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Abstract
In this paper, we build a simple, multi-seasonal mathematical model describing the dynamics of the
maize stalk borer Busseola fusca (Lepidoptera: Noctuidae). We consider in this model the main
harmful stages of the pests and the control methods used by farmers to reduce pest populations
from one maize cropping season to another. Firstly, immature stages are controlled during the
maize cropping season by applying pesticides to destroy the eggs and immature larvae present on
the plant leaves. secondly, crop residues harboring the larvae are burnt or buried in the soil after
the harvest. The semi-discrete model obtained is studied and the basic reproduction number of the
pests is computed. The numerical simulations carried out illustrate the theoretical results and also
allow us to find the minimum quantity of larvae to be destroyed at the end of each maize cropping
season to eradicate pest populations in the fields.
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I INTRODUCTION
Maize (Zea mays L.), also known as corn, is one of the most cultivated crops in the world along
with rice and wheat. The total world production of maize was estimated to be 1147.6 million
tons in 2018, feeding a billion people on earth. Thus, maize production provides a safety valve
against food insecurity in some parts of the world. In a large part of Cameroon regions, maize is
the main staple food crop and represents an important part of the caloric intake of the population.
It provides a sustainable and secure food supply in terms of high yields and a significant increase
in farmers’ incomes since the maize yield is often sold in local markets. However, this crop is
threaten in particular by insects that bore its stalk and ear. Maize stalk borer insects in sub-
Saharan Africa all belong to the Lepidopteran order, they are the only group of pests that have a
real economic impact. Several species of maize pests have been listed in sub-Saharan Africa but
only three of these species have appeared to be economically important: the European moths
Eldana saccharina (Walker) and Mussidia nigrivenella (Ragonot) and the moth Busseola fusca
(Fuller) [(9)]. The maize stalk borer (MSB) B. fusca is the most widespread and harmful pest
to maize crops in Cameroon and the feeding habits of its larvae on maize lead to yield losses of
up to 59% depending on several factors that include the maize cultivar, the development stage
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of the plant and the infestation rate [(5)]. Faced with the extent of the damage, several control
programs and methods have been developed by maize producers, such as growing resistant
varieties, improving cultivation practices, chemical and biological control and trapping [(4)].
In this paper, we build a simple multi-seasonal model describing the dynamics of the African
maize stalk borer B. fusca and taking into account two means of control used by farmers to
manage the pests. The latter are based first on the application of pesticides on maize plants
during their growth and secondly on the management of crop residues harbouring B. fusca’s
larvae after the harvest. Our aim is to show the importance of crop residue management in
controlling pest populations. After the formulation of the model, we carry out its analysis and
provide some numerical simulations to illustrate the theoretical results.

II BUSSEOLA FUSCA CYCLE AND MODELING
The maize stalk borer B. fusca is an African lepidoptera, an insect whose adult form is a but-
terfly, the larva, a caterpillar, and the immobile nymph is a pupa. Its life cycle (see [(4; 9; 10)])
includes the various classic stages of the development of moths, namely: eggs, caterpillars or
larvae, pupae, imagos. The duration of these stages, in particular that of the larvae, depends on
ecological conditions. In short, the life cycle starts with mating between a female and a male,
then an oviposition takes place on the plant between the leaf sheath and the maize stalk. The
eggs laid in a pile hatch about a week later and the young larvae go through a phyllophagous
period of about ten days in the horn before entering the stem on which they keep feeding. At the
last stage of their evolution they become pupae: this is the diapause phenomenon [(12)]. Adul
butterflies then raise 9 to 11 days after the beginning of the diapause and the cycle starts again.
When weather conditions are unfavorable, the diapause phenomenon can last up to 6 months or
more. A normal cycle lasts about 45 days for a female and 50 days for a male.

