et al. (2018), where an effort was
made to compare these two types of control and it was
concluded that they were equivalent.
The goal of this paper is to extend the research of Devie
et al. (2017) and Devie et al. (2018). While so far the design
of controllers has been made on the assumption that the
two mass model can be simplified into a one mass model,
this assumption has not been fully analyzed or validated
with the real system, in sec. 2 a new model is formulated
and in sec. 3 its validation is performed. Section 4 offers
our conclusion and perpectives.

2. A SYSTEM OF TWO MASSES: MODEL
AND CONTROL

The proposed system in fig. 1 intends to model the EMPS
robot in a more complete manner than what was done
so far, in particular the mass m and the viscous friction
coefficient fv2 are considered.

2.1 System Modelling

The system consists of two masses M and m, which are
connected by a spring with stiffness K and a damper



Fig. 1. Two Mass System - Schematic.

with a viscous friction coefficient fv2, the mass M is also
affected by a damper of viscous friction with coefficient fv
Yi et al. (2010), Zhang et al. (2016). The system moves
in the horizontal direction and consists of two DoF , each
connected to each mass, fig. 2. The position of the Mass
M is described by q1 and the position of the mass m
is described by x = q1 + q2. There are also two others
inputs the motor force Fm applied to mass M and the
environment contact force F ∗

e applied to massm. With this
description the set of equations describing the full system’s
dynamics are:{

Mq̈1 = Fm − fv q̇1 +Kq2 + fv2q̇2
mq̈2 = F ∗

e −mq̈1 −Kq2 − fv2q̇2.
(1)

Fig. 2. Block diagram of the mechanical system.

2.2 Sensitivity Analysis

This system formulation adds two parameters: the mass m
and the viscous friction coefficient fv2. A sensibility anal-
ysis was done to understand the range of the parameters’
values where the model still corresponds to the reality it
is trying to simulate.

Mass m As it was previously mentioned, the mass m
in our system was neglected in previous work. Table 1
we define a set of mass values, which will be used for
a sensitivity analysis, where will make use of the Bode
Diagrams to compare the resulting dynamics. The purpose
will be to conclude what is the maximum value this mass
element can have for the assumption made in previous
work to hold. It is also important to notice the simulations
were performed setting fv2 = 0Ns/m, thus ignoring the
existence of this viscous element.
In the analysis it was considered only the input Fm and
the position outputs q1 seen in fig. 3(a), and q2 seen in
fig. 3(b). Since the range of values of q2 are several times
lower than those of q1, especially in haptic applications,
this means that the dynamic response of x is very similar
to q1. For the same reason it will make more sense to only
analyse the Bode Diagram of q2 and not of x.
The mass m has a clear influence in the natural frequency
of the system. This frequency is calculated, considering the
motion of the center of mass of the two-mass system, which
leads to the following equations:
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Fig. 3. Mass Influence: Bode Diagram for an Fm input.

Meq =
1

1
M + 1

m

=
Mm

M +m
(2)

ωn =

√
K

Meq
=

√
K(M +m)

Mm
(3)

Table 1 has the values of mass m and the correspondent
natural frequency. In the obtained results we see that
for a mass m up to 10kG the dynamic behavior of q1
is maintained while the natural frequency, where the
peaks of magnitude happens, is moving according to the
values in table 1. However, if we consider values above
10kG, the response in frequency domain deviates from the
almost linear evolution in magnitude, especially for lower
frequencies (below 100rad/s), i.e. the effect of mass m on
the overall dynamics can no longer be ignored.

Table 1. Natural Frequency Values

m [kg] ωn [rad/s]

0,1 447.44
1 142.16
10 47.01
100 20.26
1000 15.18

Friction Coefficient fv2 Considering now the friction
coefficient fv2 connecting the two masses, we will focus on
the dynamic behavior of massm, where we setm = 0.1kG.
The natural frequency just considering a stiffness K and
mass m is ωn2 =

√
K
m = 447.2rad/s and the respective

time period of a step response is Tp = 2π
ωn2

= 0.014s. The
time period can be checked in time response to a step input
with F ∗

e = 10N in fig. 4(b), as well as the steady state value
of the final position where we have q2 = F ∗

e /K = 0.0005m.
Considering the different values of fv2 in fig. 4(a), we see
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an underdamped system for values 0 and 10Ns/m with
oscillatory responses, for fv2 = 100Ns/m we see a critically
damped system with no overshoot and a fast settling time
of Ts = 0.015s, a desired response, and finally with a value
of 1000Ns/m the system has an overdamped response with
a very slow time response of Ts = 0.2s.
A last analysis was done with the complete model and its
Bode Diagram was analyzed (figs 5(a) and 5(b)). For the
dynamic of q1 the resonance disappears for friction values
different than zero, but otherwise the frequency response
maintains constant. While considering the dynamic of
q2 for values below 100Ns/m it has a peak value in
magnitude for the natural frequency that does not occur
for a 100Ns/m of friction coefficient - the critically damped
case. When considering a full model for future simulations
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Fig. 5. Friction Influence: input Fm.

a friction coefficient value of 100Ns/m will be used, because
of its critically damped behavior that gives the fastest
response possible without overshoot. A final and true value
can only be obtained with the experimental validation.

