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Abstract: Dichloromethane (DCM, methylene chloride) is a toxic halogenated volatile organic com-
pound massively used for industrial applications, and consequently often detected in the environment
as a major pollutant. DCM biotransformation suggests a sustainable decontamination strategy of
polluted sites. Among methylotrophic bacteria able to use DCM as a sole source of carbon and energy
for growth, Methylorubrum extorquens DM4 is a longstanding reference strain. Here, the primary
5′-ends of transcripts were obtained using a differential RNA-seq (dRNA-seq) approach to provide
the first transcription start site (TSS) genome-wide landscape of a methylotroph using DCM or
methanol. In total, 7231 putative TSSs were annotated and classified with respect to their localization
to coding sequences (CDSs). TSSs on the opposite strand of CDS (antisense TSS) account for 31%
of all identified TSSs. One-third of the detected TSSs were located at a distance to the start codon
inferior to 250 nt (average of 84 nt) with 7% of leaderless mRNA. Taken together, the global TSS map
for bacterial growth using DCM or methanol will facilitate future studies in which transcriptional
regulation is crucial, and efficient DCM removal at polluted sites is limited by regulatory processes.

Keywords: methylotrophy; dehalogenation; organohalide pollutant; dichloromethane;
transcriptional start site; dRNA-seq; methanol; genome; gene expression

1. Introduction

DCM (CH2Cl2) is a chlorine-containing one-carbon compound massively produced as
a solvent feedstock for industrial synthesis of other chemicals, and for other applications
such as varnish and paint removal [1]. According to the classification and labelling of
chemicals (GHS), DCM is possibly carcinogenic to humans [1]. DCM also contributes to
ozone layer depletion, like other human-produced chlorocarbons [2]. Nonetheless, DCM
has not been included in the Montreal protocol of banned ozone-depleting gases due to its
short atmospheric lifetime (around 6 months).

DCM-degrading strains have been isolated from industrial sites to drive biological
environmentally friendly processes for DCM removal at contaminated sites [3,4]. DCM
degraders such as the methylotrophic Alphaproteobacterial strain Methylorubrum extorquens
DM4 achieve mineralization of DCM upon growth, with this compound as the sole source
of carbon and energy [5,6]. Strain DM4 is a pink-pigmented facultative methylotroph able to
also use several other C1 compounds, such as the reference methylotrophic growth substrate
methanol, as well as multi-carbon compounds (e.g., succinate, acetate). Strain DM4 is
suitable for genetic analysis (e.g., site-directed allelic gene replacement and replication
of plasmids for classical molecular biology studies) [7], and has thus become the model
reference strain for investigations of bacterial DCM degradation [8] and the identification
of genes essential for growth with DCM. First and foremost, M. extorquens DM4 features
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the dcmA-encoded dehalogenase DcmA, whose product, formaldehyde, enters into central
methylotrophic metabolism. Gene dcmA is highly conserved among DCM-degrading
strains [9] and part of the 5.6 kb-long dcm gene cluster flanked by insertion elements [10].
The genome of strain DM4 consists of a 5.94 Mb chromosome and two plasmids: p1METDI
and p2METDI of 141.5 and 38.6 kb, respectively [6]. On average, CDS length is 887 bp
and intergenic sequences 183 bp long, with an overall gene density of 83.3%. Average
GC content is 68.0%, for a total of 6035 genes. Expressed proteins and their termini were
previously identified using a differential proteomics approach combined with a doublet
N-terminal-oriented proteomics (dN-TOP) strategy. This allowed the identification of 47%
of the total predicted proteins with experimental confirmation of 259 hypothetical proteins,
discovery of 39 new proteins, and correction of 78 erroneous predicted N-termini [11].

Strain DM4 and other bacteria that dehalogenate organohalides such as DCM have
to cope with stresses associated with dehalogenation activity (intracellular increase in
halides (e.g., Cl, Br, I) and acid production), organohalide toxicity (solvent stress), as well
as changes in metabolic flux. Collectively, these stresses have a strong impact on gene
regulation and the activity of regulatory factors, with extensive genome-wide modulation
of gene expression [12,13].