Based on the biological background, we build a multi-seasonal compartmental model illustrat-
ing the dynamics of B. fusca. We work on the scale of a whole maize growing area. The
following hypotheses are considered.
• We assume that there host plants are always available for the pests during the maize

cropping season and therefore we are only interested in the dynamics of the pests.
• We summarize all the non-adult stages into one compartment named the compartment of

immature stages, and we denote it by the state variable I . We also consider a compart-
ment of female adults, that we denote by the state variable A. The units of these state
variables are “larva” and “pest”. This implies that all emerging immature individuals will
become either males or females. For a matter of simplicity, we assume that when pests
are presents, they are always males and females available in enough proportion for mating
and reproduction to occur.

• We assume that the time needed for eggs emergence is
1

ν
days during the cropping season,

thus the transfer rate from I to A is ν.

• Females feed the immature compartment logistically at a rate rI

(
1− I

K

)
where rI is

the average number of eggs provided by fertilized females (the intrinsic egg laying rate)
during the cultivation period and during the off season, K its carrying capacity. We
assume this carrying capacity to be constant, even though it depends on the availability
of the hosts, the amount of crop residues and the density of alternative hosts.
• We term by u a parameter representing the efforts made to reduce larval populations in

maize plantations. This can be seen as a chemical control through the use of pesticides
that destroy the eggs and larvae that haven’t yet penetrated the plant stem for feeding.
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• We name p the probability that a larva gives an adult female, µI and µA respectively the
mortality of immature pests and adult pests.
• We name D the duration of a maize cropping season and τ the duration of the off-season,

when maize plants are unavailable. We let T = D + τ the duration of maize cropping
season plus the off-season and we set tn = nT,∀n ∈ N.

From the hypothesis above, during maize cropping seasons, i.e. t ∈ (tn, tn +D] , the dynamics
of pests is given by the following equations: İ(t) = rIA(t)

(
1− I(t)

K

)
− (ν + µI + u)I(t),

Ȧ(t) = pνI(t)− µAA(t).
(1)

The initial conditions at the beginning of the first season are: I(0+) = I0 ≥ 0, A(0+) = A0 ≥ 0;
where the ”+” superscript denotes the instant that directly follows.

At the end of a maize cropping season, after the harvest of corn, plant stems are either cut
and buried in the ground or burnt to reduce pest reservoirs and therefore decrease the pest
population. Depending on the effectiveness of these practices, we assume that a proportion q
(q ∈]0, 1[) of larvae is be destroyed by the control efforts. We illustrate this switching in pest
populations by the following difference equation when t = tn +D:

{
I(tn +D+) = (1− q)I(tn +D),
A(tn +D+) = A(tn +D).

(2)

The case q = 0 stands for the lack of burning or burying operation.

During the off-season, i.e. when t ∈ (tn + D, tn+1], there are no maize plants and immature
pests grow logistically, but nevertheless:
• Their limiting capacity K0 is reduced as it depends only on the amount of residues and

the density alternative hosts (K0 ≤ K).
• When climatic conditions are unfavourable for the development of immature pests, they

enter in the diapause state [(12)] that reduces the transfer rate of larvae to moths. We
therefore note ν0 ≤ ν the average transfer rate from larvae to moths.

The dynamic of evolution of the pests during this period is given by the following system:

 İ(t) = rIA(t)

(
1− I(t)

K0

)
− (ν0 + µI)I(t),

Ȧ(t) = pν0I(t)− µAA(t).
(3)

At the beginning of the new maize cropping season, for t = tn+1, the same quantity of adult
pests is kept and we obtain the following switching rule between seasons:

{
I(t+n+1) = I(tn+1),
A(t+n+1) = A(tn+1).

(4)

The mathematical model formed by systems (1-2-3-4) represents our semi-discrete model of
the dynamics of the African maize stalk borer B. fusca with a cultural control of pests, in a
multi-seasonal framework.
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III THEORICAL RESULTS
The well-posedness of our models relies on the existence, the uniqueness, the positivity and the
boundedness of their solutions given the initial values.

Proposition III.1:
Existence, uniqueness, positivity and the boundedness of the solutions.

1. The model (1-2-3-4) admits a unique solution that is continuous on (tn, tn + D] and on
(tn +D, tn+1].

2. The positive set R2
+ is positively invariant by the flow of the model (1-2-3-4).

3. For n ∈ N, the set

D =

{
(I(t), A(t)) ∈ R2 : 0 ≤ I(t) ≤ K, 0 ≤ A(t) ≤ pν

µA
K

}
is a positively invariant compact by the flow of model (1-2-3-4).