2.3 Velocity Control Loop

Control Design To implement a closed loop control of
the velocity q̇1 like the one in Devie et al. (2017), it was
first considered a simplified model with m = 0kG. This
means that the system consists only of a mass M and a
damper of coefficient fv, with the transfer function

TM =
q̇1
Fm

=
1

Ms+ fv
. (4)

The controller considered is an Integral and Proportional
(IP ) controller, obtaining a fast response with a lower
overshoot when compared to a PI controller. The open
loop transfer function considering the velocity controller
and the mass-damper system is written in (5). This trans-
fer function is then used to calculate the control gains.

Tv =
q̇1

q̇ref − q̇1
=
kvGτ
tvs

1

Ms+ fv + kvGτ
(5)

We want Tv(jωv) = 1ej(−π+φv), with frequency ωv =
200rad/s and a phase margin φv of 70◦ . We obtain the
expressions for the controller gains kv and tv in (6) and
(7) respectively.

kv =
Mωvtan(φv)− fv

Gτ
= 1.4856 103 (6)

tv =
kvGτ
Mω2

v

cos(φv) = 0.0047 (7)

With the set of controller gains calculated, the control
scheme is added to the full two mass model and the Bode

Diagram from input q̇ref to outputs q̇1 and ẋ is evaluated,
Fig. 6. Firstly, we see that q̇1 and ẋ have the same dynamic
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Fig. 6. Velocity Control-Bode Diagram comparaison be-
tween the two outputs: q̇1 and x

response which is to follow the desired velocity input, at a
frequency 100rad/s their magnitude starts to decrease, i.e.
the input desired velocity starts to no longer have an affect
on their response. Finally, up until a frequency 100rad/s
the dynamic response of both outputs are equal or up to
a difference of 0.4dB (a negligible difference).

Sensitivity Analysis It is important to understand how
the inner control loop changes the system, therefore a
sensitivity analysis will be performed to evaluate the
influence of the parameters in the new system.

2.3.2.1. Mass m For values ofm {0.1, 10, 1000}kG the
dynamic of q̇1 in fig. 7(a) is not affected by an increase of
mass, as the difference of magnitude between the systems
corresponding to each of the three masses is around 0.4dB
maximum, happening only at the natural frequency. While
the response of ẋ in fig. 7(b) is clearly affected with values
above 10kG inclusive, where the magnitude peaks at the
natural frequency values and the system could become
unstable, furthermore the phase of ẋ goes to -180◦ much
earlier for higher mass values, i.e. mass m will be moving
in opposite direction with respect to mass M , which is
highly undesirable. Only for values of mass below 10kG
the difference between q̇1 and ẋ is negligible, within the
working frequency range.
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Fig. 7. Velocity Control - Bode Diagram comparison be-
tween the two outputs: q̇1 and x.

2.3.2.2. Friction Coefficient fv2 The influence of the
damping system in the dynamics of q̇1 except for the
natural frequency with fv2 = 0. While considering the
dynamics of ẋ, the impact of the damping system is more
evident, as increasing the friction value up to 100Ns/m



decreases the peak magnitude value. Furthermore the
responses are very similar up to 1000rad/s for systems with
a friction coefficient between 100 and 1000Ns/m. With this
analysis we can say that for lower values of fv2, mass m
will start oscillating earlier and with a higher magnitude,
i.e. can become an unstable system. On the other side,
for higher values of fv2, mass m has a more compliant
response, i.e. for the working frequency range mass m
follows the dynamic response of M .
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Fig. 8. Velocity Control - Friction Coefficient Influence:
Bode Diagram.