Modulation of transcription initiation is the first step in the regulation of gene ex-
pression. It is crucial for genes that are essential for growth and global regulation of
metabolism, and thus for bacterial responses to stress and environmental variations. In
the case of growth with DCM, for instance, dcmA gene expression is accompanied by high
transcription levels of clcA encoding chloride/proton antiporter clcA, involved in dealing
with chloride stress associated with DcmA dechlorination activity [14]. In addition, a study
of gene expression profiles by RNA-seq at a high sequencing depth of strain DM4 grown
with DCM, compared to growth with methanol, revealed 190 genes with higher transcript
abundance with DCM [12]. However, promoter regions have not yet been extensively
investigated in the Methylorubrum genus so far, and only very few transcriptional start sites
(TSSs) have been experimentally determined, including in DCM-degrading strains [15–23].

Prediction of promoter regions based solely on computational methods does not allow
full identification of transcription features of interest, such as alternate promoters and
promoters that govern antisense transcription or are located within genes. Such features,
however, are highly relevant for gene expression and transcription/translation coupling in
prokaryotes (for a review see [24]). Experimental identification of TSSs, in contrast, greatly
facilitates prediction of the corresponding promoters, discovery of associated regulatory
elements, and precise delimitation of 5′untranslated region (5′UTR) length. Recently, dif-
ferential RNA-seq (dRNA-seq) was developed as a high-throughput sequencing strategy
to simultaneously map all the TSSs in the transcriptome, without a priori and at the scale
of the genome (for a review see [25]). Briefly, this method differentiates primary tran-
script with 5′-triphosphate ends from processed transcripts that carry 5′-monophosphate
or 5′-hydroxyl ends. Genome-wide TSS mapping was successfully used to characterise
global gene expression in a wide variety of bacteria [25], but only a restricted number of
methylotrophic species, including Firmicutes (Bacillus methanolicus MGA3 [26]; Bacillus
amyloliquefaciens strains XH7 [27] and FZB42 [28]), Proteobacteria (Bradyrhizobium japon-
icum USDA 110 [29]), and Actinobacteria (Mycobacterium smegmatis [30]). Moreover, and
to the best of our knowledge, no TSS genome-wide mapping of a bacterium capable of
organohalide degradation has yet been published. In this study, dRNA-seq was used to
map the TSS of the genome of M. extorquens DM4 from methylotrophic mid-exponential
phase DCM and methanol cultures of the strain.

2. Materials and Methods
2.1. Cell Growth and RNA Extraction

M. extorquens wild-type strain DM4 was grown aerobically at 30 ◦C in M3 medium
supplemented with methanol or DCM provided at 10 mM as the sole source of carbon and
energy, in independent duplicates of 220 mL in 1.2 L Erlenmeyer flasks closed with gas-tight
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screw caps with Supelco Mininert R valves (Thermo Fisher Scientific, Illkirch, France), as
described previously [31]. Cells were harvested at mid-phase (OD at 600 nm of 0.15), and
RNA was extracted and treated with a TURBO DNA-free kit (Thermo Fisher Scientific,
Illkirch, France) to remove residual genomic DNA. Ribosomal RNAs were depleted using
the Ribo-Zero™ Magnetic Kit for Bacteria (Epicentre, Madison, WI, USA). Integrity of
RNAs was validated after high-resolution automated electrophoresis of the RNA samples
using the Agilent 2100 Bioanalyzer system. Two biological replicates were performed for
each of the two tested conditions.

2.2. Construction of 5′-End-Mapping Libraries and cDNA Sequencing

Vertis Biotechnologie AG (Germany) constructed the libraries in a strand-specific man-
ner, as described previously [32]. Briefly, rRNA-depleted RNA samples were poly(A)-tailed
using poly(A) polymerase. After treatment with 5′ monophosphate-dependent RNA exonu-
clease (TEX, Euromedex, Souffelweyersheim, France), the four samples were split in two
parts: one was treated with RNA 5′ polyphosphatase (5′PP) to remove the 5′PPP structures
while the other was left untreated and used for “+” and “−” library construction, respectively
(Figure S1). The RNA adapter was ligated to RNA with a 5′ monophosphate end. Oligo(dT)-
adapter primer was used to perform synthesis of first strand cDNA with M-MLV reverse
transcriptase. Resulting cDNAs were PCR-amplified with high-fidelity DNA polymerase
and barcoded using 3′ sequencing adaptors. After cDNA purification using the Beckman
Coulter Agencourt AMPure XP kit (Thermo Fisher Scientific, Illkirch, France) and quality
checking using capillary electrophoresis (Shimadzu MultiNA microchip electrophoresis
system), cDNA was pooled and sequenced on an Illumina NextSeq 500 system using 50 bp
read length.

