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1 Introduction : 
 
Diseases caused by genetic mutations are numerous. One of the most 
representative cases is likely breast/ovarian cancer favored by BRCA 
mutations. But other mutations are suspected for many cancers as well as in 
other types of diseases like cardiovascular ones. Neurodegenerative diseases 
may soon join the list of pathologies associated to mutations. Even if 
sequencing the genome - or, as far as we are concerned, part of it - has become 
faster and much less expensive, it cannot yet be systematically performed for 
various reasons and its analysis requires to have fully identified the mutations 
involved. Therefore we still need reliable computer tools first to evaluate a 
familial predisposition considering its medical data, i.e. the pedigree, second to 
limit the genetic inquiry to a reduced number of susceptibility genes and third, 
to estimate the individual risk to inherit a deleterious genetic mutation. 
 
 
Scoring systems (BRACAPRO [Berry, 2002], Manchester [Evans, 2009], 
Eisinger [Eisinger, 2004]…) have been built in the context of HBOC 
(Hereditary Breast/Ovarian Cancer) and various refinements have been 
proposed [Bonaïti, 2011]. These scoring methods only require a few additions, 
so their implementation is easy. However, the amount of family information 
they use is limited and their performance is not optimal. Nowadays, family 
history is becoming better and better reported, going back several generations 
and stored in databases. Relatively complex calculations are therefore easy to 
perform. One can in particular calculate the probability of mutation knowing 
all the family information which is the best predictor of the mutation risk. This 
method has long been described by Elston and Stewart [Elston, 1971]. The 
prognosis can of course be confirmed or reversed after sequencing, in the case 
of mutations that are clearly identified. And in all cases, this risk calculation is 
a valuable tool in the personalization of screening and medical monitoring. 
 
 
 
In this context of an ever-increasing availability of data and of calculation 
possibilities, the aim of this article is to optimize the design of this method and 
to examine its performance using simulations. 
 
A few words about the underlying model first. Since the prognosis method we 
are discussing is based only on probability calculations, it does not require a 
detailed knowledge of the nature of the mutation concerned (or the mutations 
concerned). We will assume, as in most of the known cases, that the 
deleterious effect of the mutation consists of a strong increase in penetrance 
i.e. the probability of declaring the disease at some point in one's life and an 
earlier age of onset. These effects are evidently seen in the case of cancer, but 
we aim in this work to establish a general mathematical framework that is not 
restricted to a specific disease. In what follows, the disease caused by the 
mutations will be called and noted K. 
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Whether the antecedents are collected by the oncogeneticist especially for this 
prognosis purpose or whether they are pre-existing in a database, it is necessary to 
question the desirable period of this family exploration, that is the size and shape 
of the family tree to take into account, provided of course that such a tree can be 
completed in relation to the individual concerned. Several issues naturally arise: 
 
- Is the prognosis always better when a larger number of parents are included? 
- Is it desirable to go back the generations as much as possible? 
- Does taking siblings into account in the ancestral line improve the result? Are 
cousins useful? 
- Is the prognosis easier in families with several cases of illness? 
- Do descendants provide information as valuable as ascendants to evaluate the 
mutation risk? 
- What sensitivity and specificity can be typically achieved by this kind of method 
and what is their variability according to the parameters of the model? 
 
We will answer these questions, with answers that are sometimes surprising, in 
Section 3. Before that, we present the modelling of the data and the principle of 
the computational algorithm in the following Section 2. We end this paper in 
Section 4 with a discussion about the limitations and possible extensions of our 
work. 
 

2 Model and data description  
 

The basis for constructing a random model is that individuals from the same 
family have genotypes stochastically linked to each other by Mendel's laws (50% 
chance of inheriting a mutation from one of its parents). But these genotypes are 
hidden and all statistically usable data (phenotypes) are random expressions of 
these genotypes. Mathematically, this is a hidden Markov process indexed by a 
tree. Two difficulties then arise: 

• The combinatorial explosion in the number of possible genotypes makes 
unrealistic - except for small families - any approach based on the 
exhaustive examination of all possible genotypes, i.e. a brute force method. 

• Because the considered mutations are relatively rare in frequency in the 
general population, the effect to be analyzed remains narrow and it must be 
distinguished from the random noise which here takes the form of sporadic 
onset of the disease, generally at an older age. 

 

In the following numerical calculations, the probability of the disease occurrence 
(as a function of the age), depending on whether a mutation is involved or not, will 
have the same distribution as what is observed for breast/ovarian cancers with or 
without a BRCA mutation:  
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Figure 1: probability laws used to model the onset of cancer according to age. 

 
In addition, we only consider the case of heterozygous mutations, knowing that 
homozygous mutations are generally lethal during embryogenesis. We therefore 
consider that the genome of each individual is a random quantity having two 
possible states {wild-type, mutated} with the following associated probabilities: 
 

Table 1: Probability for an individual to inherit a deleterious mutation from his parents 
depending on whether or not they are carriers 

¯ mother   /   father ® wild-type mutated 

wild-type 0 0.50 

mutated 0.50 0.75 

 

We assume that all the parameters of the model are known: 
• the mutation frequency in the general population, 𝑝" 
• the penetrance of K for non-mutated subjects, 𝑝# 
• the penetrance of K for the mutated subjects, 𝑝$ 

 
However, these parameters can be varied in order to consider penetrances linked 
to less deleterious mutations or even interactions between mutations and 
polymorphisms that are very poorly penetrating alone. The methods for evaluating 
these different contexts will be discussed in Section 4. 
 

