
HAL Id: hal-03718681
https://hal.science/hal-03718681

Submitted on 9 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lobster: Load Balance-Aware I/O for Distributed DNN
Training

Jie Liu, Bogdan Nicolae, Dong Li

To cite this version:
Jie Liu, Bogdan Nicolae, Dong Li. Lobster: Load Balance-Aware I/O for Distributed DNN Training.
ICPP ’22: The 51st International Conference on Parallel Processing, Aug 2022, Bordeaux, France.
�10.1145/3545008.3545090�. �hal-03718681�

https://hal.science/hal-03718681
https://hal.archives-ouvertes.fr

Lobster: Load Balance-Aware I/O for Distributed DNN Training
Jie Liu

jliu279@ucmerced.edu
University of California, Merced

Merced, USA

Bogdan Nicolae
bnicolae@anl.gov

Argonne National Laboratory
Chicago, USA

Dong Li
dli35@ucmerced.edu

University of California, Merced
Mercced, USA

ABSTRACT
The resource-hungry and time-consuming process of training Deep
Neural Networks (DNNs) can be accelerated by optimizing and/or
scaling computations on accelerators such as GPUs. However, the
loading and pre-processing of training samples then often emerges
as a new bottleneck. This data loading process engages a complex
pipeline that extends from the sampling of training data on external
storage to delivery of those data to GPUs, and that comprises not
only expensive I/O operations but also decoding, shuffling, batching,
augmentation, and other operations.We propose in this paper a new
holistic approach to data loading that addresses three challenges not
sufficiently addressed by other methods: I/O load imbalances among
the GPUs on a node; rigid resource allocations to data loading
and data preprocessing steps, which lead to idle resources and
bottlenecks; and limited efficiency of caching strategies based on
pre-fetching due to eviction of training samples needed soon at
the expense of those needed later. We first present a study of key
bottlenecks observed as training samples flow through the data
loading and preprocessing pipeline. Then, we describe Lobster, a
data loading runtime that uses performance modeling and advanced
heuristics to combine flexible thread management with optimized
eviction for distributed caching in order to mitigate I/O overheads
and load imbalances. Experiments with a range of models and
datasets show that the Lobster approach reduces both I/O overheads
and end-to-end training times by up to 1.5× compared with state-
of-the-art approaches.

ACM Reference Format:
Jie Liu, Bogdan Nicolae, and Dong Li. 2022. Lobster: Load Balance-Aware I/O
for Distributed DNN Training. In 51st International Conference on Parallel
Processing (ICPP ’22), August 29-September 1, 2022, Bordeaux, France. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3545008.3545090

1 INTRODUCTION
Deep Neural Networks (DNNs) are rapidly gaining traction in both
industry and scientific computing, driven by the accumulation of
massive data. In science, for example, instruments that collect data
at GB/s and 100+ TB/day present a wide range of learning op-
portunities. We thus see significant interest in deploying DNNs
on high-performance computing (HPC) systems in order to en-
able rapid learning in domains such as computational fluid dy-
namics [6], power grids [7], and molecular dynamics [40]. Various

approaches [10, 28] for training DL models on massive data have
been developed: coarse-grain parallelization on multiple nodes
using data-parallel, model-parallel, pipeline-parallel, and hybrid
techniques; fine-grain parallelization on many-core architectures
by constructing and scheduling execution graphs at the tensor level;
and low-level optimizations of operators [14] and communication
primitives [4]. Most such work is targeted at alleviating the compu-
tational overhead needed to run iterations that perform forward
and backward passes on mini-batches of training data, as well as
the communication costs associated with synchronizing subtasks
across devices and nodes.

However, before a mini-batch can be processed, it needs to be
assembled through a complex pipeline that involves data loading,
caching and pre-processing (decoding, augmentation, batching).
This pipeline overlaps with the training itself, aiming to improve
resource utilization and hide the overhead of assembling the mini-
batches. However, despite this overlap, data loading and prepro-
cessing often become a bottleneck [8, 19, 26, 30, 39], with reports
of overheads of up to 72% of end-to-end training time [26, 30].
With ever-increasing accumulation of training data, data loading is
likely to become yet more costly, prompting the need for scalable
solutions to mitigate these overheads.

Unsurprisingly, several efforts have emerged to reduce the I/O
overheads of data loading, such as double-buffering [1, 15, 31],
data sharing [20, 29], domain specific caching [8, 19, 24, 39], and
model relocation instead of data shuffling [27, 29]. However, despite
significant progress, several challenges remain.

First, there can be a high degree of load imbalance across GPUs.
For example, in a data-parallel training iteration, in which each
GPU works on a different mini-batch, differences in the location
of training samples (i.e., local cache vs. remote storage) lead to
differences in data fetch costs, which in turn lead to some GPUs
loading their data more slowly than others. As all GPUs must coop-
erate to average their gradients during the backward pass, these
stragglers ultimately slow all GPUs. Thus, approaches that are ag-
nostic to fine-grain data load imbalances across individual GPUs
are insufficient.

Second, data loading competes for resourceswith the other stages
of the pipeline. Focusing on the data loading alone and lacking
coordination with the other stages of the pipeline may cause a
resource utilization imbalance that further amplifies the I/O load
imbalance. For example, if a fixed number of threads is allocated to
each stage of the pipeline, then a bottleneck in one stage will lead
to idle threads in the other stages that instead could have used to
alleviate the bottleneck. Thus, it is important to coordinate thread
management in order to avoid resource wastage.

Third, the caching of training samples in the node-local memory
hierarchy can suffer from inefficient eviction. Caching, essential
for reducing the I/O overheads associated with accessing a storage

https://doi.org/10.1145/3545008.3545090

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jie Liu, Bogdan Nicolae, and Dong Li

repository, is often implemented in a distributed fashion: each com-
pute node exposes its local cache to other compute nodes, greatly
reducing the need for the compute nodes as a group to interact
with the repository. By using a pseudo-random number generator
to sample the training data, it is possible to obtain foreknowledge
of the order in which the training samples will be accessed in future
iterations. State-of-the-art approaches leverage such foreknowl-
edge to prefetch training samples, further reducing I/O overheads.
However, prefetching inevitably causes cache evictions, which may
lead to suboptimal behavior if samples that will be accessed in the
more distant future replace samples needed sooner.

To address the above challenges, we propose Lobster, a holistic
data loading I/O runtime for distributed DNN training. Lobster
distinguishes between the I/O load of each individual GPU at fine
granularity and coordinates the I/O operations of the GPUs at the
node level, flexibly allocating available I/O bandwidth and threads
as needed to reduce I/O load imbalance.

Lobster also coordinates the data loading and preprocessing
stages of the pipeline, flexibly allocating threads between them
to reduce bottlenecks. This coordination is achieved through the
use of performance modeling, which we combine with reuse dis-
tance theory to design efficient eviction policies for distributed
caching of the training samples. Such an optimized eviction pol-
icy complements state-of-the-art distributed caching approaches
based on prefetching by avoiding the undesirable effect of evicting
training samples that are needed in the near future in order to
make room for prefetched samples that are needed later. We show
that this method increases the cache hit ratio by 14.3% compared
with state-of-the-art prefetching approaches such as that used in
NoPFS [8].

Thanks to these contributions, Lobster is able to maximize GPU
and cache utilization, thus hiding the overheads of data loading and
enabling high performance and scalable end-to-end DNN training.

• We characterize the performance (especially I/O performance)
across 64 GPUs in a production environment for distributed DNN
training, highlighting the I/O load imbalance across GPUs and
frequent performance bottleneck shifts between data loading/pre-
processing pipeline and the training process. This study reveals
new opportunities for I/O performance optimization that are not
considered by state-of-art approaches (Section 3).

• We propose a thread management strategy to coordinate the
resource usage between data loading and preprocessing in the
training pipeline (Section 4.1), as well as to mitigate the I/O load
imbalance between GPUs (Section 4.2).

• We introduce a holistic performance model that bridges the
thread management strategy with a distributed caching proposal
that features prefetching support and optimized eviction based
on reuse distance (Section 4.3).

• We design and implement a heuristic strategy to solve the opti-
mization problem resulting from the performance model. This
strategy consists of two phases (prefetching and eviction) and
guides both the allocation of the threads and the distributed
caching (Section 4.4).

