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Arti�cial boundary conditions for linearized stationary
incompressible viscous �ow around rotating and

translating body.

P. Deuring, S. Kra£mar, �. Ne£asová

1 Introduction

We consider the systems of equations

−∆u(z) + (τe1 − %e1 × z) · ∇u(z) + %e1 × u(z)
+τ(u(z) · ∇)u(z) +∇π(z) = F (z)

div u(z) = 0 for z ∈ R3 \ D
(1.1)

−∆u(z) + (τe1 − %e1 × z) · ∇u(z) + %e1 × u(z) +∇π(z) = F (z)
div u(z) = 0 for z ∈ R3 \ D (1.2)

where D ⊂ R3 is open and bounded, with Lipschitz boundary. Problems (1.1) and (1.2)
together with some boundary conditions on ∂D constitute mathematical models (linear
and non-linear, respectively) describing stationary �ow of a viscous incompressible �uid
around a rigid body which moves at a constant velocity and rotates at a constant angular
velocity. More details concerning of deriving the model can be found in the work of Galdi
or Farwig [9, 7]. The aim of this paper is two folds:

First, we would like to derive the pointwise estimates for the pressure in the linear and
also in the non-linear cases in order to complete the pointwise estimates for the velocity
and its gradient from [4, 5] by the pointwise estimates of the pressure in order to get
complete decay information of all parts u, π of solutions to systems (1.1), (1.2). Let us
mention that the decay of pressure was also investigated in work of Galdi, Kyed [10].

Second, to solve the linear system (1.2) in a truncation DR := BR\D of the exterior
domain R3 \ D under certain arti�cial boundary conditions on the truncating boundary
∂BR, and then compare this solution with the solution of (1.2) in the exterior domain,
i.e. to get some sort of error estimates of the method of an arti�cial boundary condition.
For this aim we use pointwise estimates of the velocity and of the pressure.

This type of problem was only investigated in the case of the Navier-Stokes equations
without considering rotation of body. This is �rst result in case of motion of viscous �uids
around rotating and translation body with arti�cial boundary condition.

The paper is organized as follows: In the rest of this section we introduce notation
and give some auxiliary results. The next section 2 deals with pointwise estimates of the
pressure of the linear system (1.2). In Section 3 we consider the linear system (1.2) with
arti�cial boundary conditions. The error estimate of the velocity is derived comparing to
the solution to the system given in the exterior domain. First let us introduce notation:
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De�nitions and notation related to the rotational system

De�ne s(y) := 1 + |y| − y1 for y ∈ R3,

DR := BR \ D, where BR := {x ∈ R3; |x| < R} for R > 0.

Fix τ ∈ (0,∞), ρ ∈ R \ {0}, and put e1 := (1, 0, 0), Ω := ρ

0 0 0
0 0 −1
0 1 0

,

so that Ω× z = ρe1 × z for z ∈ R3.
For U ⊂ R3 open, u ∈ W 2,1

loc (U)3, z ∈ U , put

(Lu)(z) :=−∆u(z) + τ∂1u(z)− (ρe1 × z) · ∇u(z) + ρe1 × u(z),

(L∗u)(z) :=−∆u(z)− τ∂1u(z) + (ρe1 × z) · ∇u(z)− ρe1 × u(z).

Put

K(z, t) := (4πt)−3/2e−|z|
2/(4t) (z ∈ R3, t ∈ (0,∞)),

Λ(z, t) :=

(
K(z, t)δjk + ∂zj∂zk

(∫
R3

(4π|z − y|)−1K(y, t)dy

))
1≤j,k≤3

(z ∈ R3, t > 0),

Γ(x, y, t) := Λ(x− τte1 − e−tΩy, z) · e−tΩ,
Γ̃(x, y, t) := Λ(x+ τte1 − etΩy, t) · etΩ (x, y ∈ R3, t > 0),

Z(x, y) :=

∫ ∞
0

Γ(x, y, t)dt, Z̃(x, y) :=

∫ ∞
0

Γ̃(x, y, t)dt,

(x, y ∈ R3, x 6= y).

For q ∈ (1, 2), f ∈ Lq(R3)3, put

R(f)(x) :=

∫
R3

Z(x, y)f(y)dy (x ∈ R3);

see [3, Lemma 3.1]. We will use the space

D1,2
0 (Dc)3 := {v ∈ L6(Dc)3 ∩ H1

loc(D
c
)3 : ∇v ∈ L2(Dc)9, v|∂D = 0} equipped with

the norm ‖∇u‖2.
For p ∈ (1,∞), de�ne Mp as the space of all pairs of functions (u, π) such that

u ∈ W 2,p
loc (Dc)3, π ∈ W 1,p

loc (Dc),

u|DT ∈ W 1,p(DT )3, π|DT ∈ Lp(DT ), u|∂D ∈W 2−1/p, p(∂D)3,

divu|DT ∈ W 1,p(DT ), L(u) +∇π|DT ∈ Lp(DT )3

for some T ∈ (0,∞) with D ⊂ BT .
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We write C for generic constants. It should be clear from context which are the
parameters these constants depend on. In order to lift possible ambiguities, we sometimes
use the notation C(γ1, ..., γn) in order to indicate that the constant in question depends
in particular on γ1, ..., γn ∈ (0,∞), for some n ∈ N. But the relevant constant may
depend on other parameters as well.

Auxiliary results to asymptotic behavior of the pressure

Lemma 1.1 (Weyl's lemma). Let u ∈ N, U ⊂ Rn open, u ∈ L1
loc(U) with

∫
U
u ·∆ldx = 0

for l ∈ C∞0 (U). Then u ∈ C∞(U) and ∆u = 0.

Proof: An elementary proof is given in [12, Appendix] �
For q ∈ (1, 3/2), h ∈ Lq(R3), put

N (h)(x) :=

∫
R3

−(4π|x− y|)−1h(y)dy (x ∈ R3).

For q ∈ (1, 3), h ∈ Lq(R3), put

S(h)(x) :=

(∫
R3

(4π|x− y|3)−1(x− y)j · h(y)dy

)
1≤j≤3

(x ∈ R3).

For q ∈ (1, 3), h ∈ Lq(R3)3, put

P(h)(x) :=

∫
R3

(4π|x− y|3)−1((x− y) · h(y))dy (x ∈ R3).