Here, we assume that the data available per individual is the year of birth, whether 
or not the disease occurred, and if so, the age at reporting. Such an approach, 
although it appears succinct, has the advantage of being easily generalizable. To 
quantify the performance of the algorithms used, we are going to perform data 
simulations according to the following model: for each family pedigree, we will 
first generate the (hidden) genotypes: for any individual, his genotype is obtained 
randomly but according to that of his parents if they are present; if they do not 
exist in the family pedigree, we will use the frequency 𝑝". We then randomly 
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assign birth years to the family members so that ages are consistent with the 
generations. Finally, the phenotypes are generated by taking into account the 
genotypes, the value of the parameters p0 and p1 and the laws described at Figure 1. 
 

2.1 Principle of the mutation risk computation 
 

The calculation of the risk of mutation considering the disease cases in the family 
by the conditional probability calculation, as reported below, has been described 
long ago [Elston, 1971]. However, its implementation for each specific case is 
complex. For this reason, practitioners rather use scoring methods which only 
require making a few additions or subtractions but without being able to claim the 
same performance [Bonaïti, 2014]. 
 

Let us denote by F the set of phenotypes of all family members - known family data 
- and denote by G the compilation of the (unknown) genotypes of individuals, in 
particular G(i) will denote the genotype of the ith individual. For the single 
mutation model which we are working with until stated otherwise, we will note 
𝐺(𝑖) = 1 when individual i is mutated and 𝐺(𝑖) = 0	otherwise. 
 

An elementary probability calculation from Bayes' theorem shows that: 
 

 

In each of these two expressions, the sum is extended to all possible genotypes 
satisfying the mentioned constraint on the genotype 𝑔(𝑖) of individual i. Explicit 
expressions for the conditional probability of the phenotype F knowing that the 
genotype is g and for the probability that 𝐺 = 𝑔 are given in Section 2.4.3. 
 

Note that the calculation of the numerator and the denominator require either 
scanning all possible genotypes or proceeding by a Monte-Carlo method. The first 
method, called "by brute-force", is possible for small families and requires the 
calculation of the likelihood of each genotype g. Note, moreover, that a fraction of 
genotypes are impossible, therefore of zero probability; the summation is de facto 
reduced to eligible genotypes. The Monte-Carlo method consists in simulating a 
series of genotypes, either by direct process or by a Metropolis algorithm 
[Metropolis, 1953]. With this method, formula (1) is rewritten: 
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where G1, G2, ... forms a series of random draws among the set of possible 
genomes, according to Mendel's laws and the contextual hypotheses mentioned 
above. The 1A function refers to the binary indicator function which is equal to 1 if 
A is carried out and 0 otherwise. Numerically, it is necessary to ensure that there is 
a sufficient number N of simulations so that both the numerator and especially the 
denominator are estimated correctly. 
 

The (conditional) probability of mutation obtained by formula (1) is a 
quantification of the risk of mutation of an individual but also indirectly of the 
family risk. One may prefer a "mutated/non-mutated" binary predictor, which will 
be obtained by thresholding: for a threshold level s, the individual i is 
prognosticated as mutated if 𝑃(	𝐺(𝑖) = 1	|	𝐹) > 𝑠. From a certain point of view, one 
may regret this conversion in binary prognosis of a quantitative risk which is a 
priori more informative. However, this conversion then makes it possible to 
analyze the predictor with the usual performance indicators, i.e. in terms of 
sensitivity (percentage of well predicted among the mutated) and specificity 
(percentage of well predicted among the non-mutated). We will present the 
traditional Receiver Operating Characteristics (ROC) curve and in the rest of this 
chapter, the different predictors will be compared using the relative position of 
their ROC curves and the corresponding areas under curve (AUC). We can also 
consider evaluating the performance on the whole family tree, which amounts to 
averaging the predictors on all the individuals of the pedigree. The results are 
generally better, but less pertinent so we will leave them aside to focus on the 
individual case. 
 

2.2 Standardization of family trees 
 

One of our main purposes is to address the influence of the size and shape of the 
family tree considered. In a real situation, the family tree is constrained in its form 
by the number of children born of the different couples and by the ability to obtain 
reliable information about the phenotype of each individual. This last point applies 
particularly to older generations, because they have had time to present the 
disease. As a result, the size and especially the shape can vary a lot. 
 

To facilitate comparisons, we are going to use a generic form of regular pedigree, 
with two parameters which are the size (number of children per couple) and the 
height (number of generations), and to answer specific questions later, we will 
define other typical shapes. We call regular pedigree with ng ³ 2 generations and ne 
³ 1 children per couple and we denote by Reg(ng, ne) a pedigree whose skeleton is 
the ancestral line of an individual numbered 0 which goes back to ng generations 
including the ancestors of two genders and to this skeleton, we add ne children for 
each couple. Here is a diagram of a Reg(4, 3) type pedigree: 
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Figure 2: Diagram of a regular pedigree of 4 generations and 3 children per couple. Women are 
colored in pink, men in blue and regardless of gender in grey. Individual quoted 0 is 
the one considered for the calculation of the mutation risk. 