• Weevaluate Lobster on a 64-GPU (NVIDIAA100) cluster and com-
pare its performance with the state-of-the-art PyTorch I/O [31],
DALI [44], and NoPFS [8] systems on several DNN models and

Data Fetch

Decoding

Data Preprocessing Model Training

Local Storage Remote Storage

Batching

Augmentation DNNs GPUs

Figure 1: DNN training pipeline.

training datasets. Our experiments show end-to-end training
speed-ups of 1.3×–2.0× and cache hit ratio improvements of
14.3%–38.7% (Section 5).

2 BACKGROUND
DNN training is an iterative process: first, the answer to an input is
obtained in a forward pass over all layers. Then, in a backward pass,
the difference (gradients) between the predicted and actual result
(“ground truth”) is used to update the weights layer by layer in
reverse order. This process repeats for a large number of iterations
until the DNNmodel has converged. Typically, multiple passes over
the whole training data are required. Thus, iterations are grouped
into epochs, each of which represents a full pass.

The input of each iteration is a mini-batch, which is obtained
by random sampling of the training data. For efficiency reasons,
in practice a pseudo-random number generator is used to shuffle
the training samples, after which they are accessed in the shuffled
order and grouped together as mini-batches. Since the seed of the
pseudo-random number generator is known in advance, the I/O
access pattern necessary to read the training samples can be made
fully deterministic [8].

Before executing the forward and backward pass, the DNN train-
ing pipeline includes a data loading and preprocessing state, as
illustrated in Figure 1. Data loading is responsible for prefetching
and caching the training samples (which is possible thanks to the
I/O access pattern being deterministic), while data preprocessing
is responsible for additional transformations: decoding, augmen-
tation, batching. All these stages in the pipeline are overlapping,
which optimizes the resource utilization. The data preprocessing
can be performed on either the CPU or the GPUs. For the purpose
of this work, we assume the preprocessing is performed on the CPU,
while the training is performed on the GPUs. This is a common sce-
nario [2, 19, 21, 25, 26, 42] that makes efficient use of heterogeneous
compute resources.

In order to scale the DNN training, multiple nodes equipped
with multiple GPUs are used, as illustrated in Figure 2. The most
common approach to achieve this is data parallelism, i.e., training
the same DNN model replica on multiple GPUs with different mini-
batches, then averaging the gradients during the backward pass.
In this case, the GPUs co-located on the same node share a node-
local cache. If a training sample is not available in the node-local
cache, it can be retrieved either from the external storage repository
(typically a parallel file system or PFS) or, if available, from the
cache of a different node. The latter requires the implementation
of a distributed cache but improves I/O latency significantly for
several reasons: (1) the bandwidth between compute nodes is higher
than the I/O bandwidth between a single compute node and the

Lobster: Load Balance-Aware I/O for Distributed DNN Training ICPP ’22, August 29-September 1, 2022, Bordeaux, France

GPU GPU

DDR4
Memory

CPUs

Node 1

NVLink

interconnection

Parallel
File System

NVMe
SSD

GPU GPU

DDR4
Memory

CPUs

Node 2

NVLink

NVMe
SSD

GPU GPU

Local
Storage

CPUs

Node n

NVLink

NVMe
SSD

Figure 2: The storage hierarchy for distributed training in
our environment.

PFS; (2) the aggregated I/O bandwidth of the PFS is limited and
becomes a bottleneck when multiple compute nodes compete for
it; (3) the PFS is not optimized for I/O access patterns that involve
small randomly scattered reads necessary to retrieve the training
samples.

In this paper, we assume a data-parallel training that makes use
of a distributed cache. However, it is important to note that our
proposal works in general for other DNN training scenarios as
well (e.g., different DNN models sharing the same training data,
alternatives to distributed caching like for example KV-stores, or
even single-node DNN training). Our goal is to optimize node-local
caches such that they can serve multiple co-located GPUs efficiently,
when considering the challenges discussed in Section 1: (1) data
load imbalance across the GPUs; (2) lack of coordination between
the stages of the pipeline; (3) sub-optimal cache eviction due to
deterministic prefetching.

3 MOTIVATION
We now motivate our approach by examining the challenges intro-
duced in Section 1 in detail. To this end, we run a series of experi-
ments that profile the performance of the DNN training pipeline
and discuss our observations.

A detailed description of the experimental setup is available in
Section 5.1. Using this experimental setup, we train a ResNet50
model on the ImageNet-1K dataset using PyTorch 1.8 as the DNN
runtime and DALI [44], an industry-standard state of art data load-
ing library. We use a data-parallel setup deployed on eight nodes,
for a total of 64 GPUs. Since the stages of the training pipeline are
overlapping and we are interested in studying the bottlenecks, we
measure the duration of the delays caused by each stage along the
critical path.

Figure 3 shows detailed results for three GPUs: two co-located
on the same node, and the third on a different node. We omit the
first epoch (because the caches need to warm up and therefore the
behavior is different compared to the rest of the epochs) and focus
on 24 iterations (out of 562) of the second epoch: eight each in the
beginning, middle, and end—enough to capture a recurring pattern
throughout the epoch. We make the following observations:

Observation 1: There is data load imbalance across GPUs.
GPUs are often idle during an iteration, but not because they are

waiting for their own data loading and pre-processing stages, which
are faster than, and therefore fully overlap with, training. The
problem is rather that other GPUs have longer data loading and
preprocessing stages, which causes them to become stragglers and
delay the start of the training stage. As each GPU needs to perform
the same amount of work during the training stage, the stragglers
cause other GPUs to sit idle while they wait to average the gradients
during the backward pass. For example, during iteration 7, GPU0
of Node1 and GPU1 of Node2 are less loaded than GPU1 of Node1.
Their GPU idle time takes 73% and 12% of the total iteration time,
respectively. Compared with iteration 2, where there is no data load
imbalance, iteration 7 is 3× slower. Our results show that such data
load imbalances occur frequently: in 65.3% of our 562 iterations.

Observation 2: Data loading overheads vary frequently and
irregularly across iterations, leading to the performance bot-
tleneck shifting among the stages of the pipeline. Since the
pipeline overlaps the stages, the slowest stage becomes a bottle-
neck. Ideally, data loading and preprocessing should never become
a bottleneck. However, not only does this happens frequently with
state-of-art approaches, but it is difficult to predict: during the same
iteration, on some GPUs the training stage is the performance bot-
tleneck, while the opposite is true on the other GPUs. Similarly,
on the same GPU, the bottleneck can shift between data loading
and training across iterations and exhibit an irregular pattern. This
can happen on any GPU. In this experiment, we did not observe
the preprocessing stage becoming a bottleneck by itself, however,
this can happen and was reported by other studies [26]. When data
loading is the bottleneck, training performance suffers significant
slowdown. For example, in the case of GPU0 on Node0, in the two
iterations where data loading is the bottleneck, its duration is 3×
longer than the training stage—an observation that is explained
by the fact that remote I/O to the external repository and/or the
local caches of other compute nodes is orders of magnitude slower
that local I/O. Furthermore, this effect is also correlated with load
imbalance: whenever the performance bottleneck shifts in a GPU,
other GPUs tend to exhibit load imbalance. Thus, when data loading
is the bottleneck, it tends to exhibit a bursty pattern.