2.3. Identification of 5-Ends and Discrimination between Transcription Start Sites (TSS) and
Cleavage Sites

Sequence raw data (.fastq) were quality-checked using FastQC (version 0.11.5, Babra-
ham Institute, Cambridge, UK) and aligned to the reference genome with the Burrows-
Wheeler Alignment tool (Version 0.7.4) [33]. A majority of the obtained reads were dis-
carded, as they did not match the genome and corresponded to chimerical polyA sequences
generated during library construction. Only aligned reads were used for TSS assignment
using TSSAR (http://rna.tbi.univie.ac.at/TSSAR; accessed on October 2018) [34]. For each
culture condition and genomic position on one of the three replicons (chromosome 5.94 Mb,
plasmids p1METDI 142 kb and p1METDI 39 kb) present in genome of M. extorquens DM4,
TSSAR assigned a TSS only if a significant difference between the two banks was observed
based on the Skellam distribution. When the most stringent TSSAR parameters were used,
i.e., 10 reads (noise for the minimal number of reads) and 1 nucleotide (merge for the
maximal distance between two adjacent TSSs to be fused into a single TSS), a number of
assigned TSSs equivalent to the number of predicted M. extorquens DM4 annotated genes
(5988) [6] were obtained at a p-value of 0.01. Visualisation of the genome-wide nucleotide
localisation of assigned TSS on the reference genome was performed with IGV (Integrative
Genomics Viewer) [35]. When, for the same gene, several TSSs distant by less than 10 nt
were observed with similar read numbers, manual validation of the TSSAR-detected TSS
was performed. In such cases, the TSS with the most reads above noise at its 5′-end was
validated, in particular when also found in the other culture condition, a criterion not taken
into account by TSSAR. To retrieve genome-wide assigned TSS sequences upstream of
the promoter region and the 5′UTR, two R packages were used, GenomicRanges [36] and
seqinR [37]. Transcription start sites were categorised according to TSSAR as primary TSS
(or gene TSS), antisense TSS, internal TSS and orphan TSS, according to their locations
relative to annotated genes [34].

http://rna.tbi.univie.ac.at/TSSAR
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2.4. Promoter Motif Discovery

Identification of −10 and −35 regions was performed by scanning upstream sequences
of the chromosomal 2261 predicted P and IP TSS for conserved motifs using MEME Differen-
tial Enrichment mode [38]. For the −10 region, the 20 nt sequences immediately upstream
of predicted TSSs were used as the positive set, and the 20 nt downstream sequences of the
same length at position +100 were used as the negative set. For the −35 region, the 20 nt
sequences at −15 nt upstream of predicted TSS were used as the positive set, and the 20 nt
downstream sequences of the same length at position +100 were used as the negative set. For
each region, we assumed that each sequence in the dataset contains exactly one occurrence
of each pattern using MEME’s “One occurrence per sequence (oops)” option [38].

2.5. Analysis of 5′Untranslated Regions (5′UTR)

The 5′-UTR region was defined as the sequence between the TSS and the start codon.
5′-UTR generally contains RBS, defined as the sequence that is partially complementary
to 16S rRNA guiding the translation machinery to align with the start codon of the open
reading frame (ORF) [39]. Leaderless mRNA represent mRNA with 5′-UTR of 0 to 9 nt in
length, suggesting that transcription starts nearby the start codon of the corresponding ORF.

2.6. Data Deposition

RNA-seq data were deposited in the ArrayExpress database at EMBL-EBI (www.ebi.
ac.uk/arrayexpress, accessed on 21 June 2022) under accession number E-MTAB-11726.
Overview of mapped reads, and coverage directly plotted on IGV genome browser are
available on the MicroScope platform (https://mage.genoscope.cns.fr/microscope/mage/
index.php?), Transcriptomics tab, RNAseq project TSS_VXTYE3_Mextorquens_DM4.