 

For comparisons, we can fix ng and vary ne ³ 1, or fix ne ³ 1 and vary ng ³ 2. An 
intuitive idea -- maybe naïve -- is that the more individuals are taken into account 
(richness of phenotype), the more the performance of the predictor increases, 
probably up to a certain limit. A related but more subtle question is to assess the 
importance of fixed-size tree shapes: is it better to have more generations but 
fewer individuals per generation than the opposite? In particular, we will compare 
the performance of the predictors for two pedigrees both comprising 15 
individuals. The first is Reg(4, 1) which we will call “Grt Grd Par” because it 
involves all the great-grandparents. Here it is: 
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Figure 3: Regular pedigree with 4 generations and 1 child per couple 

 

The second that we call “Wide 3 gen.” also includes 15 members but only 3 
generations because of the addition of uncles / aunts and cousins. 
 

 

Figure 4: Design of the pedigree « wide 3 gen. » with 15 members. 

 

In the case of the regular tree Reg(ng, ne) with ng ³ 3 and ne ³ 2, individual 0 has 
uncles (or aunts) but his cousins do not appear. In general, it might be interesting 
to isolate the influence of individuals a little further from the direct ascending line 
of individual 0. We will compare the family “Uncles”, a family with 11 individuals, 
to the family “Cousins” with 19 individuals. This latter strictly contains the family 
“Uncles” but 8 cousins are added, drawn in green in the diagram below: 
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Figure 5 : design of the pedigree “Cousins” (19) after the addition of 8 cousins (in green) to the 
pedigree “Uncles” (11) 

 

Studying the influence of the shape, we also study the case of an asymmetric family 
pedigree in the sense that only one of the parents of individual 0 is entered. For 
example, we compare the predictors obtained for the following two families of 
almost identical sizes: 
 

 

Figure 6: Asymmetry created between two pedigrees Reg(3, 1) by moving individual 0 down of 
one generation and omitting his father. 
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In the previous diagrams, individual 0, for which the mutation risk is evaluated, is 
positioned on the right and his risk is calculated according to individuals of the 
same or previous generations represented at his left.  
One might question to what extent descendants can also provide valid information 
about an individual's genotype. Of course, this can be informative only if an 
individual is old enough to have children and these children should not be too 
young themselves. This may limit its practical value, but this problem remains an 
interesting question. In particular, for a fixed pedigree size, do ascendants give 
more information than descendants?  
 

Recall that to obtain our numerical results we simulate families with inevitably a 
choice on the law of the birth year by generation. Here, the years of birth are 
chosen so that the (potential) age of the individuals is uniform in [30, 50], [50, 70] 
and [70, 90] respectively for the first 3 generations. We use the word “potential” 
because the individual may in fact have died earlier, either from the disease K 
studied or from another cause. It is essential to take age into account because the 
likelihood of having contracted the disease K before a given date depends on how 
long the individual has lived. Consequently, "young" individuals, for example of 
the first generation, a priori provide little information, which suggests that 
prediction with ascendants is more efficient than that with descendants. To carry 
out this comparison, we will compare the predictors associated with pedigrees 
"Grd Par." = Reg(3, 1) including 7 individuals and “Grt Grd Par." = Reg(4, 1) 
containing 15 individuals respectively to those calculated with the following 
pedigrees: 

 

Figure 7: Two kinds of pedigree with one or two descending generations  

 

2.3 The importance of conditioning 
 

Nowadays, the individual mutation diagnosis is primarily offered to families 
considered at risk and a family is considered as such if one or even several cases of 
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sickness K have occurred. This induces a strong bias on data in present databases 
such as the ones collected by anti-cancer centers. In particular, estimating some 
parameters in these databases will lead to values radically different from the ones for 
the general population. In the future, larger and less biased databases will probably 
emerge and risk calculation will be computed systematically as a prevention 
approach. Consequently, in the following numerical experiments we will consider 
both the case of unconstrained family and the case of families conditioned to have (at 
least) a certain number of cases of illness. The performances and ranking of the 
predictors can change significantly between the two cases.  
 

2.4 Notation and formulas used in software 
 

To ensure reproducibility of our work, our demonstration software (in Python) can be 
downloaded at the address:  https://drive.uca.fr/f/a07b89c2df52460686bf/?dl=1  

With minor adaptations this software can execute most of the experiments that 
follow.  

To complete the mathematical description of the risk computation algorithm and 
make the software clear, we give in the present subsection the necessary notation and 
the explicit formulas for the laws (likelihood) of the random objects involved.  

 
2.4.1 Coding the family tree structure 
 

   Mathematically a family tree is a set of 𝑛 (related) individuals, numbered from 1 to 𝑛,  
for whom data have been collected. The genealogical relations between these 
individuals are modeled —both in the formulas below and in the companion  
software—  by two vectors  (𝑓(𝑖), 1 ≤ 𝑖 ≤ 𝑛)	and (𝑚(𝑖), 1 ≤ 𝑖 ≤ 𝑛) where, for  1 ≤ 𝑖 ≤
𝑛, the value  𝑓(𝑖) [resp. 𝑚(𝑖)] indicates the index of the father [resp. mother] of the 
individual of index 𝑖, when these parents belong to the family tree i.e. the set of 
individuals for whom data are available. Otherwise, we set 𝑓(𝑖) = −1  if the father of 
the individual 𝑖 is out of the tree and we write 𝑖 ∈ 𝑈<. Similarly, 𝑖 ∈ 𝑈"   if 𝑚(𝑖) = −1, 
meaning the mother of 𝑖 is out of the tree. 
 