Observation 3: The preprocessing stage does not benefit from
an arbitrarily large number of threads. Data preprocessing is
characterized by a streaming memory access pattern: training sam-
ples are continuously arriving in batches, and each training sample
can be further split into sub-domains (e.g. regions in an image).
The computations are typically embarrassingly parallel, therefore
they can considered a bag of tasks to be assigned to threads. Vary-
ing the number of threads changes data parallelism and memory
bandwidth consumption, which in turn impacts performance. To
study this effect, we vary the number of preprocessing threads and
measure the preprocessing throughput (decoding/decompression
and data augmentation). As can be observed in Figure 6, the pre-
processing throughput peaks at 6 threads, after which it flattens
and even slightly becomes worse. This effect has been observed
by others as well [5, 22]. For data preprocessing, intensive mem-
ory bandwidth consumption is the major performance bottleneck
when the number of threads is large. Furthermore, excessive mem-
ory bandwidth consumption also impacts the other stages in the
pipeline. Therefore, it must be avoided.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jie Liu, Bogdan Nicolae, and Dong Li

50

0

Ti
m

e
(m

s)

N
od

e1
 G

PU
1

Iter 1

100

200
N

od
e2

 G
PU

1
GPU Idle
GPU Computation
Data Pre-processing
Data Decoding
Data Loading

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

N
od

e1
 G

PU
1

Iter 1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

N
od

e1
 G

PU
1

Iter 1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 2 Iter 3 Iter 4

N
od

e1
 G

PU
1

Iter 5

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

N
od

e1
 G

PU
1

N
od

e2
 G

PU
1

N
od

e1
 G

PU
0

Iter 6 Iter 7 Iter 8

Iterations are from beginning part of the epoch (0-180 iterations) Iterations are from middle part of the epoch (181-360 iterations) Iterations are from the end of the epoch (361-560 iterations)

Figure 3: Execution time breakdown for the training pipeline on three GPUs, two on one node and the third on a second node.

Pe
rc

en
ta

ge
 o

f d
at

a
sa

m
pl

es
 (%

)

0

5.0
x1

02

1.0
x1

03

2.0
x1

03

4.0
x1

03

8.0
x1

03

1.6
x1

04

3.2
x1

04

5

10

15

20

Figure 4: Histogram of the reuse distance of the training
samples, measured in terms of numbers of iterations (X-axis)

Observation 4: Many training samples have a long reuse
distance. During data-parallel training, each GPU processes a dif-
ferent mini-batch. This means that each training sample cached
on a compute node at iteration 𝑖 may be reused the first time ei-
ther by the same or a different GPU co-located on the same node
at iteration 𝑗 . We call 𝑗 − 𝑖 the reuse distance. Studying the reuse
distance of the training samples is important to understand how
well the cache of each compute node is utilized. Figure 4 shows
the histogram of reuse distance of data samples accessed by GPUs
for Node1. We observe that many training samples have a long
reuse distance. Here, when two memory accesses to a sample are
separated by at least one epoch away, we call it “long”. For example,
80% of the training samples have the reuse distance larger than
1,000 iterations.

Implications. Observation 1 indicates that the data load imbal-
ance is frequent and leads to stragglers. Thus we need a fine-grained
load balancing strategy that is aware of individual GPUs. Observa-
tion 2 is correlated to Observation 1 and points to a frequent shift of
the performance bottleneck among the stages of the pipeline due to
I/O bursts. Therefore, it is important to (1) optimize the utilization
of the node-local cache to avoid remote I/O; (2) coordinate with
the other stages of the pipeline and allocate more I/O threads to
data loading when remote I/O cannot be avoided. Observation 3

Performance Model

...

Data Indexes Training Data
Accessing Order

Optimization Data
Transfer

Optimized Data LoaderRandom
Sampler

Data
Preprocessing Thread Management Model

Training

Loaded Training Data

PFS

Cluster

PFS PFS PFS

Metadata ...

Storage Backend

Figure 5: Overview of Lobster.

indicates that the preprocessing stage does not benefit from an
arbitrarily large number of threads and it can be even detrimental
to allocate too many threads to it due to high memory bandwidth
consumption. Therefore, it is important to determine the minimum
number of threads needed to reach the peak preprocessing through-
put and not exceed it. Observation 4 indicates that we can leverage
long reuse distance of training samples to optimize the utilization
of the node-local cache. In particular, we can explore new eviction
policies that coordinate with prefetching to avoid the undesirable
situation in which the training samples that are needed in the near
future are evicted at the expense of the prefetched training samples
that are needed later.

4 DESIGN
Based on the observations summarized in Section 3, we propose
Lobster, a holistic data loading I/O runtime for distributed DNN
training. Lobster uses the following high-level strategy to balance
the work of the different stages of the training pipeline between
different GPUs: (1) decide the number of data preprocessing threads
(Section 4.1); (2) given the number of data preprocessing threads,
when the data loading is not a performance bottleneck of the train-
ing pipeline, decide the number of data loading threads per iteration

Lobster: Load Balance-Aware I/O for Distributed DNN Training ICPP ’22, August 29-September 1, 2022, Bordeaux, France

2000

Im
ag

es
 p

er
 s

ec
on

d

Number of threads for data preprocessing

0
21 4 6 8 10 12 14

1500

1000

500

Figure 6: The impact of number of preprocessing threads
(X-axis) on data preprocessing throughput (Y-axis)

for each GPU (Section 4.2); (3) given the number of data prepro-
cessing threads, when the data loading is a performance bottleneck
of the training pipeline, use performance modeling and run an
heuristic algorithm to decide the number of data loading threads to
balance I/O between GPUs in the same node (Sections 4.3 and 4.4).
The heuristic algorithm considers the reuse distance of the train-
ing samples, which is used to coordinate with the prefetching and
improve the overall hit ratio of the node-local cache. This strategy
is implemented as illustrated in Figure 5.

Lobster addresses (1) by throttling thread-level parallelism in
preprocessing so that it can redirect threads for data loading. To
decide the number of preprocessing threads, Lobster predicts the
preprocessing throughput based on a piece-wise linear regression
model. For (2), Lobster introduces a multi-queue data structure
to distinguish I/O between GPUs, and assigns threads to GPUs in
proportion to data loading intensity. For (3), Lobster formulates
the problem of deciding data loading threads as an optimization
problem, and uses a computation-efficient heuristic algorithm to
solve it. We now examine each of these aspects in detail.

4.1 Flexible Preprocessing Thread Management
We decide the number of data preprocessing threads based on two
goals: (1) the combined duration of preprocessing and data loading
should be smaller than the training stage; (2) need to redirect threads
to improve the performance of the data loading stage.

Given a batch of training samples, we use the following two-step
algorithm to meet the above goals. Step 1: predict the preprocessing
throughput using the optimal number of preprocessing threads
(that reaches the peak preprocessing throughput, as explained in
Section 3). The prediction is based on performance modeling, as
detailed below. Then, we use the methods in Sections 4.2 and 4.3 to
decide the number of threads allocated for the data loading stage.
This aims to reach goal (1). Step 2: as long as goal (1) is not reached
and the preprocessing stage is not a performance bottleneck, take
away one thread from the preprocessing stage and make it available
for data loading. The frequency of running this algorithm can be
adjusted to reach a trade-off where we avoid excessive overheads
on one hand, while maintaining the capability to adapt quickly to
changing performance bottleneck shifts.

The success of the above algorithm depends on the accuracy of
the performance predictions of the data preprocessing stage. To
this end, for a specific training sample size, we build a piece-wise
linear regression model that takes the number of threads as input
and predicts the execution time of processing one training sample.
We build a portfolio of models, each of which corresponds to a

Table 1: Notation used in performance models.

Notation Metric Description

𝑁 number of compute nodes
𝑀 number of GPUs in one compute node
Mem storage space on each compute node
𝐷 training dataset, comprising |𝐷 | data samples
𝑆 size of 𝐷
𝑠𝑖 size of data sample 𝑑𝑖 (𝑑𝑖 ∈ 𝐷)
𝐼 number of iterations per epoch
𝑇𝑙 (𝛼) 𝑀𝐵/𝑠 local memory read throughput (𝛼 read threads)
𝑇𝑟 (𝛽) 𝑀𝐵/𝑠 inter-node read throughput (𝛽 read threads)
𝑇𝑃𝐹𝑆 (𝛾) 𝑀𝐵/𝑠 read throughput of remote PFS (𝛾 read threads)

training sample size. During runtime, if the sample size does not
have a corresponding model in the portfolio, we choose the model
whose sample size is closest to the one considered.

Note that the performance modeling approach mentioned above
is architecture-dependent and data sample-dependent. This means
that for different training environments (different hardware, types
of preprocessing and sample sizes) we need to adjust the perfor-
mance modeling. However, in practice, the same HPC machines,
types of preprocessing and sample sizes are reused across many
training instances of the same or different DNN models. Therefore,
the cost of constructing performance model is amortized.