3. Results and Discussion
3.1. Mapping and Annotation

Around 17 million reads were aligned to the genome of strain DM4, with similar
numbers for each of the four replicates (Table 1). The unmapped reads were mostly poly(A)
sequences that resulted from unspecific poly(A) tailing during library construction (Figure S1,
step C). TSSs manually filtered for false positives (1597) and TSSs located upstream of tRNA
(74) were removed (Table S1, sheet called ‘removed TSS’). A total of 7231 TSSs were found
evenly distributed along M. extorquens DM4 genome composed of a circular chromosome and
two plasmids (Figure 1). Similar numbers of detected TSS were found for other bacteria [40],
including Proteobacteria with a similar-sized genome [41].

Table 1. Number of aligned reads on M. extorquens DM4 genome.

Bank
Methanol Dichloromethane

Replicate 1 Replicate 2 Replicate 1 Replicate 2

“+” 0.6 × 106 0.3 × 106 0.8 × 106 0.6 × 106

(9%) (5%) 1 (14%) 1 (8%) 1

“−” 5.7 × 106 4.0 × 106 2.2 × 106 3.0 × 106

(76%) (74%) (51%) (64%)
1 For each biological replicate, percentage of aligned reads per total number of read.

www.ebi.ac.uk/arrayexpress
www.ebi.ac.uk/arrayexpress
https://mage.genoscope.cns.fr/microscope/mage/index.php?
https://mage.genoscope.cns.fr/microscope/mage/index.php?
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Figure 1. Distribution of the experimentally detected transcription start sites on the three replicons of
M. extorquens DM4.

TSSs were categorised into gene TSS (also called primary TSS), antisense TSS, internal
TSS, and orphan TSS with a distribution shown in Figure 2. Gene TSSs account for the
majority of the detected TSS located nearby annotated genes. Putative orphan TSSs repre-
sented 17% of detected TSSs (Figure 2). Orphan TSSs may result from TSS located further
from annotated genes than the arbitrary 250 nt cut-off length applied in this study, from
undetected and non-coding genes, or associated with antisense transcription [32]. TSSs on
the opposite strand of CDS account for 31% of all identified TSS. Similarly, antisense TSSs
represent 37% of all TSSs detected in Escherichia coli using the dRNA-seq approach [42].
This suggests that antisense transcription, also referred to as permissive transcription, may
occur massively in M. extorquens DM4, a process that is widespread among Prokaryotes. So
far, only the function of a few asRNA and sense/antisense overlapping genes coding for
proteins have been identified [43,44].

Upstream of the initiation codon, canonical bacterial mRNA contains 5′UTR involved
in transcript stability and translation efficiency. Analysis of the distance of gene TSS to
the start codon revealed an average of 84 nt with a median value of 64 nt in M. extorquens
DM4 (Figure 3). A similar mean length of 5′UTR was found in other bacteria, including
Sinorhizobium meliloti [45]. Prokaryotes also produce leaderless mRNA that lack 5′UTR but
are nevertheless competent for translation, with overlapping transcription and translation
start sites. In the literature, the proportion of leaderless mRNA varies from around 0.5% in
B. methanolicus MGA3 [26] and E. coli BW25113, up to 47% in Deinococcus desertii RD19 [46].
In this study, 7% of M. extorquens mRNA were leaderless (Figure 3). This percentage may
represent an underestimation, as leaderless RNA, when resulting from cleavage of the
5′UTR, would not have been detected (i.e., processed mRNA was excluded from library
“+”, see Supplementary Figure S1).
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Conserved promoter motifs were searched for upstream of the 2261 predicted P
and IP TSS of the chromosome, using MEME in Differential Enrichment mode. The
−35 element consensus sequence found in M. extorquens resembles that of canonical E. coli
(Figure 4). On the other hand, compared to the E. coli canonical −10 element, the highly
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conserved −7 thymidine nucleotide is absent in M. extorquens, as also found in other
Alphaproteobacteria Zymonmonas mobilis and Caulobacter crescentus [47,48].

Microorganisms 2022, 10, x FOR PEER REVIEW 7 of 13 
 

 

 
Figure 3. Length distribution of the 5′ untranslated region (5′UTR). A 0 distance to start codon rep-
resents TSS of leaderless transcripts. In this study, the maximum 5′UTR length was 250 nt. 