2.4.2 Genotype: law and generation 
 

For a given family tree, the genotype 𝐺 = (𝐺(𝑖), 1 ≤ 𝑖 ≤ 𝑛) is the collection of the 
genotypes of all individuals in the tree. For 1 ≤ 𝑖 ≤ 𝑛, we have 𝐺(𝑖) = 1 or 0 according 
to the individual being mutated or wild-type, respectively. The only parameter useful 
in the generation and the expression of the law of the genotype is  𝑝", the probability 
for an individual drawn at random in the population to be mutated. This is used for 
the genotype of individuals whose parents are out of the tree. For the other 
individuals, the probability of being mutated is expressed conditionally to the state of 
their parents, as prescribed by Mendel laws. To this end, we introduce the 3 × 2 
matrix 
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which gives the probability for an individual to be wild-type (column 0) or mutated 
(column 1) according to the number of mutated parents: 0 for line 0, 1 for line 1, 2 for 
line 2. Recall Table 1 for justifications. Taking into account the previous remarks, the 
law of the family genotype 𝐺 is given by: 

 
 
Note that this probability can be zero since the matrix 𝑀 contains a null term 
corresponding to the probability for an individual to be mutated when neither of his 
parents are.  
2.4.3 Phenotype: law and generation 
 
The family phenotype  

 
is the collection of the phenotypes of the 𝑛 individuals under consideration and, in 
the present work, these phenotypes are reduced to the occurrence or not of a cancer 
and, in the positive case, the age of onset (which in reality is more often the age of 
diagnosis). The phenotype of one individual is thus the age of diagnosis between 0 
and 99 or the value 200 meaning by convention that no cancer has occurred. 
 
We use the two parameters introduced earlier: 𝑝$[resp. 𝑝#] is the probability that a 
mutated [resp. wild-type] individual develops a cancer throughout his life. Given that 
an individual does develop a cancer, the age of diagnosis is given by one of two 
probability laws (𝑑B(𝑡), 0 ≤ 𝑡 ≤ 99) depending on whether the individual is mutated 
𝑔 = 1 or not 𝑔 = 0. The curves we use in practice for our numerical studies are drawn 
in Figure 1. The ages (𝑎(𝑖), 1 ≤ 𝑖 ≤ 𝑛)	of the family members are randomly generated 
throughout the tree in a coherent manner as specified before. For old generations, 
age has to be understood as potential age and is set to 99.  
 
With the previous notations, the conditional law of the phenotype 𝐹 knowing the 
genotype 𝐺 = 𝑔 can be expressed as 

M =

0

@
1 0
0.5 0.5
0.25 0.75

1

A = (M [i, j], 0  i  2, 0  j  1)

<latexit sha1_base64="+YJB5OhQPBZcBrPE+BcuE2gEMR4="></latexit>
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3 Results 
 
We now present results of numerical experimentations which address the 
questions stated in the introduction.  For most of them a choice of parameter 
values had to be made. Unless stated otherwise, we chose 𝑝" = 0.03, 	𝑝# = 0.02, 
𝑝$ = 0.7. Although this appears arbitrary, we have carried out enough 
experimentations to be convinced that the phenomena we emphasize hold for 
other “typical’’ values of the parameters. Moreover, the available software enables 
the reader to check by himself for any set of values. 
 

3.1 Reliability of the inference: confidence intervals  
 

In what follows we will compare different predictors on the basis of their ROC curves 
and in particular the area under these curves (AUC). These ROC curves are obtained 
after hours of intensive computation but are still submitted to the randomness of the 
samples drawn to construct them. In other words, the AUC is affected by a random 
noise which has two distinct origins: first the sampling of families on which the 
predictors are tested, second the computation of the predictor itself when using 
simulation to evaluate the conditional probability. Note that this second source of 
randomness disappears when using a brute force method.  
 
Consequently, it would be safe to obtain precise confidence intervals for all the AUC 
that we will provide but that seems too ambitious regarding the computation time 
needed. In particular, the noise on the AUC does not seem to be close to Gaussian 
with the current sample sizes and real confidence intervals are much wider than 
Gaussian ones. Consequently we have chosen to evaluate confidence intervals in the 
specific case of the Reg(3,2) tree which allows rather quick computation both by 
brute force or simulation method.   The size of the confidence intervals in this case 
will allows us to calibrate the software in terms of numbers of simulations, taking also 
into account the limits in computing time and it will guide us on the conclusions that 
can be drawn from the other ROC curves.  
 