2.4 Force Controller

Control Design A proportional force control was de-
signed as the outer loop of the cascade control. In this type
of control the most critical configuration while interacting
with the environment is when it encounters a rigid obstacle
with a stiffness that tends to infinity, this means that the
equivalent stiffness of the set: Sensor + Environment, is
equal to the stiffness K. It also means that the position
of the end-effector is constant at x = 0. To achieve this
we set q1 = −q2 and we can write the value measured by
the force sensor as −Fe = Kq1 = K q̇1

s with fv2 neglected.
With these assumptions we can obtain an expression for
the force control gain ke.
To obtain the control gain, we first need to write the
closed loop transfer function of the velocity control and
then it is straightforward to close the outer loop with the
proportional force control, as seen in (8), and compute
the frequency ωe through (9), considering a desired phase
margin of φe = 70

◦
.

Tf =
−Fe

Fref − Fe
= Tvclosedke

K

s
(8)

ωe = ω0v(−zvtan(φe) +
√

1 + tan2(φe)z2v)

= 73.8531rad/s
(9)

After calculating the frequency ωe, we are able to calculate
the control gain ke considering that we would like the
following expression to be true |Tf (jωe)| = 1, obtaining:

ke =
ωe
K

√√√√(1− ( ωe
ω0v

)2
)2

+

(
2zv

ωe
ω0v

)2

= 0.0101

(10)

Simulation implementation With the controller gains
calculated, the control scheme is implemented with Mat-
lab. It is worth noticing that to obtain the force sensor

value, we take the value of q2 and multiply it by the
sensor’s stiffness K, neglecting its viscous friction.
Afterwards we compare the dynamic response of Kq1 and
Kx. The Bode Diagram shows that up until a frequency of
100rad/s they have equivalent performances, both masses
moving as one body. For higher frequencies we see the
peak magnitude still happening at the natural frequency
f = 447rad/s, with Kq1’s peak of magnitude happening
much more abruptly due to the velocity control but rapidly
returning to the previous slope tendency, while Kx has a
more smooth transition to its peak of magnitude but after-
wards goes to a bigger slope with its magnitude response
declining more rapidly than Kq1, Fig. 9.
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Fig. 9. Force Control: Comparison between the two out-
puts Kq1 and Kx.

Sensitivity Analysis A final sensitivity analysis is in
order now with the complete cascaded loop control im-
plemented.

2.4.3.1. Mass The natural frequency decreases as m
increases. The behavior of Kq1 remains similar within the
frequency range, but the Kx behavior changes dramati-
cally for values above 1kG. Because the control variable
used is q1, the remaining degree of freedom x is free and
its Bode Diagram is expected considering a mass m at the
end of a spring.
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Fig. 10. Force Control - Mass Influence: Bode Diagram
with input Fref .

2.4.3.2. Friction Coefficient Looking at the influence
of the friction coefficient, the behavior of Kq1 is almost
identical except for the peak in magnitude that appears
when fv2 is 0Ns/m. In terms of the behavior of Kx, up
until a frequency of 100rad/s the behavior is unchanged
but above this frequency the magnitude shows a departure
from the initial dynamic response for fv2 = 0Ns/m, i.e.
the magnitude’s slope for higher frequencies decreases at



higher values of fv2. In terms of phase, Kq1’s behavior
is almost unchanged except at the natural frequency.
HoweverKx’s phase at higher frequencies, when increasing
the viscous coefficient, will tend to zero, i.e. mass m will
synchronize with mass M .
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(a) output Kq1.
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Fig. 11. Force Control - Friction Coefficient Influence:
Bode Diagram.

3. VALIDATION OF SYSTEM OF TWO
MASSES

3.1 Introduction to dSpace

Fig. 12. dSpace - One Axis Robot.

The experiment environment is the dSpace shown in
fig. 12, where we see the different practical elements with
their correspondents to our model in analysis: 1) Carriage
(mass M); 2) Force Sensor (mass m); 3) Motor (source
of input Fm); and 4) Encoder (velocity and position).
During the experiments with dSpace an adjacent computer
running the simulation is connected with dSpace, where
we store the different sensor information. While using the
velocity or the position of the carriage we must take care
of which values refer to which reference, i.e. that the value
from the encoder is measuring on the motor side and the
controller’s calculations are done in the carriage’s side, i.e.
qcarriage = Rqmotor with R=3.979 10−4 m/rad.
The carriage’s velocity and the force sensor’s data are
the main values used for control as explained before, the
remaining sensor information such as the position and the
current will be used to compare to the values obtained
with the dynamic model designed in the previous chapter,
to validate its information and confirm the veracity of
the new parameters’ values. Throughout the experiments
different mass configurations were used.