Conserved promoter motifs were searched for upstream of the 2261 predicted P and 
IP TSS of the chromosome, using MEME in Differential Enrichment mode. The −35 ele-
ment consensus sequence found in M. extorquens resembles that of canonical E. coli (Figure 
4). On the other hand, compared to the E. coli canonical −10 element, the highly conserved 
−7 thymidine nucleotide is absent in M. extorquens, as also found in other Alphaproteo-
bacteria Zymonmonas mobilis and Caulobacter crescentus [47,48]. 

 
Figure 4. Remarkable nucleic acid motifs associated with M. extorquens DM4 gene expression. Tran-
scription features (this work) and translation features [11] are shown. The −35 and −10 consensus 
sequences were deduced from TSS (P and IP) on the chromosome. 

0

25

50

75

100

0 50 100 150 200 250

N
um

be
r o

f d
et

ec
te

d 
TS

S 

TSS position to start codon (distance in nt)

gene TSS
N=2367

mean 5’UTR
84 nt

start
codon

leaderless
N=159

<250 nt

transcribed region

5' 3'
CDS

5'UTR

SD

start
codon

-35 -10 DNA

mRNA

+1

stop 
codon

UAA
UAG
UGA

promoter

5’PPP

Figure 4. Remarkable nucleic acid motifs associated with M. extorquens DM4 gene expression.
Transcription features (this work) and translation features [11] are shown. The−35 and−10 consensus
sequences were deduced from TSS (P and IP) on the chromosome.

3.2. Focus on TSS and Promoter Region Associated with Genes of One-Carbon Metabolism

Before this study, only a few TSSs had been identified in Methylorubrum/Methylbacterium
strains. For dichloromethane degradation, in the intergenic region of the divergently tran-
scribed dcmR-dcmA genes that encode the dichloromethane dehalogenase DcmA and its
transcriptional regulator DcmR, three TSSs were previously identified using nuclease S1
mapping. A unique TSS was detected for the promoter of dcmA (PA). Two TSSs were
found for gene dcmR corresponding to promoters PR1 and PR2 [16]. In this study, using
dRNA-seq, three TSSs (TSSAR class P) were detected corresponding to PA, PR1 and PR2
(Table 2). The TSS localisation for PR2 was identical. A 2–4 nt difference was observed for
PA and PR1, respectively (Figure S2). These differences may result from the use of RNA
generated from different DNA templates (plasmid [16] versus native genomic localization
in this study). When tested in a dichloromethane degrader affiliated to another genus,
Methylophilus sp. strain DM11, primer extension on total RNA also identified a unique PA
promoter region. Nonetheless, a 53 nt shorter 5′UTR was predicted for PA promoter in
strain DM11 compared to strain DM4 [23] (Table 2).

Table 2 compares the identified TSSs detected in this study with M. extorquens DM4 to
those characterized earlier in other strains (M. extorquens AM1; Methylobacterium organophilum
strain XX) using nuclease S1 mapping, run-off or primer extension. In some cases, the
correlation is excellent. This was the case for genes involved in methanol utilisation of the
mxa operon as found for PmaxF in M. extorquens AM1 [15,20] (Table 2). Primer extension
applied to M. organophilum also identified PmaxF despite sequence variation downstream of
the −10 box and a 2 nt longer predicted 5′UTR [21] compared to other strains (Table 2).
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Table 2. TSSs detected using dRNA-seq compared to previously mapped TSS with other methods.

Gene Product Label in MaGe 1
Promoter Region 2

5-URT (nt) Approach 3 Comments
−35 −10 + 1 /Name

dcmA DCM dehalogenase METDI2656
TTGACA <16 nt> TATAGAactagccc G/PA
TTGACA <16 nt> TATAGAactagc C/PA
TTGACA <17 nt> TATAGTcaagtc A/PA