Below are the graphs produced by the demonstration software in its original form. It 
gives the performance of the mutation predictor for a regular family tree with 3 
generations and 2 children per couple.  It shows the ROC curve i.e. resulting from the 
sensitivity and specificity of the predictor to assign individual 0 to its correct group 
(i.e. mutated or not). Since this family contains 10 individuals, there are 2$# 
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genotypes (including the inadmissible ones) so a brute force method for the 
computation of the conditional probability is possible. Also, as we have already 
mentioned, conditioning the family by a certain number of occurrences of K makes 
sense and we will tell more on this subject in the next subsection. For the moment we 
consider both the unconditioned case and the case of at least one occurrence of K.  
Hence the figure below shows four graphs corresponding to the different cases with 
brute force method represented by continuous lines and simulation method 
represented by crosses. 
 

 
Figure 8: ROC curves for the mutation predictor; context:  Reg(3,2) family tree conditioned by 

at least one case of K or unconditioned. 

 
 
First, we see that the brute force and the simulation methods give almost exactly the 
same results. This is a reassuring fact about the accuracy of the simulation method 
recalling that, for most of the cases we will study, it will be the only method available. 
We performed 50 000 simulations of the family tree and we imposed, for the 
simulation method based on Formula (2), that both evaluations of the denominator 
and the numerator in (2) get a least 5000 contributions. These are the numbers we 
will use by default for the other ROC curves in this article. For large families, it is 
close to the limit imposed by the computation time.  
 
In the unconditioned case represented above, the empirical confidence interval for 
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the AUC based on 100 attempts is [0.949, 0.959] for a confidence level of 90%. The 
conditioned case shows a confidence interval of similar length. This means that 
ranking predictors can safely be made when AUC show differences typically larger 
than 0.02. This will often be the case in the following experiments, but not always. 
For tighter differences on AUCs, we may simply conclude that the corresponding 
predictors have quite similar performances which is certainly sufficient in practice 
but if a ranking is nevertheless desired, we will raise the number of simulations or 
multiply the number of parallel computations. 
 

3.2 Influence of conditioning 
 

The performance of a predictor evolves when we condition the total number of ill 
people in the family. For instance, for a family Reg(4, 2) with 22 individuals, that 
allows very good performances (as we will see later), we "force" the minimum 
number of patients successively to 0, 1, 2 or 3 and we obtain the following ROC 
curves: 

 

 

Figure 9: Performance of predictor depending on the conditioning of a minimal number of 
disease case per family (context: Reg(4, 2) pedigree, one deleterious mutation)  

The first two curves overlap and hardly stand out. We notice that beyond 1 case of 
disease, conditioning decreases the effectiveness of the predictor, which in the end 



16 
 

is quite logical because it becomes more and more difficult for the model to 
distinguish the mutated families from the others as they all systematically present 
cases of illness. 
 

3.3 Influence of the generation number 
 

We consider regular pedigrees Reg(ng, 1) for a number of ng generations varying 
from 2 to 6 and a  fixed number of children ne per couple equal to 1. The ROC 
curves for the associated predictors are as follows: 

 

Figure 10: Influence of the generation number on the model performance  
(context: one mutation, conditioning = 0 and 1 children per couple). 

 

Obviously, the data from only 2 generations, i.e. the individual and his parents are 
not sufficient to obtain a successful prognosis. Rising to 3 generations allows a 
significant gain and the addition of the 4th generation still provides a small 
improvement. Beyond, any addition of information from previous generations is 
useless or even harmful: performance seems to regress slightly with the 6th 
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generation.  This is confirmed by performing 20 independent attempts: the AUC 
for 6 generations is less than the AUC for 5 generation (yet infinitesimally) for all 
attempts. This phenomenon also holds when the families are conditioned to at 
least one occurrence of the illness and essentially the same thing happens when we 
set the number of children per couple at 2.  Our interpretation is that too distant 
individuals bring more randomness than information. 
 

3.4 Number of children 
 

Investigating the performance according to the number of children in pedigrees is 
more theoretical than the previous issue. Indeed, in the previous case, the doctor / 
statistician wishing to make a prognosis can choose the number of generations that 
he provides. For children, their existence, a fact, cannot be the object of a choice, 
even if the practitioner can choose to include only one child: the one who is in the 
ascending line of the individual studied (ex. the index case1). The ROC curves 
obtained for the families Reg(4, ne) where ne varies between 1 and 5 are as follows: 
 

 

                                                             
1 A case in a family is called "index" if he is the first family member who comes to consultation. Most often, he 
has reported a cancer that corresponds to the familial syndrome, although it is not mandatory. 
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Figure 11: Influence of children number per couple on model performance; context: one 
mutation and 4 generations. 

We observe that the larger the pedigree, the better the prediction with a significant 
gain added between one child and two children. Beyond two children the gain is 
lower. This means that adding information from individuals directly connected to 
the lineage is beneficial. However, since the AUC increases slightly less as the 
number of children increases, there may be a limit at which the performance of the 
predictors peaks. 
 

3.5 Height against width 
 

We have just seen that the predictors performances increase with the number of 
generations up to 4 (height) and also with the number of children per couple 
(width). Hence the question: for the same size (same number of individuals), is it 
better to have a large pedigree or a tall one? If we refer to the following ROC curves 
relating to pedigrees "Grt Grd Par." and "Wide 3 gen." of 15 individuals each, it 
would seem that a large pedigree does slightly better than a tall one. 
 