Note that S(h) is a vector-valued function with h being scalar, whereas P (h) is a
scalar function with h being vector-valued.

Lemma 1.2 Let q ∈ (1, 3/2), h ∈ Lq(R3). Then N (h) ∈ W 2,q
loc (R3) ∩ L(1/q−2/3)−1

(R3),
∆N (h) = h. If h ∈ W 1,q(R3), then ∂lN (h) = N (∂lh) (1 ≤ l ≤ 3).

Let q ∈ (1, 3), h ∈ Lq(R3). Then S(h) ∈ W 1,q
loc (R3)3, divS(h) = h. If q ∈ (1, 3/2),

then ∇N (h) = S(h). If h ∈ W 1,q(R3), then S(h) ∈ W 2,q
loc (R3)3.

Let q ∈ (1, 3), h ∈ Lq(R3)3. Then

P(h) ∈ W 1,q
loc (R3) ∩ L(1/q−1/3)−1

(R3),(∫
R3

(∫
R3

|x− y|−2|h(y)|dy
)(1/q−1/3)−1

dx

)1/q−1/3

≤ C‖h‖q.

Proof: Well known (Hardy-Littlewood-Sobolev inequality, Calderon-Zygmund inequality,
density arguments). �
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Lemma 1.3 [11, Lemma 2.2] Let B ∈ R, S ∈ (0,∞). Then∫
∂BR

s(x)−B dox ≤ C(S,B) ·R2−min {1,B} · σ(R) (1.3)

for R ∈ [S,∞), with σ(R) := 1 if B 6= 1, and σ(R) = ln(1 + R) if B = 1.

2 Decay estimates

In �rst part of this section we recall some known results from [3] and [5] about the decay
of the velocity part of the solution of the system (1.2), and in order to get the full decay
characterization of the solution we derive the decay of the pressure part of solution of
(1.2). In the second part of this section we extend the result for the pressure to the
non-linear case of (1.1).

Decay estimates in the linear case

Our starting point is a decay result from [5] for the velocity part u of a solution to (1.2).

Theorem 2.1 ([5, Theorem 3.12]) Suppose that D is C2-bounded. Let p ∈ (1,∞),
(u, π) ∈ Mp. Put F = L(u) + ∇π. Suppose there are numbers S1, S, γ ∈ (0,∞),
A ∈ [2,∞), B ∈ R such that S1 < S,

D ∪ supp(div u) ⊂ BS1 , u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9,

A+ min{1, B} ≥ 3, |F (z)| ≤ γ|z|−As(z)−B for z ∈ Bc
S1
.

Then
|u(y)| ≤ C (|y|s(y))−1 lA,B(y), (2.1)

|∇u(y)| ≤ C (|y|s(y))−3/2 s(y)max (0,7/2−A−B) (2.2)

for y ∈ Bc
S, where function lA,B is given by{

1 if A+ min{1, B} > 3
max(1, ln(y)) if A+ min{1, B} = 3.

The requirements u|Bc
S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9 should be interpreted as decay
conditions on u.

It may be deduced from Theorem 2.1 that inequalities (2.1) and (2.2) hold under
assumptions weaker than those stated in that theorem. We specify this more general
situation in the ensuing corollary, which in addition indicates some properties of F that
will be useful in the following.
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Corollary 2.2 Let p ∈ (1,∞), γ, S1, S ∈ (0,∞) with D ⊂ BS1 , S1 < S, A ∈
[2,∞), B ∈ R with A + min{1, B} ≥ 3. Let F : Dc 7→ R3 be measurable with
F |DS1 ∈ Lp(DS1)

3 and |F (z)| ≤ γ|z|−As(z)−B for z ∈ Bc
S1
.

Let u ∈ W 1,p
loc (Dc)3 with u|Bc

S
∈ L6(Bc

S)3, ∇u|Bc
S
∈ L2(Bc

S)9, supp(div u) ⊂ BS1,∫
Dc

[
∇u · ∇ϕ+

(
τ ∂1u− (% e1 × z) · ∇u+ (% e1 × u)− F

)
· ϕ
]
dz (2.3)

= 0 for ϕ ∈ C∞0 (Dc)3 with divϕ = 0.

Then inequalities (2.1) and (2.2) hold for y ∈ Bc
S.

Moreover F ∈ Lq(Dc)3 for q ∈ (1, p]. If p ≥ 6/5, the function F may be considered as
a bounded linear functional on D1,2

0 (Dc)3, in the usual sense.

Proof: For z ∈ Bc
S1
, we have

|F (z)| ≤ γ C(S1, A) |z|−2 s(z)−A+2−B ≤ γ C(S1, A) |z|−2 s(z)−A+2−min{1,B}

≤ γ C(S1, A) |z|−2 s(z)−1.

Thus for q ∈ (1,∞), with Lemma 1.3,∫
Bc

S1

|F (z)|q dz ≤ C

∫ ∞
S1

r−2q

∫
∂Br

s(z)−q doz dr ≤ C

∫ ∞
S1

r−2q+1 dr <∞.

It follows that F ∈ Lq(Dc)3 for q ∈ (1, p]. According to [8, Theorem II.6.1], the inequality
‖v‖6 ≤ C ‖∇v‖2 holds for v ∈ D1,2

0 (Dc)3. Thus, if p ≥ 6/5, hence F ∈ L6/5(Dc)3,
this function F may be considered as a linear bounded functional on D1,2

0 (Dc)3. The
Lp-integrability of F and the assumptions on u imply that the function

G(z) := F (z)−
(
τ e1 − (% e1 × z)

)
· ∇u(z)−

(
% e1 × u(z)