4.2 Coordinated Data Loading / Preprocessing
Given a fixed number of threads for the data preprocessing stage,
the remaining CPU threads of the same node will be assigned for
the data loading stage that serves all GPUs of that node.
Discriminating data load overheads between co-locatedGPUs.
Current state of art efforts [8, 19, 26, 31, 44] serve all GPUs equally
using a pool of threads reserved for the data loading stage. However,
this is sub-optimal because the GPUs that trigger higher data load-
ing overheads should be served using more threads, such that they
will not become stragglers. To address this issue, Lobster proposes
to maintain a separate request queue for each GPU, each of which
can be assigned a different number of threads such as to achieve
load balancing. Note that the data loading requests are placed in
the queue of each GPU based on deterministic prefetching while
considering the reuse distance. These details will be discussed later
(Section 4.4).
Thread assignment. Given the requests in all GPU queues of a
node that correspond to future training iterations, Lobster checks
if there is a GPU that is predicted to become a straggler due to
data loading. The prediction is based on performance modeling, as
detailed in Section 4.3. Assignments are then made by using the
heuristic detailed in Section 4.4. When a GPU is not predicted to
become a straggler, the number of threads assigned to the request
queue is proportional to the size of the queue.

4.3 Performance Model
We introduce a holistic performance model that bridges the thread
management strategy for data loading and preprocessing (discussed
above) with distributed caching. Table 1 summarizes the major
notations used by our model.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jie Liu, Bogdan Nicolae, and Dong Li

Let 𝑠𝑖 be the size of sample 𝑑𝑖 in the training dataset 𝐷 , which
thus has a total size of 𝑆 =

∑
0≤𝑖< |𝐷 | 𝑠𝑖 ; 𝑁 be the number of nodes

and𝑀 the number of GPUs per node (for a total of 𝑁 ×𝑀 GPUs);
Mem be the host memory size allocated for caching; and |𝐵 | be the
mini-batch size. If 𝑆 > Mem, then the training data cannot be fully
cached on a single node; if 𝑆 > 𝑁×Mem, it cannot be fully cached
across all nodes. One epoch consists of 𝐼 =

⌈
|𝐷 |

|𝐵 |×𝑀

⌉
iterations, or

𝐼 =

⌊
|𝐷 |

|𝐵 |×𝑀

⌋
iterations if we discard the last (potentially partial)

iteration. At iteration ℎ (0 ≤ ℎ < 𝐼), each GPU 𝐺
𝑗
𝑖
(where 𝑖 is the

node ID and 𝑗 is the GPU ID), processes its own mini-batch 𝐵ℎ,𝑖, 𝑗 .
Overall, the GPUs need to read a collection 𝐵ℎ =

⋃
𝑖∈𝑁,𝑗 ∈𝑀 𝐵ℎ,𝑖, 𝑗

of training samples concurrently. Three scenarios can arise when
reading training sample 𝑑𝑘 with size 𝑠𝑘 on node 𝑛𝑖 :

(1) 𝑑𝑘 is present in the local cache of node 𝑛𝑖 , in which case the
data loading duration is 𝑠𝑘

𝑇𝑙 (𝛼) , where 𝑇𝑙 (𝛼) is the local cache
read throughput with 𝛼 concurrent I/O threads.

(2) 𝑑𝑘 is present in the remote cache of another node, in which case
the data loading duration is 𝑠𝑘

𝑇𝑟 (𝛽) , where 𝑇𝑟 (𝛽) is the remote
cache read throughput of a single I/O with 𝛽 concurrent threads.

(3) 𝑑𝑘 is present on the remote storage repository (parallel file sys-
tem), in which case the data loading duration is 𝑠𝑘

𝑇𝑃𝐹𝑆 (𝛾) , where
𝑇𝑃𝐹𝑆 (𝛾) is the PFS read throughput of a single I/O thread with
𝛾 concurrent I/O threads (for simplicity, we assume 𝑇𝑃𝐹𝑆 (𝛾) to
be globally stable on the average across the compute nodes).

Assume 𝐵ℎ,𝑖, 𝑗
𝐻𝐿

and 𝐵ℎ,𝑖, 𝑗
𝐻𝑅

represent the training samples that cause
cache hits on node 𝑛𝑖 ’s local cache and on the cache of remote
nodes respectively, while 𝐵ℎ,𝑖, 𝑗

𝑀
represents training samples that

cause cache misses and need to be fetched from the PFS. We have
𝐵ℎ,𝑖, 𝑗 = 𝐵

ℎ,𝑖, 𝑗

𝐻𝐿
∪ 𝐵

ℎ,𝑖, 𝑗

𝐻𝑅
∪ 𝐵

ℎ,𝑖, 𝑗

𝑀
. Assuming 𝑇𝐿 (𝑛𝑖 , 𝐵ℎ,𝑖, 𝑗) represents

the duration of loading 𝐵ℎ,𝑖, 𝑗 for GPU 𝐺
𝑗
𝑖
, we have:

𝑇𝐿 (𝑛𝑖 , 𝐵ℎ,𝑖, 𝑗) =

∑
𝑑𝑘 ∈𝐵ℎ,𝑖,𝑗

𝐻𝐿

𝑠𝑘

𝛼𝑖, 𝑗 ×𝑇𝑙 (𝛼𝑖, 𝑗)
+

∑
𝑑𝑘 ∈𝐵ℎ,𝑖,𝑗

𝐻𝑅

𝑠𝑘

𝛽𝑖, 𝑗 ×𝑇𝑟 (𝛽𝑖, 𝑗)
+

∑
𝑑𝑘 ∈𝐵ℎ,𝑖,𝑗

𝑀

𝑠𝑘

𝛾𝑖, 𝑗 ×𝑇𝑃𝐹𝑆 (𝛾𝑖, 𝑗)
(1)

In Equation 1, 𝛼𝑖, 𝑗 , 𝛽𝑖, 𝑗 and 𝛾𝑖, 𝑗 are the initial number of data
loading threads allocated for each scenario for each GPU 𝐺

𝑗
𝑖
(as

discussed in Section 4.2). Given the mini-batch 𝐵ℎ,𝑖, 𝑗 , we denote
its data preprocessing time 𝑇𝑃 (𝑛𝑖 , 𝐵ℎ,𝑖, 𝑗). We assume the duration
of the training stage 𝑇𝑡𝑟𝑎𝑖𝑛 is constant. Thus, in order to minimize
the performance bottleneck introduced by the data loading and
preprocessing stages for GPU 𝐺

𝑗
𝑖
during iteration ℎ, we need to

minimize the following expression:

min
���𝑇𝐿 (𝑛𝑖 , 𝐵ℎ,𝑖, 𝑗) +𝑇𝑃 (𝑛𝑖 , 𝐵ℎ,𝑖, 𝑗) −𝑇𝑡𝑟𝑎𝑖𝑛

��� (2)

However, our overall goal is to minimize the performance bot-
tleneck introduced by the data loading and preprocessing of all𝑀
GPUs of the compute node during iteration ℎ. Assuming 𝑇ℎ,𝑖

𝑚𝑎𝑥 and
𝑇
ℎ,𝑖
𝑚𝑖𝑛

are the maximum and minimum 𝑇ℎ,𝑖, 𝑗 at iteration ℎ across all
𝑀 GPUs (where 𝑇ℎ,𝑖, 𝑗 is the execution time of the ℎ𝑡ℎ iteration for
the 𝑗𝑡ℎ GPU on the node 𝑖), we can achieve this goal by minimizing
the gap between 𝑇ℎ,𝑖

𝑚𝑎𝑥 and 𝑇ℎ,𝑖
𝑚𝑖𝑛

as follows:

Algorithm 1: Heuristic algorithm to find the near-optimal
number of data loading threads for a given mini-batch.
Input: ℓ𝑚𝑎𝑥 : Max number of threads for data loading: 𝑇𝐿

ℓ𝑚𝑖𝑛 : Min number of threads for data loading: 0
𝐵: Batch of data samples to be prefetched
𝐺 : List of co-located GPUs on a node; |𝐺 | = 𝑀

𝜏 : Threshold to constrain load balance
Output: A list of assigned data loading threads: 𝐿𝑓 𝑖𝑛𝑎𝑙

1 𝐿𝑡ℎ = initial allocation of data loading threads
2 W = ∅
3 for 𝑖 = 0 to |𝐺 | do
4 𝑇𝑑𝑖 𝑓 = TimeDifference(𝐺𝑖 , 𝐵𝑖 , 𝐿𝑖𝑡ℎ)
5 if