 

Figure 12: Performance comparison of two pedigrees of 15 members, one large and the other 
one high  
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However, conditioning the presence of at least one disease case per pedigree is 
sufficient to produce a markedly opposite result: 

 

Figure 13: Performance comparison of two pedigrees of 15 members, one large and the other 
one high but constraining the presence of at least one disease case per pedigree 

 

Given the presence of cancer cases, either sporadic or familial, in pedigrees usually 
observed in oncogenetics, we can estimate that the second case is more relevant. 
Therefore, with an identical number of members, the height of a pedigree seems 
more informative than its width, even if, as seen previously, beyond 4 generations 
compiling information does not bring anymore benefit. 
 

3.6 Utility of cousins 
 

We have previously shown the value of the information corresponding to 
individuals directly connected to the ancestral line of the individual studied. It 
makes sense now to study the case of somewhat more distant relatives, starting 
with cousins. We thus compare the predictors associated with the family "uncles" 
and "cousins" among themselves but also with the pedigree Reg(3, 1) without uncle 
or cousin: 
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Figure 14: Influence on predictors of the presence of uncles and cousins in pedigrees  
(context: 1 mutation, 3 generations, 1 child per couple, except when adding uncles 
and cousins, and condit. of 1 disease case) 

This figure is interesting because it shows that indirect links can also be very 
informative – this is echoing the conclusion as to the number of children per 
couple. If the addition of uncles does not improve ROC AUC, the addition of 
cousins when you have uncles, brings clearly contributing elements. This could be 
explained by the fact that if a cancer is found in cousins, usually rather young, 
these cancers are very informative about a possible familial mutation. 
 

3.7 Asymmetric pedigrees 
 

We study the extreme case where all phenotypic information on either the father 
or the mother and all their ancestry is missing. Is it then illusory to hope for a 
mutation prognosis? We compare the associated predictors of the following three 
pedigrees: 

• The “Asym” family made up of the father and the paternal grand and great-
grandparents 

• The “Grt grd par." with grand and great-grandparents on both sides. 
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• The “Grd par." with grandparents but no great-grandparents on both sides. 
See Figures 3 and 6 for a visualization of these families. The following ROC curves 
are obtained: 
 

A 

 

B 

 
 

Figure 15: Influence of asymmetry on predictors performance  
(context: 1 mutation and one child per couple; A - no condit. and B - condit. of 1 case) 

Depending on the conditioning, the loss of symmetry (i.e. a loss of one familial 
branch) may induce or not a significant loss of information. When we do not force 
the presence of a case of disease (0-conditionning), the loss of a branch can remove 
the pivotal genetic information. This is the case of figure 15-A: the blue ROC curve 
is much less sensitive than the orange one although the number of members is 
similar. On the contrary, when the information has to appear in the pedigree, thus 
in the remaining branch, the other one becomes less necessary, and the pedigree 
works as well as a pedigree containing its two branches (figure 15-B). For the 
oncogeneticist, knowing only one branch of a pedigree may be sufficient as long as 
this branch includes at least one cancer case. 
 

3.8 Ascendants against descendants 
 

We previously suggested that the prediction using the descendants should be 
worse than the one including the ancestors since recent generations are less 
exposed to the disease risk. We tested this hypothesis and here is the result (A) in 
the standard context then (B) when we condition to at least one disease case per 
pedigree: 
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A

 

B

 

 

Figure 16: Comparison of predictors whether pedigrees contain rather ascending or 
descending generations and whether we condition (B) or not (A) the occurrence of at 
least one disease by pedigree. 

 

These results contradict our initial guess. The prediction using children or 
grandchildren is better at identical number of members per pedigree. Perhaps this 
is happening because a pedigree containing children and/or young adults imposes 
a high age requirement on individual 0. Also, conditioning one cancer at least per 
family implies that they occur more likely at younger ages and therefore must be 
caused by a deleterious mutation. 
 

3.9 Influence of parameters 𝑝", 𝑝# and 𝑝$ 
 

For Reg(4, 2)-type pedigree containing 22 individuals, the five ROC curves below 
correspond to increasing mutation frequencies but respectively weaker and weaker 
areas under the curve (AUC). Thus, we see that the predictor is all the better, both 
in sensitivity and in specificity, as the prevalence of the mutation is low. 
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Figure 17: Predictors performance according to the mutation prevalence  
(context: 4 generation pedigree and 2 children per couple, thus 22 individuals, condit. 
of 1 case of disease)) 

 

Another parameter of the model is the penetrance of disease K in mutation 
carriers. We tested a penetrance 𝑝$equal to 20%, 40% and 70% (this latter similar 
to that of BRCA mutations). For its part, the 𝑝# risk of occurrence of the disease in 
non-mutated individuals (wild-type) during its lifetime can vary greatly and we 
have tested values ranging from 0.1% to 10%: 
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Figure 18: Influence on the prediction of the deleterious mutation penetrance (A) or its 
incidence in non-mutated individuals (B).  

 
It appears that a high penetrance in case of mutation improves the quality of the 
predictor while conversely, a higher incidence of the disease in the general 
population decreases this quality. Clearly, the greater the gap between penetrance 
and incidence of disease at any age, the better the predictor becomes. 
Overall, these effects are in line with what we would expect: the more the disease K 
is confined to mutated individuals, the easier the prediction. However, these 
parameters do not all have the same influence. The incidence of the disease in 
wild-type individuals is not very influential, while penetrance in mutation carriers 
has a strong impact on the performance of the prediction. The frequency of 
mutation is also very influential and its direction of variation seems less intuitive: 
the more frequent the mutation, the more difficult its detection. 
 