)
, z ∈ Dc, (2.4)

belongs to Lploc(D
c
)3. Fix some number S0 ∈ (0, S1) with D ∪ supp(div u) ⊂ BS0 . This

means in particular that div (u|BS0

c
) = 0. This equation, (2.3), the relation G ∈ Lploc(D

c
)3

and interior regularity of solutions to the Stokes system (see [8, Theorem IV.4.1] for
example) imply that u|BS0

c ∈ W 2,p
loc (BS0

c
)3 and there is π ∈ W 1,p

loc (BS0

c
) with L(u|BS0

c
) +

∇π = F |BS0

c
. Put S ′0 := (S0 + S1)/2, AS′0,R := BR\BS′0

for R ∈ (S ′0,∞). Then u|AS′0,R ∈
W 2,p(AS′0,R)3 and π|AS′0,R ∈ W 1,p(AS′0,R)3 for R ∈ (S ′0,∞), so (u|AS′0,R, π|AS′0,R) ∈ Mp,
with BS′0

in the role of D. Note that S0 < S ′o < S1 < S. Thus the assumptions of Theorem
2.1 are satis�ed with D replaced by BS′0

. As a consequence inequalities (2.1) and (2.2)
hold. �

Remark 2.3 Solutions as considered in Corollary 2.2 exist if, for example, Dirichlet
boundary conditions are prescribed on ∂D. In fact, as stated in [8, Theorem VIII.1.2],
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if F is a bounded linear functional on the space D1,2
0 (Dc)3, and if b ∈ H1/2(∂Dc)3, then

there is a function u ∈ L6(Dc)3 ∩W 1,1
loc (Dc)3 such that ∇u ∈ L2(Dc)9 and u satis�es the

equations (2.3) and div u = 0 (weak form of (1.2)), as well as the boundary conditions
u|∂D = b.

The main result of this section, dealing with the asymptotics of the pressure, is stated
in

Theorem 2.4 Let p, γ, S1, S, A, B, F, u be given as in Corollary 2.2, but with the
stronger assumptions A = 5/2, B ∈ (1/2, ∞) on A and B. Let π ∈ Lploc(D

c
) with∫

Dc

[
∇u · ∇ϕ+

(
τ ∂1u− (% e1 × z) · ∇u+ (% e1 × u)− F

)
· ϕ (2.5)

−π divϕ
]
dz = 0 for ϕ ∈ C∞0 (Dc)3.

Then there is c0 ∈ R such that

|π(x) + c0| ≤ C |x|−2 for x ∈ Bc
S. (2.6)

Proof: By Corollary 2.2 we have F ∈ Lq(Dc)3 for q ∈ (1, p]. As in the proof of that
corollary, we note that the function G introduced there (see (2.4)) belongs to Lploc(D

c
)3.

Also as in that proof, we �x some number S0 ∈ (0, S1) with D ∪ supp(div u) ⊂ BS0 , and
note that div (u|BS0

c
) = 0. Thus, in view of (2.5) and because G ∈ Lploc(D

c
)3, interior

regularity of solutions of the Stokes system ([8, Theorem IV.4.1]) yields that u|BS0

c ∈
W 2,p
loc (BS0

c
)3, π|BS0

c ∈ W 1,p
loc (BS0

c
), and L(u|BS0

c
) + ∇(π|BS0

c
) = F |BS0

c
. Note that

S0 < S1 < S. Take φ ∈ C∞(R3) with

φ|BS1+ 1
4

(S−S1) = 0, φ|Bc
S1+ 3

4
(S−S1)

= 1,

and put ũ := φ ·u, π̃ := φ ·π, with ũ, π̃ to be considered as functions in R3. By the choice
of φ and the properties of u and π, we get ũ ∈ W 2,q

loc (R3)3, π̃ ∈ W 1,q
loc (R3) for q ∈ [1, p],

ũ|Bc
S = u|Bc

S ∈ L6(R3)3, ∇ũ|Bc
S = ∇u|Bc

S ∈ L2(R3)9. Put

gl(z) :=−
3∑

k=1

[
∂kφ(z)∂kul(z) + ∆φ(z)ul(z)

]
+ τ∂1φ(z)ul(z)

−
3∑

k=1

(τe1 × z)k · ∂kφ(z) · ul(z) + ∂lφ(z)π(z)

for z ∈ R3, 1 ≤ l ≤ 3, and set γ := div ũ. Then

supp(g) ⊂ BS1+3(S−S1)/4 \BS1+(S−S1)/4, g ∈ Lq(R3)3 for q ∈ [1, p],

Lũ+∇π̃ = g + φ · F, γ = ∇φ · u, (2.7)
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in particular supp(γ) ⊂ BS1+3(S−S1)/4\BS1+(S−S1)/4, γ ∈ W 2,q(R3) for q ∈ [1, p], g+φ·F ∈
Lq(R3)3 for q ∈ (1, p]. Let x ∈ R3, ε > 0 with Bε(x) ⊂ BS1 . Since ũ|BS1 = 0, π̃|BS1 = 0,
it follows from [5, Theorem 3.11] with D replaced by Bε(x) that

ũ(y) = R(g + φF )(y) + S(γ)(y) for y ∈ Bε(x)
c
.

Since this is true for any x ∈ R3, ε > 0 with Bε(x) ⊂ BS1 , it follows that

ũ = R(g + φF ) + S(γ) in R3. (2.8)

But S(γ) ∈ W 2,q
loc (R3)3 for q ∈ [1,min{3, p}) by Lemma 1.2, so from (2.8)

R(g + φF ) ∈ W 2,q
loc (R3)3 for q ∈ [1,min{3, p}).

This relation and [3, (3.11) and the inequalities following (3.15)] imply

sup
z∈R3

∫
R3

|Z(z, y) · (g + φF )(y)|dy <∞. (2.9)

Let ψ ∈ C∞0 (R3)3. Due to (2.9), we may apply Fubini's theorem, to obtain

A :=

∫
R3

ψ(x)(LR(g + φF ))(x)dx =

∫
R3

(L∗ψ)(x)R(g + φF )(x)dx (2.10)

=

∫
R3

∫
R3

[(L∗ψ)(x)]T · Z(x, y) · (g + φF )(y)dydx

=

∫
R3

∫
R3

[(L∗ψ)(z)]T · Z(x, y) · (g + φF )(y)dxdy.