��𝑇𝑑𝑖 𝑓 �� ≥ 𝜏 then
6 𝐿

𝑜𝑝𝑡

𝑡ℎ
= 𝐿𝑖

𝑡ℎ
// Update threads number

7 𝑇𝑚𝑖𝑛
𝑑𝑖 𝑓

= 𝑇𝑑𝑖 𝑓 // Save minimal time difference

8 while
��𝑇𝑑𝑖 𝑓 �� ≥ 𝜏 do

9 W = W ⊕ 𝑇𝑑𝑖 𝑓

10 if |W| > 𝑇𝐿 and IsConsistent(W) then
11 break
12 if 𝑇𝑑𝑖 𝑓 < 0 then
13 ℓ𝑚𝑖𝑛 = 𝐿𝑖

𝑡ℎ

14 else
15 ℓ𝑚𝑎𝑥 = 𝐿𝑖

𝑡ℎ

16 𝐿𝑛𝑒𝑤
𝑡ℎ

= ℓ𝑚𝑖𝑛 + ℓ𝑚𝑎𝑥−ℓ𝑚𝑖𝑛

2
17 𝑇𝑑𝑖 𝑓 = TimeDifference(𝐺𝑖 , 𝐵𝑖 , 𝐿𝑛𝑒𝑤𝑡ℎ

)
18 if 𝑇𝑚𝑖𝑛

𝑑𝑖 𝑓
≤ 𝑇𝑑𝑖 𝑓 then

19 𝐿
𝑜𝑝𝑡

𝑡ℎ
= 𝐿𝑛𝑒𝑤

𝑡ℎ

20 𝑇𝑚𝑖𝑛
𝑑𝑖 𝑓

= 𝑇𝑑𝑖 𝑓 // Update time difference

21 W = ∅
22 ℓ𝑚𝑖𝑛 = 0, ℓ𝑚𝑎𝑥 = 𝑇𝐿 // Recover the values

23 𝐿𝑓 𝑖𝑛𝑎𝑙 = 𝐿𝑓 𝑖𝑛𝑎𝑙 ⊕ 𝐿
𝑜𝑝𝑡

𝑡ℎ

24 return 𝐿𝑓 𝑖𝑛𝑎𝑙

min
���𝑇ℎ,𝑖
𝑚𝑎𝑥 −𝑇

ℎ,𝑖
𝑚𝑖𝑛

��� (3)

Unfortunately, the solution for Equations 2 and 3 is an optimiza-
tion problem that can be solved using Integer Linear Programming
(ILP), which is known to be NP-complete [38]. Even if this were
feasible for a single iteration ℎ, we have to consider that we have a
total of 𝑁 ×𝑀 GPUs and a large number 𝐼 of iterations. Thus, an
exact solution to this optimization problem is not tractable.

4.4 Heuristic Strategy
To make the optimization problem introduced above tractable, we
propose a heuristic strategy that works in two phases: (1) determine
the number of data loading threads for each GPU; (2) determine
an efficient eviction strategy for deterministic prefetching to avoid
cache misses due to evicting samples with small reuse distance.
Note that (2) influences the scenarios applicable for the training
samples (node-local cache vs. remote cache vs. PFS), therefore there
is a close connection between (1) and (2).

Lobster: Load Balance-Aware I/O for Distributed DNN Training ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Thread assignment in case of predicted stragglers. Given a
set of mini-batches to be prefetched by the GPUs co-located on a
node, Lobster determines a near-optimal assignment of data loading
threads by using a greedy algorithm (detailed in Algorithm 1) that
aims to satisfy the goals formulated in Equations 2 and 3.

The initial allocation 𝐿𝑡ℎ of data loading threads to each co-
located GPU is proportional to the number of pending requests in
the data loading queue. We then calculate the difference between
the duration of data loading + preprocessing and that of the training
stage (Line 4) by using Equations 1 and 2. If this difference is greater
than a threshold 𝜏 (which can be fine-tuned as needed to prune the
search space), then we employ a binary search to explore the search
space until we converge to a near-optimal solution that minimizes
the gap between 𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛 .

To cover the case when the greedy algorithm does not converge,
we introduce an arrayW whose length is𝑇𝐿 , the maximum number
of data loading threads that can be used by a node. The array records
𝑇𝑑𝑖 𝑓 calculated in the prior iterations (Line 9). When the array is
fully populated, then we stop the search and choose the solution
that has the minimum 𝑇𝑑𝑖 𝑓 among all those recorded in W.

Eviction Policy based on Reuse Distance and Deterministic
Prefetching. It is important to note that the determinism of the
prefetching pattern of one node is a global property: it is known to
all other nodes (e.g. by fixing the pseudorandom number generator
seed of each node such that it is a function of a fixed seed and the
node id). Thus, we can determine, at each moment during training,
two parameters: (1) how many times each training sample will
be reused by all GPUs until the end of training; (2) the minimum
reuse distance of each training sample across all GPUs. To obtain
these parameters efficiently, we maintain a list of future accesses
for each training sample. Each entry in the list records the GPU
and iteration number during which the training sample needs to
be accessed for the reminder of the training. Based on this list, we
apply two sub-policies:
Reuse count policy. If during training the number of accesses to a
training sample reaches the reuse count for a node, then the sample
is evicted from the node-local cache—unless no other node in the
group holds a copy, as eviction would then force the other nodes
to perform expensive I/O operations to re-prefetch the training
sample from the remote storage repository.
Reuse distance policy. Let 𝐼 be the number of iterations in an
epoch, ℎ the current iteration, and 𝐵ℎ the set of mini-batches ac-
cessed by all co-located GPUs on a node. Then after iteration ℎ

has finished, we can check the next reuse distance of each training
sample 𝑑𝑘 ∈ 𝐵ℎ . If the next reuse distance is larger than 2 × 𝐼 − ℎ,
then the training sample will not be accessed by any GPUs on the
node during the next epoch. In this case, the training sample can
be considered as being reused far enough in the future to justify
eviction in order to make room for more prefetches.
Coordination with prefetching. Thanks to the two eviction poli-
cies mentioned above, any spare capacity in the node-local cache
can be used for prefetching more training samples. However, if the
training samples can be prefetched faster than they are consumed,
the spare capacity will be quickly filled. In this case, we can evict the

training samples with the largest reuse distance, while prioritizing
the prefetches with the nearest reuse distance.

4.5 Implementation Details
Lobster consists of two components: one is used in offline fashion
to construct piece-wise linear regression models for the prepro-
cessing stage and to pre-compute an efficient thread management
plan combined with an efficient prefetching/eviction plan based
on the reuse distance. The planning phase is based on a simulator
proposed by [8], which was extended to: (1) decide the number
of data preprocessing threads; (2) decide the number of data load-
ing threads; (3) adding the cache eviction algorithm, and (4) add
coordination logic between data preprocessing and data loading.

The other component is an online runtime implemented in C++
and built on the top of DALI 2.0 [44]. It is designed to interpret
the plan generated by the offline component, and to enforce the
thread management and data prefetching as planned. A key part
of the online runtime is the distribution manager, responsible to
handle the distributed operations across the compute nodes using
MPI. These operations provide locally cached training samples to
and request training samples from the remote compute nodes.

5 EVALUATION
We evaluate the performance of Lobster in two data-parallel sce-
narios: (1) single node with multiple GPUs and (2) multiple nodes,
each with multiple GPUs. In each case, we compare Lobster with
three baseline approaches in terms of I/O performance, memory
cache efficiency, and end-to-end training runtime. Our evaluation
aims to answer four questions:

• Does Lobster have better I/O performance than the baselines?
(Section 5.2)

• Does Lobster address the load imbalance problem? (Section 5.3)
• Does Lobster influence end-to-end training performance com-
pared with baselines? (Section 5.4)

• Does each component of Lobster contribute to the overall im-
provement? (Section 5.6)

5.1 Experimental Setup
We evaluate Lobster with six representative DNN models that are
frequently used as training benchmarks (ResNet50 [12], ResNet32 [12],
ShuffleNet [41], AlexNet [18], SquenceNet [11], VGG11 [37]) and,
for each model, two datasets, IMAGENet-1K and ImageNet-22K. We
use PyTorch 1.8 with NCCL2 for all evaluations. At the beginning
of DNN model training, the training datasets are stored on a Lustre
parallel file system mount point.
Baselines.We compare Lobster with three baseline approaches:

• PyTorch I/O [31]: The built-in PyTorch DataLoader using a con-
stant number of threads for data loading and another constant
number of threads for preprocessing.