3.10 Conclusion on the cost / effectiveness trade-off 
 

 

Previous experiments with family pedigrees of growing size show that there is an 
optimal size for the prediction. This notion of optimum is reinforced by the 
increase in the computational cost with the pedigree size, which might even shift 
the practical optimum towards smaller sizes. A difference should also be made 
regarding the cost of collecting phenotypes, depending on whether the data is pre-
existing in a database or collected specifically for mutation diagnosis. Typically, we 

A 

 

B 
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will seek to get information regarding parents, grandparents and great-
grandparents. This ancestral line can be completed, albeit with a relative gain in 
performance. One should probably avoid going too far, as illustrated by the three 
ROC curves below: 
 

 

Figure 19: Predictor performance when pedigree size increases from 15 members to 22, then 
to 42. 

  

We can observe in this figure that by adding the last 20 members no gain is 
obtained, which suggests that a very exhaustive search for collateral relatives may 
cost more than it helps. The three pedigrees concerned are represented nested in 
the following diagram: 
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Figure 20: The 3 embedded pedigrees corresponding to the 3 previous ROC curves: 15 
members in pink for the basal pedigree, + 7 members in blue for the second (N = 22) 
and finally + 20 members in grey for the last one (N = 42)  

 

4 Generalization and extensions 
 

4.1 Model with two mutations 
 

In this model, two cross-effect mutations are implemented. We could probably call 
them “polymorphisms” because separately they have minimal penetrance and no 
impact on the age of onset, but when they are present together in the genome, the 
risk of cancer increases considerably as well as its precocity, with a penetrance 
similar to previous single mutation models. The phenotype is therefore regulated 
in a similar way, but it is not the presence of a mutation that generates the 
increased risk but the simultaneous presence of both. 
 
 

The difference between the single and double models lies in the transmission of 
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mutations which, of course, obeys Mendel's laws, but results in different 
characteristics. Thus, in the double model we consider that the genome of an 
individual takes its values from a set of 4 elements: 
 

{ wild-type, mutated 1, mutated 2, mutated 1 and 2 } = { (0, 0), (1, 0), (0, 1), (1, 1) } 

For each mutation 1 or 2, the probability of transmission from parents to their 
children is still governed by Table 1. In the single mutation model, a child of two 
parents carrying the same heterozygous mutation has the probability 3/4 to be a 
carrier. In the double mutation model, a child whose two parents are doubly mutated 
(always heterozygous), now has only a probability (3/4)² » 0.56 of being in turn 
doubly mutated. Note that we continue to consider only heterozygous mutations by 
ignoring homozygous cases, previously thought to be lethal. But in the case of 
polymorphisms that are not frankly deleterious, the possibilities of homozygosity 
could legitimately also be considered. This would complicate the models2 so much 
without likely providing any additional information that we have ruled them out. 

The parameters of this double-mutation model are therefore slightly more numerous, 
namely: 

• The frequency of mutation 1 in the general population, fmut1 
• The frequency of mutation 2 in the general population, fmut2 
• The penetrance of K for non-mutated subjects, p0 
• The penetrance of K for carriers of mutation 1 only, p1 
• The penetrance of K for the carriers of mutation 2 only, p2 
• The penetrance of K for doubly mutated subjects, p1,2 

 

In the cases studied below, the values of p0, p1 and p2 are close and low while the 
value of p1,2 is high. Besides, the law of the diagnosis age was assumed identical, for 
carriers of a double mutation, to the case of carriers of a single mutation in the 
previous sections. The problem therefore comes down to the prediction of the doubly 
mutated state which is the only one to constitute a significant risk of disease. The 
double mutation probability formula is an obvious adaptation of the single mutation 
model (1). 
 

(3)  𝑃	(𝐺(𝑖) = (1, 1)	|	𝐹) = 	 $
$G	 HIJKLMNOL

PKHOJQHMNOL
 

where 

  𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜	𝑟 = 	∑ 𝑃(𝐹|𝐺 = 𝑔)	𝑃(𝐺 = 𝑔)B∶B(X)Y($,$) 	  

and  

  𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟 =	∑ 𝑃(𝐹|𝐺 = 𝑔)	𝑃(𝐺 = 𝑔)B∶B(X)Z($,$) 	 

                                                             
2 In particular, it would be necessary to rule on the lethal nature or not of a double homozygosity, on a 
difference in penetrance depending on whether one of the two mutations is homozygous or not, etc. 
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In this two-mutation model, the number of genotypes to be scanned in the brute-
force method is 4N where N denotes the size of the pedigree. So, except for extremely 
small trees, the simulation method should be preferred and can be written as an 
obvious variant of (2). 
 