The proof is given in Appendix A.

In the following proposition, we find the transition laws of pest populations from one season
to another around the pest-free solution (PFS). This finally allows us to compute the basic
reproduction number of pests. In a pest-free context, I = 0, A = 0 thus (0, 0) is a pest-free
solution of model (1-2-3-4).

Proposition III.2:
Basic reproduction number of pests.

1. For all n ∈ N, in the neighbourhood of the pest-free solution
PFS= (I∗(t), A∗(t)) = (0, 0), the discrete pest dynamics of the linearized model are
defined by:(

I(t+n )
A(t+n )

)
=

(
Φ1,1 Φ1,2

Φ2,1 Φ2,2

)n(
I(0+)
A(0+)

)
, (5)

with the explicit values of Φi,j (i, j ∈ {1, 2}) given in the proof.

2. Let Φ =

(
Φ1,1 Φ1,2

Φ2,1 Φ2,2

)
. The basic pest reproduction number for model (1-2-3-4) is given

by:

R0 = max |φi|, i ∈ {1, 2}. (6)

where φi are the eigenvalues of the matrices Φ.
3. The PFS of model (1-2-3-4) is locally asymptotically stable ifR0 < 1.

The proof is given in Appendix B.

Remark III.3: 1. When the basic reproduction numberR0 is smaller than 1, the pests tend to
disappear over seasons, and when it is larger than 1, they may persist.

2. The number R0 can be defined as the absolute value of the largest factor of change in
the size of a pest populations (pair of larvae and moths) from one season to the next in a
pest-free context.
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IV NUMERICAL SIMULATIONS
In this section, we perform numerical simulations to illustrate our theoretical results obtained
above (Proposition III.2). Since we are in a multi-seasonal framework, the simulations are made
over a period of 20 seasons. The length of a maize cropping season is D = 120 days and the
length of the off-season is τ = 245 days (T + τ ≈ 1 year). We consider a large cropping field
for which I(0+) = 150 larvae, A(0+) = 15 insects. The values of the different parameters are
given in Table1. We illustrate in these simulations how, when the basic reproduction number of
pestsR0 is strictly less than 1, pest populations gradually decrease over the seasons to negligible
levels. Conversely, if these threshold are greater than 1, then pest populations persist throughout
the seasons. Subsequently, through simulations we show how the basic reproduction number
evolves as a function of the proportion q of larvae destroyed after each harvest. We find a linear
relationship betweenR0 and q.

Table 1: Table of parameters and values.

Parameters Literature values value(s)
rI 4− 116 pests.day−1 [(3)] 20 pests day−1

K / 5000 pests (1)

K0 / 2500 pests (1)

ν 1/45 day−1 [(2)] 1/45 day−1

ν0 / 0.0177 day−1 (2)

µI 0.35 day−1 [(10)] 0.35 day−1

µA 0.5 day−1 [(10)] 0,5 day−1

p 0, 3939− 0, 6078 [(6)] 0.48

u / 0.0025 day−1 (3)

q / 0.75
(1) K and K0 are estimated in decent ranges according to what could be a field size.
(2) ν0 is taken so that ν0 ≤ ν.
(3) u is taken such that chemical control destroys 30% of the larvae during the maize cropping season.
/ No data available in the literature.

Figure 1: Long-term dynamics of pest for model (1-2-3-4) with 20 cropping seasons, when q = 0.75.
This parameter means that 75% of pest larvae are destroyed at the end of each maize cropping season.
This leads to a basic reproduction numberR0 = 0.84.
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Figure 2: Long-term dynamics of pest for model (1-2-3-4) with 20 cropping seasons, when q = 0. This
means that no pest larvae are destroyed at the end of each maize cropping season. This leads to basic
reproduction numberR0 = 1.41.

Figure 3: Linear relationship between the proportion q of larvae destroyed at the end of each maize
cropping season and the basic reproduction number of pestsR0.