But for a, b, x, y ∈ R3 with x 6= y,

aT · Z(x, y) · b =

∫ ∞
0

aTΓ(x, y, t)bdt,

hence with [3, Lemma 2.10],

aT · Z(x, y) · b =

∫ ∞
0

aT · e−tΩΛ(etΩx− τte1 − y, t) · bdt

=

∫ ∞
0

bT [e−tΩΛ(etΩx− τte1 − y, t)]Tadt

=

∫ ∞
0

bT · Λ(etΩx− τte1 − y, t)etΩ · adt

=

∫ ∞
0

bTΛ(y + τte1 − etΩx, t)etΩadt

=

∫ ∞
0

bT Γ̃(y, x, t) · adt = bT · Z̃(y, x) · a.
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Therefore from (2.10)

A =

∫
R3

(g + φF )(y)T ·
∫
R3

Z̃(y, x) · (L∗ψ)(x)dxdy. (2.11)

Since ψ ∈ C∞0 (R3)3, we may choose x0 ∈ R3, ε > 0 such that

Bε(x0) ⊂ R3 \ supp (ψ).

Thus we get from [2, Theorem 4.3] withD, U, ω replaced byBε(x0), τe1, −ρe1, respectively,
and with π = 0, that ∫

R3

Z̃(y, x) · (L∗ψ)(x)dx = ψ(y)− S(divψ)(y)

for y ∈ R3 \Bε(x0). Since this is true for any x0 ∈ R3, ε > 0 with Bε(x0) ⊂ R3 \ supp(ψ),
the preceding equation holds for any y ∈ R3. It follows from (2.11)∫

R3

ψ(x)(LR(g + φF ))(x)dx =

∫
R3

(g + φF )(y) · (ψ(y)− S(divψ)(y))dy (2.12)

Again recalling that g + φF ∈ Lq(R3)3 for q ∈ (1, p], we get with Lemma 1.2 that∫
R3

ψ(x)∇P(g + φF )(x)dx =

∫
R3

−divψ(x) · P(g + φF )(x)dx. (2.13)

Put q0 := min{6/5, p}, and note that q0 ∈ (1, 3/2), q0 ≤ p.
Thus, by Hölder's inequality and Lemma 1.2,∫

R3

|divψ(x)P(g + ϕF )(x)| dx

≤
∫
R3

∫
R3

|divψ(x)(4π|x− y|3)−1(x− y) · (g + φF )(y)|dydx

≤ ‖divψ‖(4/3−1/q0)−1(∫
R3

(∫
R3

(4π|x− y|2)−1|(g + φF )(y)|dy
)(1/q0−1/3)−1

dx

)1/q0−1/3

≤ C · ‖divψ‖(4/3−1/q0)−1 · ‖g + φF‖q0 <∞.

As a consequence, we may apply Fubini's theorem to deduce from (2.13) that∫
R3

ψ(x)∇P(g + φF )(x)dx (2.14)

= −
∫
R3

∫
R3

(divψ)(x)(4π|x− y|3)−1(x− y) · (g + φF )(y)dxdy

=

∫
R3

(g + φF )(y) · S(divψ)(y)dy.
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From (2.12) and (2.14),∫
R3

ψ(x)((LR(g + φF ))(x) +∇P(g + φF )(x))dx

=

∫
R3

ψ(x)(g + φF )(x)dx.

Since this is true for any ψ ∈ C∞0 (R3)3, we have found that

LR(g + φF ) +∇P(g + φF ) = g + φF. (2.15)

On the other hand, by (2.8) and (2.7)

LR(g + φF ) + LS(γ) +∇π̃ = Lũ+∇π̃ = g + φF.

By subtracting this equation from (2.15), we get

∇P(g + φF )− LS(γ)−∇π̃ = 0. (2.16)

Next we consider the term div
(
LS(γ)

)
. Recall that q0 < 3/2 and γ ∈ W 2,q(R3) for

q ∈ [1, p], so by Lemma 1.2{
S(γ) ∈ W 2,q0

loc (R3)3, divS(γ) = γ, N (γ) ∈ W 2,q0
loc (R3),

∇N (γ) = S(γ).
(2.17)

Since e1 × S(γ) = (0,−S3(γ),S2(γ)), we may conclude

div(e1 × S(γ)) = −∂2S3(γ) + ∂3S2(γ) = −∂2∂3N (γ) + ∂3∂2N (γ) = 0.

Moreover, for z ∈ R3, 1 ≤ j ≤ 3,

(e1 × z) · ∇Sj(γ)(z) = −z3∂2Sj(γ)(z) + z2∂3Sj(γ)(z),

hence with (2.17),

divz((e1 × z) · ∇S(γ)(z))

= −z3∂2γ(z) + z2∂3γ(z)− ∂2S3(γ)(z) + ∂3S2(γ)(z)

= −z3∂2γ(z) + z2∂3γ(z)− ∂2∂3N (γ)(z) + ∂3∂2N (γ)(z) = ϕ(z),

where ϕ(z) := −z3∂2γ(z) + z2∂3γ(z). Let ψ ∈ C∞0 (R3). Then it follows that∫
R3

∇ψ · (ρe1 × S(γ))dx = 0,∫
R3

∇ψ(z)[(ρe1 × z) · ∇S(γ)(z)]dz =

∫
R3

ψ(z)(−ϕ(z))dz.

9



Obviously, again with (2.17),∫
R3

∇ψ ·∆S(γ)dx =

∫
R3

∇∆ψ · S(γ)dx = −
∫
R3

∆ψ · γdx =

∫
R3

ψ · (−∆γ)dx,

and similarly, ∫
R3

∇ψ(τ∂1S(γ)) =

∫
R3

ψ(−τ∂1γ)dx.

Combining these equations, we get∫
R3

∇ψ · LS(γ)dx =

∫
R3

ψ(ϕ+ ∆γ − τ∂1γ)dx.

Now from (2.16)∫
R3

∇ψ[∇P(g + φF )−∇(φπ)]dx =

∫
R3

ψ(ϕ+ ∆γ − τ∂1γ)dx. (2.18)

Since γ ∈ W 2,q(R3) for q ∈ [1, p] and supp(γ) ⊂ BS\BS1 , we have ϕ+∆γ−τ∂1γ ∈ Lq(R3)
for q ∈ [1, p], so we may consider N (ϕ+ ∆γ − τ∂1γ). Lemma 1.2 yields

N (ϕ+ ∆γ − τ∂1γ) ∈ W 2,q0
loc (R3),

∆N (ϕ+ ∆γ − τ∂1γ) = ϕ+ ∆γ − τ∂1γ.