The performances obtained in this model with two mutations are overall a little lower 
than in the one-mutation model. But the phenomena described above persist. In 
particular, performance reaches a practical optimum around fifteen individuals as 
shown by the little gain in efficiency when going to 22 members, after what a loss is 
observed when going to 42 members: 
 

 

Figure 21: Comparison of the predictor performance according to the number of members 
included in the pedigrees; context: 2 mutations interacting and conditioning of at 
least one disease case per family 

 

4.2 Other predictors 
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Calculating the probability of the genotype conditional on the phenotype is the most 
reliable estimate of an individual's risk of mutation. However, other predictors 
naturally come to mind. Given the popularity of likelihood maximization methods, 
one predictor might be the genome value that maximizes the likelihood of a 
phenotype. For small families, this maximization calculation can be done by brute-
force, but for more realistic sizes, it is necessary to move towards a simulated 
annealing algorithm. Let us consider the case of the single mutation model and, as 
always, denote by F [resp. G] the variable which compiles the phenotypes [resp. 
genotypes] of individuals in the family. We still rate 0 the individual for whom the 
prognosis is to be made. Let us denote by 𝐺[0 and 𝐺[1 respectively the genotypes which 
maximize the likelihood of the phenotype with the individual 0 non-mutated or 
mutated respectively, i.e.: 
 

𝐿(𝐹|𝐺 = 	𝐺[X) = max{	𝐿(𝐹|𝐺 = 𝑔); 𝑔(0) = 𝑖} 					𝑓𝑜𝑟	𝑖	 ∈ {0,1} 

 

A natural predictor of mutation is: 

𝑝$ = 	1{	cd𝐹e𝐺[$f	g	cd𝐹e𝐺[#f	}
 

 

That is, the mutational state of individual 0 would be the one found in the genome 
that makes the phenotype most likely. Unfortunately, the performance of this 
predictor is catastrophic. It can be modified to obtain a usable variant by introducing: 
 

𝑝h = 1
{	cd𝐹e𝐺[$f	g	h	cd𝐹e𝐺[#f	}

 

 

where s is a threshold to adjust. By varying s, we thus obtain a family of predictors 
based on the likelihood ratio. In the case of small family pedigrees, these predictors 
yield results very close to the thresholding prediction of the conditional probability 
that we have used so far. Indeed, on the graph below, the ROC curves obtained by the 
brute-force method for each of the two types of predictor merge. The same is true for 
the curve corresponding to the predictor based on thresholding the conditional 
probability, but this time calculated using simulations. 
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Figure 22 : Comparison of performance of two predictors (thresholding the conditional 
probability or likelihood ratio) calculated either by brute-force, or by simulated 
annealing algorithm (“ann.” for simulated annealing); context: families Reg(3, 1) of 7 
individuals, one deleterious mutation and no conditioning of disease case 

 

In the case of maximizing the likelihood of the genome by simulated annealing, the 
result is not as good and we must certainly conclude that this simulated annealing 
should be improved either in the choice of the kernel enabling to explore the space of 
the genomes, or in the setting of the temperature scheme (number and duration of 
temperature steps). 

If we condition at least one case of disease, we obtain, as reported above, a lower 
performance but with an identical hierarchy: 
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Figure 23 : Comparison of the performance of both predictors (thresholding the conditional 
probability or the likelihood ratio) obtained either by brute-force, or simulated 
annealing (context: Reg(3, 1) families of 7 individuals thus and one deleterious 
mutation and conditioning of at least one disease case per pedigree) 

 

4.3 Additions considered 
 

We have limited the statement of our results to cases that we suppose the most 
interesting. The computing time is also a limiting factor because to get regular and -
hopefully - reliable ROC curves as above, the computing time is counted in hours or 
even days. However, various extensions are possible: 
 

• To carry out for the double mutation model all the experiments done   for the 
single mutation model 

• To evaluate a double mutation model taking into account homozygous 
mutations 

• To improve the annealing method based on the likelihood-ratio predictor so 
that it equals the brute-force method (when the latter is feasible). 
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• To examine the sensitivity of predictors to parameter estimation errors or even 
to model change, i.e. simulate families according to the one-mutation model 
and analyze them with the model for two mutations, and vice versa. 

 

4.4 Limitations 
 

General approaches like the one used in the article face several limitations. The first 
one concerns the type of disease that was implemented in our models: this disease 
was uniform and occurred according to two laws of age, one for mutation carriers and 
another for non-mutated individuals. When we consider the cancer predispositions 
encountered in the oncogenetic consultation, for example those caused by BRCA 
mutations, several cancer locations are favored by the mutations but with an 
incidence varying a lot by location: breast and ovaries are the organs that are the 
most often affected, but case of cancer striking other organs can also occur. Besides, 
breast cancers do not constitute a single and simple category since there are different 
histological types and a classification according to hormone receptors. All these 
subclasses influence both the age at disease detection and the prognosis. Therefore, 
the oncogeneticist needs not only to consider in a pedigree the number of cancers, but 
also their type in detail.  

 

5 Conclusion 
 
This study, although based on rather simple algorithms, yields practical conclusions 
about the daily work of the oncogeneticist. In particular, it suggests that there is an 
optimal size for familial pedigrees: bigger is not always better. It also quantifies the 
prediction quality for other shapes and sizes of pedigrees. Our computations have 
focused on a single-mutation model for computational feasibility, but we have also 
considered a double-mutation model with interaction, with similar results. This 
second type of model fits present oncogenetics issues since nowadays, many of the 
hereditary cancer risks seem to originate from the interaction between several non-
pathogenic variants. 
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