• DALI [44]: A widely used NVIDIA library for DNN training I/O.
DALI uses three threads for data loading by default and leaves
other threads for preprocessing.

• NoPFS [8]: A state-of-the-art approach that implements deter-
ministic prefetching that is combined with PyTorch. The thread
management for NoPFS is the same as that with PyTorch I/O.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jie Liu, Bogdan Nicolae, and Dong Li

ResNet32 ShuffleNet AlexNet

0.5

1.0

1.5

ResNet50
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h

DALI Lobster

(a) Multi-GPU training in a single node with ImageNet-1K
SequenceNet VGG11

2.0

ResNet32 ShuffleNet AlexNet

0.5

1.0

1.5

ResNet50
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h

DALI Lobster

(b) Multi-GPU training in a single node with ImageNet-22K
SequenceNet VGG11

2.5

2.0

Res
Net3

2

Shu
ffle

Net

Alex
Net

0.5

1.5

2.0

Res
Net5

0
0

Pytorch NoPFS

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

Py
to

rc
h DALI Lobster

Seq
ue

Net

VGG11

1.0

Res
Net3

2

Shu
ffle

Net

Alex
Net

Res
Net5

0

Seq
ue

Net

VGG11

Res
Net3

2

Shu
ffle

Net

Alex
Net

Res
Net5

0

Seq
ue

Net

VGG11

Two nodes (16 GPUs)
(c) Distributed training across nodes with ImageNet-22K

Four nodes (32 GPUs) Eight nodes (64 GPUs)

Figure 7: Comparison between Lobster and the baselines for multi-GPU training on a single node and distributed training
across multiple nodes.

Hardware.We performed experiments on Argonne’s ThetaGPU
HPC machine, which is specifically optimized for training DNNs at
scale. It comprises 24 NVIDIA DGX A100 nodes, each of which is
equipped with eight NVIDIA A100 Tensor-Core GPUs, two AMD
Rome CPUs, 1 TB of DDR4 memory and 320 GB GPU memory. This
amounts to a total of 24 TB DDR4 and 7.6 TB GPU memory. We
use 40 GB DDR4 memory as node-local cache on each node. If the
cache is large, all samples are placed locally without causing I/O.
But typically, a small portion of DDR4 memory is used as cache.
The nodes are interconnected with 20 Mellanox QM9700 HDR200
40-port switches wired in a fat-tree topology. The external storage
provided by a Lustre parallel file system deployment provides an
aggregate 250 GB/s bandwidth, mounted using POSIX.
Datasets. We use two widely used datasets with different sizes.

• ImageNet-1K [36]: This dataset, widely used to evaluate DNNs
for image classification, consists of 1.28 million training images
and 50,000 validation images, each image assigned to one of 1000
classes. Its total size is 135 GB.

• ImageNet-22K [35]: A representative larger dataset widely used
to pre-train DNNs. This dataset consists of 14,197,103 training
images and 7000 validation images, most with an image size of
between 10 KB and 50 KB, and each assigned to one of 21,841
classes. The total dataset size is 1.3 TB.

5.2 I/O Performance
Single-Node Multi-GPU Data-Parallel Training.We run Lob-
ster on a single node with eight GPUs. Figure 7(a) and (b) show
the results for ImageNet-1K and ImageNet-22K, respectively. We
observe that:

(a) Lobster is 1.6× and 1.8× faster than PyTorch DataLoader using
ImageNet-1K and ImageNet-22K, respectively. This performance
improvement results mainly from the alleviation of I/O load imbal-
ance between GPUs. The performance improvement is especially
large in the case of ImageNet-22K (the larger dataset).

(b) Lobster is 1.7× faster than DALI, for two reasons: (1) DALI
lacks fine-grained thread-level optimizations for the training pipeline,
while Lobster can flexibly allocate CPU threads to coordinate data
loading and pre-processing; and (2) Lobster is NUMA-aware, and
co-locates data loading and preprocessing threads.

(c) Lobster is 1.2× faster than NoPFS. This is due to the cache
eviction based on reuse distance, which complements determinis-
tic prefetching. Specifically, NoPFS evicts the training samples to
accommodate the training samples to be prefetched for the next
iteration, while our approach is able to prefetch more training sam-
ples thanks to its eviction policies, which translates to higher cache
hit rates and better performance.
Multi-Node Distributed Data-Parallel Training.We evaluate
Lobster on eight nodes when using all eight GPUs available on each
node. We see in Figure 7(c) that for ImageNet-22K Lobster is 2.0×,
1.4×, and 1.2× faster than PyTorch DataLoader, DALI, and NoPFS,
respectively. Compared with the single-node evaluation, Lobster
makes better use of the distributed cache across nodes, leading to a
larger performance improvement.
Scalability of Data-Parallel Training.We evaluate Lobster us-
ing a variable number of nodes and with different datasets. For
ImageNet-1K, we use a single node whose memory cache is smaller
than the dataset size, while for ImageNet-22K, we use multiple
nodes whose aggregated memory cache across the nodes is smaller
than the dataset size (but larger than the size of ImageNet-1K).

Lobster: Load Balance-Aware I/O for Distributed DNN Training ICPP ’22, August 29-September 1, 2022, Bordeaux, France

0.5

0

1.5

1.0

2.5

2.0

N
o.

 o
f i

te
ra

tio
ns

 w
ith

 lo
ad

 im
ba

la
nc

e

Pytorch
DALI
NoPFS
Lobster

(a) Training on a single node (eight GPUs)

1.0

0

3.0

2.0

5.0

4.0

N
o.

 o
f i

te
ra

tio
ns

 w
ith

 lo
ad

 im
ba

la
nc

e

Pytorch
DALI
NoPFS
Lobster

(b) Training on eight nodes (64 GPUs)

50

0

150

100

250

200

Ba
tc

h
tim

e
di

st
rib

ut
io

n
(m

s)

Pytorch
DALI

NoPFS
Lobster

(c) Training on single node (eight GPUs)(x104) (x103)

Figure 8: The number of iterations with load imbalance and the distribution of batch time. We use ResNet50 with ImageNet-1K.

Figure 7 shows the results with respect to PyTorch Dataloader: (a)
Lobster scales well for ImageNet-1K. Furthermore, when training
with ImageNet-22K, compared with PyTorch Dataloader, Lobster
has a speedup of 1.53× on average (up to 1.9×); (b) with differ-
ent system scales on a single node and multiple nodes, Lobster
consistently shows a significant speedup (1.2×–2.0×).

5.3 Reduction of Load Imbalance
To evaluate Lobster’s effectiveness in reducing data load imbalance,
we count the number of iterations with load imbalance across GPUs
in each epoch. We use ResNet50 with ImageNet-22K as the training
dataset. Figure 8 depicts the results.
Single-Node Multi-GPU Data-Parallel Training. We train the
model for 50 epochs, each of 55,457 iterations. We depict in Fig-
ure 8(a) the results for all epochs. Compared with PyTorch, DALI,
and NoPFS, Lobster reduces the iterations with load imbalance by
31.4%, 16.4%, and 7.9% respectively on average. WithLobster, only
17.5% of all training iterations exhibit load imbalance.
Multi-Node Distributed Data-Parallel Training. We fix the
number of iterations per epoch at 6932 and train ResNet-50 for 50
epochs. Figure 8(b) shows the results for all epochs. The number of
iterations is smaller than when training on a single node because
we use more GPUs. Compared with PyTorch DataLoader, DALI, and
NoPFS, Lobster reduces the number of iterations with load imbal-
ance by 35.2%, 25.8%, and 9.7% respectively. Overall, with Lobster,
only 22.8% of all training iterations still exhibit load imbalance.