Therefore from (2.18)∫
R3

∇ψ[∇P(g + φF )−∇N (ϕ+ ∆φ− τ∂1γ)−∇(φπ)]dx = 0

Lemma 1.1 now yields

Q := P(g + φF )−N (ϕ+ ∆γ − τ∂1γ)− φπ ∈ C∞(R3), ∆Q = 0. (2.19)

Now we again apply Lemma 1.2. Since g + φ · F ∈ Lq0(R3)3, we have

P(g + φF ) ∈ L(1/q0−1/3)−1

(R3).

Moreover ϕ+ ∆γ − τ∂1γ ∈ Lq0(R3), so

N (ϕ+ ∆γ − τ∂1γ) ∈ L(1/q0−2/3)−1

(R3).

Since q0 ≤ p, and in view of our remarks at the beginning of this proof we
know that u|BS0

c ∈ W 2,q0
loc (BS0

c
), π|BS0

c ∈ W 1,q0
loc (BS0

c
), L(u|BS0

c
) + ∇(π|BS0

c
) =

10



F |BS0

c
, div(u|BS0

c
) = 0 and F ∈ Lq0(R3)3. By the choice of u in Corollary 2.2, we

have u|Bc
S ∈ L6(Bc

S)3. Now [5, Theorem 2.1] yields there is c0 ∈ R such that

π + c0|Bc
2S ∈ L3q0/(3−q0)(Bc

2S) + L3(Bc
2S).

But by (2.19),

Q− c0 = P(g + φF )−N (ϕ+ ∆γ − τ∂1γ)− φ (π + c0) + (φ− 1) c0,

where supp(φ− 1) ⊂ BS and supp(φ) ⊂ Bc
S1
. Therefore we may conclude that

Q− c0 ∈ L(1/q0−1/3)−1

(R3) + L(1/q0−2/3)−1

(R3) + Lq0(R3) (2.20)
+L3q0/(3−q0)(R3) + L3(R3).

Let ε ∈ (0,∞), and let (Q − c0)ε be the usual Friedrich's molli�er of Q − c0 associated
with ε.

Due to (2.19), (2.20) and by standard properties Friedrich's molli�er, the function
(Q− c0)ε is bounded and ∆(Q− c0)ε = 0. Now Liouville's theorem yields (Q− c0)ε = 0.
Since this is true for any ε > 0, we may conclude that Q− c0 = 0, that is,

φ (π + c0) = P(g + φF )−N (ϕ+ ∆γ − τ∂1γ) + (φ− 1) c0,

hence
π + c0|Bc

S = P(g + φF )−N (ϕ+ ∆γ − τ∂1γ)|Bc
S, (2.21)

where we used that supp(φ − 1) ⊂ BS and φ|Bc
S = 1. Since supp(g) ⊂ BS1+3(S−S1)/4, we

have
|P(g)(x)| ≤ c · |x|−2 for x ∈ Bc

S. (2.22)

Due to the assumptions A = 5/2, B ∈ (1/2, ∞) and because φF |BS1+(S−S1)/4 = 0 and
S1 < S1 + (S − S1)/4 < S, we get by [6, Theorem 3.2] or [11, Theorem 3.4]1 that

|P(φF )(x)| ≤ c |x|−2 for x ∈ Bc
S. (2.23)

De�ne ζ(x) = −x3γ(x), ζ̃(x) := x2γ(x) for x ∈ R3. Then supp(ζ) ∪ supp(ζ̃) ⊂ BS \BS1 ,

ζ, ζ̃ ∈ W 2,q(R3) for q ∈ [1, p],

ϕ = ∂2ζ + ∂3ζ̃ .

It follows with Lemma 1.2 that

N (ϕ) = ∂2N (ζ) + ∂3N (ζ̃) = S2(ζ) + S3(ζ̃).

1The result stated in both these theorems is not optimal, with respect of logarithmic terms: No

logarithmic term appears e.g. in the case A = 5/2, B = 1. Nevertheless we need not this case.
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Similarly, since supp(γ) ⊂ BS \BS1 , γ ∈ W 2,q(R3) for q ∈ [1, p],

N (∆γ − τ∂1γ) =
3∑

k=1

Sk(∂kγ)− τS1(γ).

Together

N (ϕ+ ∆γ − τ∂1γ) = S2(ζ) + S3(ζ̃) +
3∑

k=1

Sk(∂kγ)− τS1(γ).

Since supp(ζ) ∪ supp(ζ̃) ∪ supp(γ) ⊂ BS1+3(S−S1)/4, we may conclude that

|N (ϕ+ ∆γ − τ∂1γ)(x)| ≤ C |x|−2 for |ξ| ∈ Bc
S. (2.24)

Inequality (2.6) follows from (2.21)�(2.24). �

We remark that Theorem 2.4 remains valid if the assumptions on A and B are replaced
by the conditions A ≥ 5/2, A+ min{1, B} > 1, which are weaker than those in Corollary
2.2. This observation is made precise by the ensuing corollary. Its proof is obvious, but
this modi�ed version of Theorem 2.4 still is interesting because its requirements on A and
B are closer to the ones in Corollary 2.2 than those stated in Theorem 2.4.

Corollary 2.5 Let p, γ, S1, S, A, B, F, u be given as in Corollary 2.2, but with the
stronger assumptions A ≥ 5/2, A + min{1, B} > 3 on A and B. Let π ∈ Lploc(D

c
)

such that (2.5) holds. Then there is c0 ∈ R such that inequality (2.6) is valid.

Proof: Put B′ := A− 5/2 + min{1, B}. Since A+ min{1, B} > 3, we have B′ ∈ (1/2, ∞).
Moreover, since A ≥ 5/2, we �nd for x ∈ Bc

S1
that

|F (z)| ≤ γ C(S1, A) |z|−5/2 s(z)−A+5/2−B ≤ γ C(S1, A) |z|−5/2 s(z)−B
′
.