3.2 Model Validation

To begin the validation of the system, we start with an
impulse response experiment, where we give an impulse
to F ∗

e and analyse the force sensor’s response. In this
experiment we want to guarantee that the response is only

due to the input of F ∗
e and not Fm. If we acknowledge

that the mass value of M is much higher than m and that
the damping value of fv is high enough, then an impulse
of F ∗

e , of small value, will not affect the dynamics of M .
To make sure that this affirmation is true, experiments
with the velocity controller of q̇1 set at zero. In fig. 13
we see the impulse response in force for each of the three
different mass configurations. For a higher mass value the
natural frequency decreases Fu and Song (2019). These
time values can be checked in table 2. Considering only
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Fig. 13. Force Response to Impulse Input - Mass Configu-
rations.

the force profile for the third mass configurationm = 0.1+
0.395kG (which has a better and clearer result), the system
has a sinusoidal response and an exponential decrease in
magnitude. The latter observation is of interest because
we can define an exponential function and calculate it’s
time constant T to deduce the real friction coefficient value
fv2 = 5.2585Ns/m.

Table 2. Force Impulse Response - Time values

Mass m [kG] Simulation
Frequency [rad/s]

dSpace
Frequency [rad/s]

Percentage of
Error [%]

0.1 448.8 698.1 35.7
0.1+0.1133 314.2 392.7 20.0
0.1+0.3916 202.7 251.3 19.3

3.3 Velocity Control

Considering only the velocity control loop, to evaluate
the accuracy of the simulation considering the dSpace
experiments, first we calculate the difference between the
simulation profile and the dSpace profile. Figure 14(a)
shows the result of the velocity difference with root mean
square value of 10−3m/s, and the peak value of difference
happens during the step sequence at 1s. Afterwards, the
autocorrelation function of the velocity difference was used
to conclude if the model is able to reproduce the dynamic
patterns that have been observed in the real system.
Since the result from the autocorrelation function drops
to zero very fast (in 72 lags), the velocity difference can be
described as a random uncorrelated series of time, which
also means that the simulation output and the reality’s
only difference is noise and not unmodeled dynamics. With
this we conclude that the simulation’s output is very close
to the observed real output.

3.4 Mass Influence

To see the evolution of the velocity response when increas-
ing the mass m value, we consider three mass configu-
rations: m = {0.1, 0.1 + 0.1133, 0.1 + 0.3916}kG. The
difference in velocity profiles between the experiment and
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(a) Velocity error between exper-
iments and simulation.
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Fig. 14. Velocity Control with m = 0.1kG.

simulation and for different mass values the tendency is
maintained. Afterwards, we do the same procedure now
considering the autocorrelation functions seen in fig. 14(b).
Even with a changing mass value, our autocorrelation
function is practically the same, i.e. the velocity differ-
ence between simulation and observed real output is not
influenced by mass m value.
In conclusion the different mass configurations the velocity
controller is able to maintain the same performance (time
response, transient response and steady state response);
and the difference between the result from the model
implemented and the result from the dSpace experiment
is constant. The root mean square error of the velocity
response with respect to the reference is maintained con-
stant both for the simulation and the experiment.

3.5 Force Control

Considering the full control scheme dSpace is set up
without any obstacles and a force trajectory is chosen as
input reference Fref .

Trajectory The velocity error is analyzed, with the two
mass configurations m = {0.1, 0.3956}kG. Analyzing the
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Fig. 15. Velocity error between experiments and simulation
- Mass Influence.

velocity error profiles we obtain the root mean square value
of 1.93% for a lower mass and a higher mass configuration
has a value of 2.06%, whose values are very close to each
other. Afterwards, the autocorrelation function is used
with velocity error as input for each mass, obtaining the re-
sults seen in fig. 15(b), where we see the same tendency for
both masses. As before, since the autocorrelation function
quickly tends to zero, its time series is uncorrelated and is
said to be a random signal, i.e. the simulation results are
very close to the reality they are meant to represent.

4. CONCLUSIONS

A complete two mass model is defined with an interaction
of the type spring-damper system, that simulates with
accuracy an EMPS prototype. A cascaded loop control was
implemented with an inner loop controlling the velocity
q̇1 and an outer loop controlling the interaction force
between the two masses. In this new model, two new major
variables were added: mass m and the viscous coefficient
fv2, to understand their influence in the overall model,
a sensitivity analysis was done at three different stages:
model writing, velocity control implementation and force
control implementation. In terms of the mass m, its value
of 0.1kG was of little significance when compared with the
remaining dynamics within the system.
To follow the simulation work, a validation of the system
was performed and an equivalence between the theoretical
model and the real system was established, considering
different mass m values. During the validation process a
real value for the added variable fv2 was found.
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