Lobster is able to reduce the number of iterations with load
imbalance more effectively thanks to the coordination between
the data loading and preprocessing stages, which redirects more
threads for data loading when the GPUs are bottlenecked by it.
Batch time distribution. Figure 8(c) presents the batch time dis-
tribution when training ResNet50 with ImageNet-1K on one node
(8 GPUs), showing successful mitigation of performance degrada-
tion brought by the load imbalance across GPUs. With Lobster,
there is less variance in per-batch time (iteration duration) than the
baselines. Lobster’s batch time is also shorter than other methods’.
Figures 8 demonstrates a key performance advantage of Lobster:
reducing the batch time where the data loading is slow due to load
imbalance across GPUs.

5.4 End-to-End Training
Lobster does not change the randomness of data accessing during
the distributed training. The techniques in Lobster do not influence

25%

0%

To
p-

1
ac

cu
ra

cy
 (%

)

Epoch
1 20 40 60 80

100%

50%

75%

Pytorch
Lobster

Figure 9: Training accuracy curve for training ResNet50
on ImageNet-1K using eight nodes (64 GPUs) with default
ResNet50 hyperparameter settings.

the DNN model’s accuracy. To demonstrate this, we train ResNet50
to convergence for ImageNet-1K on eight nodes (64 GPUs) with
both Pytorch DataLoader and Lobster. Figure 9 shows the accuracy
curves. We see that the two methods have similar learning curves,
although with some slight variation due to different random seeds
for network parameters. In both cases, training converges to the
target accuracy of 76.0% in around 40 epochs. Nevertheless, as
Figure 7 indicates training with Lobster is up to 1.4× faster than
with PyTorch DataLoader. As a consequence, using Lobster for data
loading achieves an overall shorter training time.

5.5 Resource Utilization
Memory cache hit ratio.We measure the cache hit ratio of the
memory cache during the whole training process. We use one node
with eight GPUs and ImageNet-1K. Lobster has higher cache hit ra-
tio than the baselines. On average, the cache hit ratio with Lobster is
63.2%, while it is 24.5%, 32.6%, and 48.9% with PyTorch DataLoader,
DALI, and NoPFS respectively. The higher cache hit ratio demon-
strates the effectiveness of cache eviction as a complement for
deterministic prefetching. NoPFS has higher cache hit ratio than
PyTorch DataLoader and DALI, because of its efficient distributed
cache with deterministic prefetching. However, its cache hit ratio
is lower than Lobster because of a simpler cache eviction policy.
GPU utilization. We measure average GPU utilization during the
whole training process. We use one node with eight GPUs and
ImageNet-1K, and fix the number of epochs at 50. As can be ob-
served in Figure 10, Lobster has higher GPU utilization than the
baselines: 76.1% vs. 52.3%, 57.5%, and 72.4% for PyTorch DataLoader,

ICPP ’22, August 29-September 1, 2022, Bordeaux, France Jie Liu, Bogdan Nicolae, and Dong Li

ResNet32 ShuffleNet AlexNet

25

50

75

ResNet50
0

Pytorch NoPFS

G
PU

 U
til

iz
at

io
n

(%
) DALI Lobster

SequenceNet VGG11

100

Figure 10: GPU utilization when training ResNet50 on
ImageNet-1K using one node (eight GPUs). X-axis represents
different DNNs used for testing and Y-axis is the GPU utiliza-
tion.

0

NoPFS Lobster Lobster_thDALI

ResNet50 ResNet32 ShuffleNet AlexNet

1.0

SeqenNet

1.5

Tr
ai

ni
ng

 s
pe

ed
up

 w
rt

D
AL

I

VGG11

Lobster_evict

0.5

Figure 11: Ablation study of Lobster when training ResNet50
on ImageNet-1K using one node (eight GPUs). Y-axis is the
training time speedup compared with DALI.

DALI, and NoPFS respectively. The higher GPU utilization of Lob-
ster demonstrates the effectiveness of addressing load imbalance
across GPUs.

5.6 Ablation Study
We next evaluate the individual impacts of Lobster’s thread man-
agement and its cache eviction policies. To this end, 𝐿𝑜𝑏𝑠𝑡𝑒𝑟_𝑡ℎ
includes thread management but excludes cache eviction based on
reuse distance, while 𝐿𝑜𝑏𝑠𝑡𝑒𝑟_𝑒𝑣𝑖𝑐𝑡 does the precise opposite. We
show in Figure 11 results for ImageNet-1K on a single node (eight
GPUs).
Thread management. We see that: (1) the thread management
optimization contributes more to the training performance improve-
ment than the cache eviction policy; (2) the thread management
improves the training performance by up to 1.4× (1.3× on average),
compared with DALI.
Cache eviction policy. We also see that the cache eviction policy
based on reuse distance (1) leads to 15% higher performance than
DALI, on average, and (2) is more helpful for small models (e.g.,
ShuffleNet, SequenceNet), for which the duration of the training
stage is smaller compared with the larger models (and thereby less
likely to become a performance bottleneck).

6 RELATEDWORK
Optimizing DNN training time. Solutions proposed for reducing
DNN training times include specialized hardware [3, 30], parallel
training [17, 23, 32], GPU memory optimizations [13], lowering
communication overhead [9], and operator optimizations [33, 34].
New hardware systems like NVIDIA’s Magnum IO [3] provide high-
throughput storage solutions to reduce data loading overheads,

but cannot help when training DNNs in distributed environments
with complex storage hierarchies. Model batching [29] addresses
data loading costs when running multiple DNNs on a single node.
OneAccess [16] is a preliminary study that makes a strong case
for storing pre-processed data across epochs to reduce the data
preprocessing overhead. However such an approach precludes com-
monly used online data preprocessing techniques, which can affect
model convergence during training. None of these approaches ad-
dress, as does Lobster, data loading overheads resulting from load
imbalances across GPUs. Lobster balances loads between GPUs
and avoids bursty data loading such that the data loading does not
become a performance bottleneck.
Data caching for distributed DNN training. Quiver [19] uses
SSD as caches to avoid slow data loading from remote storage. Cere-
bro [27] partitions the dataset across nodes in a cluster. Instead of
shuffling data, Cerebro moves the models from one node to others.
However, when training DNNs with a single node, using Cerebro
cannot bring performance improvement. DeepIO [43] uses a parti-
tioned caching technique for distributed training. DeepIO heavily
relies RDMA for high performance I/O. DIESEL [39] deploys a task-
grained distributed cache across nodes for multiple DNN training
tasks. DIESEL introduces metadata snapshot mechanisms for each
training dataset, and mainly focuses on optimizing metadata pro-
cessing during the DNN training. MinIO [26] reduces the amount
of disk I/O for training on a single node and multiple nodes. MinIO
does not provide the fine-grained cache strategy like Lobster. For
MinIO, once data samples are cached, they are never evicted out
of the cache. NoPFS [8] introduces a performance model that can
leverage the storage hierarchy for the data caching. But NoPFS can-
not immediately evict data samples with long reuse distances out
of memory. Lobster addresses the I/O bottleneck by providing the
thread management for different stages in the training pipeline. Fur-
thermore, Lobster leverages the knowledge on the reuse distance
of data samples to make the best use of the memory cache.

7 CONCLUSIONS
Data loading is becoming a major performance bottleneck in dis-
tributed DNN training. Prior studies of data loading performance
for distributed DNN training have conducted neither a holistic anal-
ysis of all training pipeline stages not a fine-grained analysis of
the load of individual GPUs, two areas that present opportunities
for further optimization. To fill this gap, we have proposed Lobster,
a data loading runtime that exploits several observations related
to load imbalance, performance bottlenecks in various stages of
the training pipeline, and the reuse distance of training samples
to propose a new flexible thread management strategy and cache
eviction policy that complements deterministic prefetching. These
methods allow Lobster to consistently outperform the state-of-art
PyTorch I/O, DALI, and NoPFS systems by 1.3–2.0×.

ACKNOWLEDGMENTS
This material is based upon work supported by the U.S. Department
of Energy (DOE), Office of Science, Office of Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357.

Lobster: Load Balance-Aware I/O for Distributed DNN Training ICPP ’22, August 29-September 1, 2022, Bordeaux, France

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
2016. Tensorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, and
Prashant J Nair. 2021. Accelerating recommendation system training by leverag-
ing popular choices. Proceedings of the VLDB Endowment 15, 1 (2021), 127–140.