Thus the assumptions of Theorem 2.4 are satis�ed with B replaced by B′ and with a
modi�ed parameter γ. This implies the conclusion of Theorem 2.4. �

Decay estimates in the non-linear case

Let us assume now the non-linear case, i.e. the system (1.1). First, recall the result about
the decay properties of the velocity in this non-linear case:

Theorem 2.6 [4, Theorem 1.1] Let γ, S1 ∈ (0,∞), p0 ∈ (1,∞), A ∈ (2,∞), B ∈
[0, 3/2] with D ⊂ BS1 , A+ min{B, 1} > 3, A+B ≥ 7/2. Take F : R3 7→ R3 measurable
with F |BS1 ∈ Lp0(BS1)

3,

|F (y)| ≤ γ · |y|−A · s(y)−B for y ∈ Bc
S1
.
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Let u ∈ L6(Dc)3 ∩W 1,1
loc (Dc)3, π ∈ L2

loc(D
c
) with ∇u ∈ L2(Dc)9, divu = 0 and∫

Dc
[∇u · ∇ϕ+ ((τe1 − ρe1 × z) · ∇u+ ρe1 × u

+τ(u · ∇)u− F ) · ϕ− π divϕ] dx = 0

for ϕ ∈ C∞0 (Dc)3. Let S ∈ (S1,∞). Then

|∂αu(x)| ≤ C (|x|s(x))−1−|α|/2 for x ∈ Bc
S, α ∈ N3

0 with |α| ≤ 1. (2.25)

Now, using Theorems 2.4 and 2.6, we are in the position to prove the result on the
decay of the pressure in the non-linear case:

Theorem 2.7 Consider the situation in Theorem 2.6. Suppose in addition that A ≥ 5/2.
Then there is c0 ∈ R such that inequality (2.6) holds.

Proof: Observe that (u · ∇)u ∈ L3/2(Dc)3. Thus, putting p := min{3/2, p0}, F̃ :=

F − τ (u · ∇)u, we get F̃ |DS1 ∈ Lp(DS1)
3. Put B′ := min{5/2, A + B − 5/2}. Since

A ≥ 5/2, we have

|F (z)| ≤ γ C(S1, A) |z|−5/2 s(z)−B
′

for z ∈ Bc
S1
.

On the other hand, by Theorem 2.6 with (S1 + S)/2 in the place of S,

|
(
u(z) · ∇)u(z)

)
| ≤ C |z|−5/2 s(z)−5/2 ≤ C |z|−5/2 s(z)−B

′

for z ∈ Bc
(S1+S)/2. In this way we get |F̃ | ≤ C |z|−5/2 s(z)−B

′
for z ∈ Bc

(S1+S)/2.
We further note that B′ ∈ (1/2, ∞). This is obvious in the case B′ = 5/2. If B′ < 5/2,

we have B′ = A + B − 5/2. Due to the assumption A + min{1, B} > 3 in Theorem 2.6,
we thus get B′ ∈ (1/2, ∞). (The requirement A + B ≥ 7/2 in Theorem 2.6 even yields
B′ ≥ 1, but if this requirement is weakened in a suitable way, pointwise decay of u and
∇u could still be proved. However, this point is not elaborated in [4], and therefore is
not re�ected in Theorem 2.6. But we still take account of it here by avoiding to use the
assumption A+B ≥ 7/2.)

We further have u ∈ W 1,p
loc (Dc)3, π ∈ W p

loc(D
c
), and equation (2.5) holds with F

replaced by F̃ . Since in addition u|Bc
S ∈ L6(Bc

S)3, ∇u|Bc
S ∈ L2(Bc

S)9 and div u = 0, we
see that the assumptions of Theorem 2.4 are satis�ed with p as de�ned above and with
(S1 +S)/2, B′, F̃ in the role of S1, B and F , respectively. Thus Theorem 2.4 implies the
conclusion of Theorem 2.7. �
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3 Formulation of the problem with arti�cial boundary

conditions

Recall that we de�ned DR = BR \D. We introduce the subspace WR of H1(DR) denoting

WR := {v ∈ H1(DR)3 : v|∂D = 0}.

Lemma 3.1 ([1, Lemma 4.1]) The estimate

‖u‖2 ≤ C (R ‖∇u‖2 +R1/2 ‖u|∂BR
‖2)

holds for R ∈ (0,∞) with D ⊂ BR and for u ∈ WR.

We introduce an inner product (·, ·)(R) in WR by de�ning

(v, w)(R) =
∫
DR
∇v · ∇w dx+

∫
∂BR

(τ/2)v · w dox for v, w ∈ WR.

The space WR equipped with this inner product is a Hilbert space. The norm generated
by this scalar product (·, ·)(R) is denoted by | · |(R), that is

|v|(R) := (‖∇v‖2
2 + (τ/2)‖v|∂BR

‖2
2)1/2 for v ∈ WR.

We de�ne the bilinear forms

aR : H1(DR)3 ×H1(DR)3 → R,
βR : H1(DR)3 × L2(DR)→ R,
δR : H1(DR)3 ×H1(DR)3 → R,

aR(u,w) :=

∫
DR

[∇u · ∇w + τD1u · w]dx

+
τ

2

∫
∂BR

(u(x) · w(x))
(

1− x1

R

)
dox,

βR(w, σ) :=−
∫
DR

(divw)σdx,

δR(u,w) :=

∫
DR

[−
(

(%e1 × x) · ∇
)
u+ (%e1 × u)] · w dx

for u,w ∈ H1(DR)3, σ ∈ L2(DR), R ∈ (0,∞) with D ⊂ BR.

Lemma 3.2 Let R ∈ (0,∞) with D ⊂ BR. Then

|aR(u,w) + δR(u,w)| ≤C(R) |u|(R) |w|(R)

for u,w ∈ H1(DR)3.
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Proof: Use of Lemma 3.1.
The key observation in this section is stated in the following lemma, which is the basis

of the theory presented in this section.

Lemma 3.3 Let R ∈ (0,∞) with D ⊂ BR, and let w ∈ WR. Then the equation
(|w|(R))2 = aR(w,w) + δR(w,w) holds.

Proof:

aR(w,w) + δR(w,w)

=

∫
DR

[
|∇w|2 + τ∂1

(
|w|2

2

)
− (%e1 × x) · ∇

(
|w|2

2

)]
dx

+
τ

2

∫
∂BR

|w(x)|2
(

1− x1

R

)
dox

=

∫
DR

|∇w|2 dx+

∫
∂BR

(
τ

2
|w(x)|2x1

R
− 1

2
(%e1 × x) · x

R
|w(x)|2

)
dox

+
τ

2

∫
∂BR

|w(x)|2
(

1− x1

R

)
dox

=

∫
DR

|∇w|2 dx+
τ

2

∫
∂BR

|w(x)|2 = (|w|(R))2.