173
175
122

dRNA-seq
nuclease S1

PE

M. extorquens DM4 (this study). TSS position 2562877 (plus)
M. extorquens DM4 [16]. TSS identified from cloned DNA
Methylophilus sp. DM11 [23]

dcmR
transcriptional

regulator of DCM
dehalogenase

METDI2655

TTGCGC <17 nt> TAACTAcaagg G/PR1
TTGCGC <17 nt> TAACTAcaagggtct C/PR1

TTTACT <16 nt> TTTACTcatcgg A/PR2
TTTACT <16 nt> TTTACTcatcgg A/PR2

66
62

157
157

dRNA-seq
nuclease S1
dRNA-seq
nuclease S1

M. extorquens DM4 (this study). TSS position 2562332 (minus)
M. extorquens DM4 [16]. TSS identified from a cloned DNA
M. extorquens DM4 (this study). TSS position 2562423 (minus)
M. extorquens DM4 [16]. TSS identified from cloned DNA

glyA serine hydroxyl-
methyltransferase

METDI3959
META1_3384

TTGGCC <18 nt> ACGAATagtgc C
ATCACC <16 nt> TGCCGCggcgtgta C

75
84

dRNA-seq
PE

M. extorquens DM4 (this study). TSS position 3888433 (minus)
M. extorquens AM1 [19]. Other TSS with 63 and 38 nt 5′UTR

lspA 4 lipoprotein signal
peptidase

METDI3108

META1_2328
(old name ORF181)

TTCCCC <17 nt> TAGAAGcgctcca A/PileS

TCGACG <19 nt> GGTGCCcgagcggg C/Porf181

150

129

dRNA-seq

PE

M. extorquens DM4 (this study). TSS position 3023525 (plus),
150 nt upstream of ileS. No TSS found upstream (0.9 kb) lspA
M. extorquens AM1. Porf181 deduced from a faint primer
extension band, with low promoter activity (225 bp upstream
of orf181pqqFG fused to xylE [18]

mxaF
methanol

dehydrogenase
alpha SU precursor

METDI5145
META1p4538

nd 5

AAGACA <18 nt> TAGAAAatatag G
AAGACA <18 nt> TAGAAAatata GG

AAGACA <18 nt> TAGAAAcgat A

168
167–168

170

dRNA-seq
nuclease S1,

run-off
PE

M. extorquens DM4 (this study). TSS position 5068109 (minus)
M. extorquens AM1 [15]. Gene mxaF also named moxF

M. organophilum XX [21]

mxaW
uncharacterized

conserved exported
protein

METDI5146
META1p4539

nd

TTGACC <18 nt> ACCGTTgtcgtcAacgggC
TTGGCA <nd> ACCCAT <nd> G 6

TTGACC <18 nt> ACCACTaggcgg A

41
52
54

dRNA-seq
PE
PE

M. extorquens DM4 (this study). TSS position 5068271 (plus)
M. extorquens AM1 [18]. Gene mxaW also named moxW
M. organophilum XX [22]

mtkA malate thiokinase
large SU

METDI2482
META1_1730

TTCCCG <17 nt> GAAGGTcggcccaa C
TTGAGA <19 nt> AGTAATttttcc G/Pqsc2-1

AAGTCA < 7 > AAGAAAaattga G/Pqsc2-2

31
46
80

dRNA-seq
PE

M. extorquens DM4 (this study). TSS position 2393413 (plus)
M. extorquens AM1 of operon qsc2 (mtkA-mtkB-ppc-mcl) [19].
Predominance of the two TSS varies upon growth conditions

pqqA
coenzyme PQQ

biosynthesis
protein A

METDI2503

META1_1751

TGGCGC <19 nt> TGATGGcgcc A/PmxbM

TTGCAG <16 nt> CGATATacctccg G/PpqqD

119

95

dRNA-seq

PE

M. extorquens DM4 (this study). TSS position 2416334 (minus)
upstream of adjacent gene mxbM (METDI2504). No TSS
detected upstream of METDI2503
M. extorquens AM1 [17]. Promoter checked using xylE fusion

sga serine-glyoxylate
aminotransferase

METDI2478

META1_1726

TTGCGC <16 nt> CGGGATcgccccc G/Psga
GTGCCC <18 nt> CCGGCAgaggtg C/Pqsc1

TTGAAT <17 nt> CATCGAgggtt C/Pqsc1

46
356
343

dRNA-seq

PE

M. extorquens DM4 (this study). TSS position 2388788 (plus, P
class) and 2388435 (plus, O class)
M. extorquens AM1 of operon qsc1 (sga-hpr-mtdA-fch) [19]