[3] Idan Burstein. 2021. Nvidia Data Center Processing Unit (DPU) Architecture. In
2021 IEEE Hot Chips 33 Symposium (HCS). IEEE, 1–20.

[4] Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad Awan, Kawthar Shafie Khoras-
sani, Hari Subramoni, and Dhabaleswar K. Panda. 2020. NV-group: Link-efficient
reduction for distributed deep learning on modern dense GPU systems. In 34th
ACM International Conference on Supercomputing. Virtual, 1–12.

[5] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S. Nikolopoulos,
Bronis R. de Supinski, and Martin Schulz. 2008. Prediction models for multi-
dimensional power-performance optimization on many cores. In International
Conference on Parallel Architectures and Compilation Techniques.

[6] Wenqian Dong, Jie Liu, Zhen Xie, and Dong Li. 2019. Adaptive Neural Network-
Based Approximation to Accelerate Eulerian Fluid Simulation. In International
Conference for High Performance Computing, Performance Measurement, Modeling
and Tools (SC).

[7] Wenqian Dong, Zhen Xie, Gokcen Kestor, and Dong Li. 2020. Smart-PGSim: Using
Neural Network to Accelerate AC-OPF Power Grid Simulation. In International
Conference for High Performance Computing, Performance Measurement, Modeling
and Tools .

[8] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler. 2021. Clair-
voyant prefetching for distributed machine learning I/O. In International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. 1–15.

[9] Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen. 2016. Commu-
nication quantization for data-parallel training of deep neural networks. In 2016
2nd Workshop on Machine Learning in HPC Environments (MLHPC). IEEE, 1–8.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press.

[11] A Handa, V Patraucean, V Badrinarayanan, S Stent, and R Cipolla. 2015. SceneNet:
Understanding real world indoor scenes with synthetic data. arXiv preprint
arXiv:1511.07041 (2015).

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In IEEE Conference on Computer Vision and Pattern
Recognition. 770–778.

[13] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swapadvisor: Pushing deep
learning beyond the gpu memory limit via smart swapping. In 25th International
Conference on Architectural Support for Programming Languages and Operating
Systems. 1341–1355.

[14] Andrei Ivanov, Nikoli Dryden, Tal Ben-Nun, Shigang Li, and Torsten Hoefler.
2021. Data movement is all you need: A case study on optimizing transformers.
In 4th Conference on Machine Learning and Systems. Virtual.

[15] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional
architecture for fast feature embedding. In 22nd ACM International Conference on
Multimedia. 675–678.

[16] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. 2019. The case for unifying data loading in machine learning
clusters. In 11th {USENIX}Workshop on Hot Topics in Cloud Computing (HotCloud
19).

[17] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin
Ha, Sanha Lee, Joo Seong Jeong, and Byung-Gon Chun. 2019. Parallax: Sparsity-
aware data parallel training of deep neural networks. In 15th EuroSys Conference.
1–15.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[19] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An informed
storage cache for deep learning. In 18th USENIX Conference on File and Storage
Technologies. 283–296.

[20] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda, Nathan
Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack Deslippe, Massi-
miliano Fatica, et al. 2018. Exascale deep learning for climate analytics. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE, 649–660.

[21] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyunggeun Lee, Hwarim Hyun, Ahnjae
Shin, and Byung-GonChun. 2021. Refurbish Your TrainingData: Reusing Partially
Augmented Samples for Faster Deep Neural Network Training. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). 537–550.

[22] Dong Li, Bronis de Supinski, Martin Schulz, Dimitrios S. Nikolopoulos, and KirkW.
Cameron. 2010. Hybrid MPI/OpenMP power-aware computing. In International
Parallel and Distributed Processing Symposium.

[23] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[24] Jie Liu, Bogdan Nicolae, Dong Li, Justin M Wozniak, Tekin Bicer, Zhengchun Liu,
and Ian Foster. 2022. Large Scale Caching and Streaming of Training Data for
Online Deep Learning. In Proceedings of the 12th Workshop on AI and Scientific
Computing at Scale using Flexible Computing Infrastructures. 19–26.

[25] RicardoMacedo, Cláudia Correia, Marco Dantas, Cláudia Brito, Weijia Xu, Yusuke
Tanimura, Jason Haga, and Joao Paulo. 2021. The Case for Storage Optimization
Decoupling in Deep Learning Frameworks. In IEEE International Conference on
Cluster Computing. IEEE, 649–656.

[26] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram.
2020. Analyzing and mitigating data stalls in DNN training. arXiv preprint
arXiv:2007.06775 (2020).

[27] Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A data system
for optimized deep learning model selection. Proceedings of the VLDB Endowment
13, 12 (2020), 2159–2173.

[28] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. 2019.
PipeDream: Generalized pipeline parallelism for DNN Training. In 27th ACM
Symposium on Operating Systems Principles. Huntsville, Canada, 1–15.

[29] Deepak Narayanan, Keshav Santhanam, and Matei Zaharia. 2018. Accelerating
model search with model batching. In 1st Conference on Systems and Machine
Learning (SysML), SysML, Vol. 18.

[30] Pyeongsu Park, Heetaek Jeong, and Jangwoo Kim. 2020. TrainBox: An Extreme-
Scale Neural Network Training Server Architecture by Systematically Balancing
Operations. In 2020 53rd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO). IEEE, 825–838.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in Neural Information Processing Systems 32 (2019), 8026–8037.

[32] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. 2014. Parallel training
of deep neural networks with natural gradient and parameter averaging. arXiv
preprint arXiv:1410.7455 (2014).

[33] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong
He. 2021. ZeRO-Infinity: Breaking the GPU Memory Wall for Extreme Scale
Deep Learning. arXiv preprint arXiv:2104.07857 (2021).

[34] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase,
Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He. 2021. Zero-offload: De-
mocratizing billion-scale model training. arXiv preprint arXiv:2101.06840 (2021).

[35] Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. 2021.
Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021).

[36] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. ImageNet large scale visual recognition challenge. International Journal of
Computer Vision 115, 3 (2015), 211–252.

[37] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[38] Vasilis Sourlas, Lazaros Gkatzikis, Paris Flegkas, and Leandros Tassiulas. 2013.
Distributed cache management in information-centric networks. IEEE Transac-
tions on Network and Service Management 10, 3 (2013), 286–299.

[39] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu, Hequan Zhang, Shen-
gen Yan, and Qiong Luo. 2020. DIESEL: A dataset-based distributed storage
and caching system for large-scale deep learning training. In 49th International
Conference on Parallel Processing. 1–11.

[40] Zhen Xie, Wenqian Dong, Jie Liu, Ivy Peng, Yanbao Ma, and Dong Li. 2021. MD-
HM: memoization-based molecular dynamics simulations on big memory system.
In Proceedings of the ACM International Conference on Supercomputing. 215–226.

[41] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. ShuffleNet: An
extremely efficient convolutional neural network for mobile devices. In IEEE
Conference on Computer Vision and Pattern Recognition. 6848–6856.

[42] Mark Zhao, Niket Agarwal, Aarti Basant, Bugra Gedik, Satadru Pan, Mustafa
Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei Lu, et al. 2021.
Understanding and co-designing the data ingestion pipeline for industry-scale
recsys training. arXiv preprint arXiv:2108.09373 (2021).

[43] Yue Zhu, Fahim Chowdhury, Huansong Fu, Adam Moody, Kathryn Mohror,
Kento Sato, and Weikuan Yu. 2018. Entropy-aware I/O pipelining for large-scale
deep learning on HPC systems. In 2018 IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 145–156.

[44] Mahdi Zolnouri, Xinlin Li, and Vahid Partovi Nia. 2020. Importance of data
loading pipeline in training DNNs. arXiv preprint arXiv:2005.02130 (2020).

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Design
	4.1 Flexible Preprocessing Thread Management
	4.2 Coordinated Data Loading / Preprocessing
	4.3 Performance Model
	4.4 Heuristic Strategy
	4.5 Implementation Details

	5 Evaluation
	5.1 Experimental Setup
	5.2 I/O Performance
	5.3 Reduction of Load Imbalance
	5.4 End-to-End Training
	5.5 Resource Utilization
	5.6 Ablation Study

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