We applied that
1

2
(ω × x) · x = 0 for x, ω ∈ R3.

As in [1], we obtain that the bilinear form βR is stable:

Theorem 3.4 ([1, Corollary 4.3]) Let R > 0 with D ⊂ BR. Then

inf
ρ∈L2(DR),ρ6=0

sup
v∈WR,v 6=0

βR(v, ρ)

|v|(R)‖ρ‖2

≥ C(R).

We introduce an extension operator E : H1/2(∂D)3 7→ H1(Dc)3 such that divE(b) = 0:

Theorem 3.5 There is an operator E : H1/2(∂D)3 7→ W 1,1
loc (Dc)3 such that ∇E(b) ∈

L2(Dc)9, E(b)|∂D = b, divE(b) = 0 and E(b)|DR ∈ H1(DR)3 for b ∈ H1/2(∂D)3, R ∈
(0,∞) with D ⊂ BR.

Proof: By [8, Exercise III.3.8], there is an operator E : H1/2(∂D)3 7→ W 1,1
loc (Dc)3

such that ∇E(b) ∈ L2(Dc)9, E(b)|∂D = b, divE(b) = 0 and ‖∇E(b)‖2 ≤ C ‖b‖1/2,2 for
b ∈ H1/2(∂D)3. (The latter inequality is not needed here.) Due to [8, Lemma II.6.1], we
may conclude that E(b)|DR ∈ H1(DR)3 for R ∈ (0,∞) with D ⊂ BR. �

In view of Lemma 3.2 and 3.3 and Theorem 3.5 and 3.4, the theory of mixed variational
problems yields
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Theorem 3.6 Let S > 0 with D ⊂ BS, R ∈ [2S,∞), F ∈ L6/5(DR)3, b ∈ H1/2(∂D)3.

Then there is a uniquely determined pair of functions (Ṽ , P ) =
(
Ṽ (R,F, b), P (R,F, b)

)
∈

WR × L2(DR) such that

aR(Ṽ , g) + δR(Ṽ , g) + βR(g, P ) (3.1)

=

∫
DR

F · g dx− aR
(
E(b)|DR, g

)
− δR

(
E(b)|DR, g

)
for g ∈ WR,

βR(Ṽ , σ) = 0 for σ ∈ L2(DR), (3.2)

where the operator E was introduced in Theorem 3.5.

Let us interpret variational problem (3.1), (3.2) as a boundary value problem. De�ne
the expression used in the boundary condition on the arti�cial boundary ∂BR :

LR(u, π)(x) :=

(
3∑
j=1

∂juk(x)
xj
R
− π(x)δjk

xj
R

+
τ

2

(
1− x1

R

)
uk(x)

)
1≤k≤3

for x ∈ ∂BR, R ∈ (0,∞) with D ⊂ BR, u ∈ W 6/5, 2(DR)3, π ∈ W 1, 6/5(DR).

Lemma 3.7 Assume that D is C2-bounded. Let R ∈ [2S,∞) with D ⊂ BS, F ∈
L6/5(DR)3 and b ∈ W 7/6, 6/5(∂D)3. Put V := Ṽ (R,F, b) + E(b)|DR, with V (R,F, b)
from Theorem 3.6 and E(b) from Theorem 3.5. Suppose that V ∈ W 2,6/5(DR)3 and
P = P (R,F, b) ∈ W 1, 6/5(DR), with P (R,F, b) also introduced in Theorem 3.6. Then

−∆V (z) + (τe1 − %e1 × z) · ∇V (z) + %e1 × V (z) +∇P (z) = F (z),
div V (z) = 0

(3.3)

for z ∈ DR, and V |∂D = b, LR(V, P ) = 0.

The proof of Lemma 3.7 is obvious. This lemma means that a solution of variational
problem (3.1), (3.2) may be considered as a weak solution of the modi�ed Oseen system
with rotation inDR, under the Dirichlet boundary condition on ∂D and under the arti�cial
boundary condition LR(V, P ) = 0 on ∂BR. The solution of (3.1), (3.2) will be now
compared to the exterior modi�ed Oseen �ow introduced in Corollary 2.2:

Theorem 3.8 Suppose that D is C2-bounded. Let γ, S1 ∈ (0,∞) with D ⊂ BS1 , A ∈
[5/2, ∞), B ∈ R with A + min{1, B} > 3. Let F : Dc 7→ R3 be measurable with
F |DS1 ∈ L6/5(DS1)

3 and |F (z)| ≤ γ |z|−As(z)−B for z ∈ Bc
S1
.

Let b ∈ W 7/6, 6/5(∂D)3, u ∈ W 1,1
loc (Dc)3 ∩ L6(Dc)3 such that ∇u ∈ L2(Dc)9, div u =

0, u|∂D = b and equation (2.3) is satis�ed.
For R ∈ [2S1, ∞), put VR := Ṽ (R,F, b) + E(b), with E(b) from Theorem 3.5, and

Ṽ (R,F, b) from Theorem 3.6. Then

|u|DR
− VR|(R) ≤ C R−1 for R ∈ [2S,∞).
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We note that since W 2, 6/5(D) ⊂ H1(D) by a Sobolev inequality, we have W 7/6, 6/5(∂D) ⊂
H1/2(∂D), as follows with the usual lifting property. As a consequence, b ∈ H1/2(∂D)3, so
the term E(b) is well de�ned. We further remark that by Corollary 2.2 with p = 6/5, the
function F may be considered as a bounded linear functional on D1,2

0 (Dc)3. Therefore, as
explained in Remark 2.3, a function u with properties as stated in Theorem 3.8 does in
fact exist.
Proof of Theorem 3.8: All conditions in Corollary 2.2 are veri�ed if γ, S1, A, B, F, u are
given as in Theorem 3.8, and if p = 6/5 and S = 2S1. Note in this respect that the
conditions on u in Theorem 3.8 obviously imply u ∈ W

1, 6/5
loc (Dc)3. Corollary 2.2 now

yields that F ∈ L6/5(Dc)3 and that the function u satis�es inequalities (2.1) and (2.2)
with S = 2S1.