1 MaGe platform website: https://mage.genoscope.cns.fr/microscope/mage/index.php?; 2 TSS; 3 PE, primer extension; 4 ileS and lspA genes overlap over 3 nt in DM4 and AM1 strains
suggesting a co-transcription.; 5 nd, data not available; 6 Sequence not found in AM1 sequenced genome [6], 7 Sequence of 30 nt was found between the −35 and −10 boxes in AM1
genome sequence [6].

https://mage.genoscope.cns.fr/microscope/mage/index.php?
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Primer extension of the 5′end of M. extorquens AM1 qsc2 (mtkA-mtkB-ppc-mcl) operon
identified two TSSs associated with Pqsc2-1 and Pqsc2-2 promoters, predominant in RNA
extracted from cultures in methanol and succinate, respectively [19]. In this study, only one
TSS was detected 31 nt upstream of the start codon of mtkA. It most likely corresponds to
the TSS of Pqsc2-1, resulting in a 46 nt-long 5′UTR. When the sequence corresponding to
Pqsc2-2 was searched in the genome of strain AM1 [6], a stretch of 30 nt separated the −35
and −10 boxes. The length of this spacer sequence is atypical of the bacterial consensus
spacer region that generally includes 17 nt with variation between 15 to 20 nt [47]. This
suggests a loss of Pqsc2-2 activity in strain AM1, and its minor role for methylotrophic
growth conditions, as suggested previously [19].

Further, a newly identified TSS (TSSAR class P) was detected upstream of a key gene
in C1 assimilation, gene sga encoding serine-glyoxalate aminotransferase, in addition to the
previously detected TSS [19] (Table 2, Pqsc1 orphan-type TSS in this study). In two other
cases, previously detected TSSs could not be confirmed here as class P TSS using dRNA-seq.
Instead, TSSs were detected in upstream genes, suggesting co-transcription with adjacent
genes (Table 2, see orf181 and pqqD). Co-transcription of genes ileS and lspA (referred as
orf181 in [17]) is indeed likely, since these genes overlap in both M. extorquens DM4 and
AM1 genomes, and RT-qPCR targeting this co-transcription had not been tested [18].

Altogether, the prediction of different promoter regions based on dRNA-seq correlated
with those previously identified using different methods, in most cases. Nonetheless,
we found some differences, which may originate from experimental design (e.g., cloned
plasmid-borne promoters compared to native genomic location [49]), sequence variations
between different strains, erroneous identification, and tested growth conditions with
alternative TSSs.

Besides the GATC(C/G)ATAGCCT motif present in the dcmA and dcmR promoters
(PA and PR1), no regulatory sequence associated with dichloromethane utilisation has been
proposed so far [16]. Of the genes found with differential transcript abundance in cultures
of strain DM4 grown with dichloromethane compared to growth with methanol [12], some
may be co-regulated at the transcription level and harbour shared DNA motifs within their
promoter regions and 5′UTR sequences. Among 69 genes with higher mRNA abundance
upon growth with DCM compared to with methanol, a total of 33 TSSs were detected,
whereas 16 TSSs were identified for 118 genes more expressed on methanol (Table S2).
However, no new remarkable DNA motifs were detected within 5′UTR of putatively
regulated expressed genes using MEME.

4. Conclusions

The detailed TSS of DCM-degrading strain M. extorquens DM4 map obtained here
establishes a valuable complement to genome sequence and proteome data for the strain,
with different nucleic acid motifs associated with gene expression, such as consensus
sequences found in promoter regions, mapped out in unprecedented detail (Figure 4). More
generally, it provides a broad genome-level foundation for future in-depth investigations
in the genus Methylorubrum, not only for gene expression and organisation but also for
gene discovery. This rich dataset will facilitate future studies of genes of interest as well
as systems biology investigations of methylotrophic metabolism, and in particular on the
utilisation of chlorinated C1 compounds and corresponding adaptative mechanisms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10071301/s1, Table S1. List of detected and
validated TSS of M. extorquens DM4 grown with DCM or methanol. Table S2. Transcription start sites
and promoter regions of regulated genes. Figure S1. Construction of 5′-end-mapping libraries and
cDNA sequencing. Figure S2. Start sites of the dcmR-dcmA intergenic region and comparison with
previous data.

https://www.mdpi.com/article/10.3390/microorganisms10071301/s1
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