On the other hand, since u ∈ W 1, 6/5
loc (Dc)3, the function G already considered in the

proof of Corollary 2.2 (see (2.4)) belongs to L6/5
loc (Dc)3. Therefore, by interior regularity

of solutions to the Stokes system (see [8, Theorem IV.4.1]), we may deduce from the
equations (2.3) and div u = 0 that u ∈ W 2, 6/5

loc (Dc)3 and that there is π ∈ W 1, 6/5
loc (Dc)3 with

L(u)+∇π = F . In particular the pair (u, π) veri�es (2.5). In view of our assumptions on A
and B, we thus see that the requirements in Corollary 2.5 are ful�lled for γ, S1, A, B, F, u
as in Theorem 3.8 and for p = 6/5 and S = 2S1. As a consequence, Corollary 2.5 yields
that there is c0 ∈ R such that (2.6) holds with S = 2S1.

Take R ∈ [2S1, ∞). Since u ∈ W
2,6/5
loc (Dc)3, we have u|∂D ∈ W 7/5, 6/5(∂D)3. Com-

bining this relation with the assumption b|∂D ∈ W 7/5, 6/5(∂D)3 and the boundary con-
dition u|∂D = b, we get u|∂DR ∈ W 7/5, 6/5(∂DR)3. Moreover our requirements on u
yield that u|DR ∈ W 1, 6/5(DR)3. Since F ∈ L6/5(Dc)3, as already mentioned, we get
G|DR ∈ L6/5(DR)3, with G from (2.4). Recalling that D is supposed to be C2-bounded,
we may now apply the result in [8, Lemma IV.6.1] on boundary regularity of solutions to
the Stokes system. This reference yields that u|DR ∈ W 2, 6/5(DR)3, π|DR ∈ W 1, 6/5(DR)
and that the pair (u, π) solves (1.2).

Let PR := P (R,F, b) be given as in Theorem 3.6, and put w := u− VR, κ := π − PR ,
and let g ∈ WR. Note that by Theorem 3.6, we have aR(VR, g) + δR(VR, g) + βR(g, PR) =
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∫
DR
F · g dx. Thus

aR(w, g) + δR(w, g) + βR(g, κ)

= aR(u|DR
, g) + δR(u|DR

, g) + βR(g, π|DR
)−

(
aR(VR, g) + δR(VR, g) + βR(g, PR)︸ ︷︷ ︸

=
∫
DR

F ·gdx

)
=

∫
DR

(
∇u · ∇g + τ∂1u · g − (%e1 × x) · ∇u · g + (%e1 × u) · g

−π div g − F · g
)
dx

+
τ

2

∫
∂BR

u(x) · g(x)
(

1− x1

R

)
dox

=

∫
DR

[−∆u · g + τ∂1u · g − (%e1 × x) · ∇u · g + (%e1 × u) · g

+∇π · g − F · g] dx

+

∫
∂BR

( 3∑
j,k=1

[
∂juk(x) gk(x)

xj
R
− π(x)δjkgk(x)

xj
R

]
+
τ

2
u(x) · g(x)(1− x1

R
)
)
dox︸ ︷︷ ︸

=
∫
∂BR

LR(u,π)·g do

Since the pair (u, π) solves (1.2), we now get

aR(w, g) + δR(w, g) + βR(g, κ) =

∫
∂BR

LR(u, π)(x) · g(x) dox. (3.4)

Let c ∈ R be an arbitrary constant. For g := w we get with Lemma 3.3 that

(|w|(R))2 = aR(w,w) + δR(w,w) + βR(w, κ)

=

∫
∂BR

LR(u, π + c)(x) · w(x) dox , (3.5)

because:
∫
∂BR

[ 3∑
j,k=1

cδjkwk(x)
xj
R

]
dox =

∫
∂DR

cw · n dox +

∫
DR

c divw dx = 0.

Let c0 be the constant introduced above as part of estimate (2.6). Because∫
∂BR

LR(u, π + c0)(x) ·w(x) dox ≤ ‖LR(u, π + c0)‖2 ‖w|∂D‖2 ≤ C ‖LR(u, π + c0)‖2 · |w|(R),

we get from (3.5)
|w|(R) ≤ C‖LR(u, π + c0)‖2.
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The last step is estimation: ‖LR(u, π + c0)‖2 ≤ C ·R−1.

‖LR(u, π + c0)‖2

≤ C
[
‖∇u|∂BR

‖2 + ‖[π(x) + c0]|∂BR
‖2 +

(∫
∂BR

(
1− x1

R

)2

|u(x)|2dox
)1/2 ]

.

As explained above, inequalities (2.1), (2.2) and (2.6) are valid with S = 2S1. According
to (2.1) and (2.6), we have |u(x)| ≤ C (|x|s(x))−1, and |π(x) + c0| ≤ C |x|−2 for x ∈
Bc

2S1
. Inequality (2.2) yields |∇u(x)| ≤ C |x|−3s(x)−B

′
for x as before, with B′ := 3/2−

max{0, 7/2 − A − B}. If B ≥ 1, we recall that A ≥ 5/2, getting A + B ≥ 7/2, hence
B′ = 3/2. On the other hand, if B < 1, then max{1, B} = B, so that the assumption
A + max{1, B} > 3 becomes A + B > 3, hence B′ > 1. Thus we get in any case that
B′ > 1 > 1/2. In view of these observations, and with Lemma 1.3, we obtain

‖LR(u, π + c0)‖2 ≤ C

[(∫
∂BR

|x|−3s(x)−2B′ dox

)1/2

+

(∫
∂BR

|π(x) + c0|2dox
)1/2

+

(
1

R2

∫
∂BR

(|x| − x1)2|u(x)|2dox
)1/2

]

≤ C

[(
1

R3

∫
∂BR

s(x)−2B′dox

)1/2

+

(
1

R4

∫
∂BR

1 dox

)1/2

+

(
1

R2

∫
∂BR

s(x)2(|x|s(x))−2dox

)1/2
]

≤ C

[(
1

R2

)1/2

+

(
1

R2

)1/2

+

(
1

R4

∫
∂BR

1 dox

)1/2
]
≤ CR−1.

This completes the proof of Theorem 3.8. �
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