Figure 1 illustrates the case where the basic reproduction number of pests is less than 1. In
this case, in addition to the larval control carried out during the maize cropping season, 75% of
larvae are destroyed at the end of each maize cropping season and therefore pest populations
gradually decrease over seasons. In Figure 2, no proportion of larvae is destroyed at the end
of the maize cropping season and therefore the basic reproduction number is therefore greater
than 1. The pests hence persist over seasons. These two figures illustrate the importance of
crop residue management to control pest populations from one season to another. Figure 3
illustrates the linear relationship between the basic reproduction number R0 and q : R0 =
−0.9050 × q + 1.6736 (without control u) and R0 = −0.7628 × q + 1.4121 (with control
u). This relationship allows us to find the minimum proportion of larvae to destroy after each
harvest to have a decrease of the pest populations over the seasons. From this figure, it is
noticable that if no effort is made during each maize cropping season to reduce larvae, at least
74.43% of larvae must be destroyed after each harvest for pest populations to decrease over the
seasons. However, if larvae are regularly controlled by pesticides, only 54.02% would need to
be destroyed.
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V CONCLUSION AND PERSPECTIVES
In this paper, we formulated a simple model for the dynamics of the African maize stalk borer
B. fusca. Since the host of the pest is available seasonally, we have implicitly integrated into
the model its seasonal availability and the means of control used by farmers to control pest
populations from one season to another. The semi-discrete model obtained was analyzed and
the basic reproduction number of pests was calculated. Numerical simulations were carried out
over several seasons to illustrate the theoretical results. Namely, when the basic reproduction
number of pests is less than 1, pest populations gradually decrease over the seasons and when
this number is greater than 1, pests persist. Using numerical simulations, we also illustrated
the importance of larval control during the maize cropping season, and the importance of crop
residue management after harvest to control pest populations.We found the minimum proportion
of larvae to be destroyed at the end of each maize cropping season for the control based on crop
residue management to be effective. This work can therefore open the debate on the possibilities
for biologists to carry out field experiments, and these could help us to calibrate the model. It
is desirable that field experiments can be done in order to estimate some precise parameters for
these pests and to be able to validate our model.
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APPENDIX A :
Proof of proposition III.1

1. The system (3) with initial condition given by (2) satisfies the Cauchy-Lipschitz condi-
tions. Then it admits a unique continuous solution in the interval (tn + D, tn+1]. The
system (1) has (I0, A0) as initial condition when n = 0 and for n ≥ 1 the initial condition
are given by (4). This system satisfies also the Cauchy-Lipschitz conditions so it admits a
unique continuous solution in the interval (tn, tn+D]. Therefore the model is well-posed.

2. First, we suppose n = 0 and let X(t) = (I(t), A(t)). Since these variables represent bio-
logical quantities then X(0+) ≥ 0. We consider the system (1) with the initial condition
X(0+). We have:

İ|I=0
= rIA ≥ 0, Ȧ|A=0

= pνI ≥ 0.

Therefore , ∀t ∈]0;D] all solutions of system (1) with initial positive conditions stay in
the non-negative set R2

+, so R2
+ is positively invariant by the flow of system (1).

Now, if we consider the system (3), it has as initial conditions X(D+).
Using discrete equation (2) X(D+) ≥ 0 . Indeed, accordind to (2)
X(D+) = ((1− q)I(D), A(D)) .
From the above, I(D) ≥ 0, A(D) ≥ 0 hence X(D+) ≥ 0.

İ|I=0
= rIA ≥ 0, Ȧ|A=0

= pν0I(t) ≥ 0.

The same reasoning as above leads us to conclude that R2
+ is positively invariant by the

flow of system (3). Thus R2
+ is positively invariant by the flow of the model (1-2-3-4) at

season 1. Furthermore, if R2
+ is positively invariant by the flow of the model (1-2-3-4) at

season n then the initial conditions for season n + 1 given by (4) will always be positive
and therefore R2

+ will be positively invariant by the flow of the model (1-2-3-4) for season
n+ 1.

3. We first consider the model (1-2-3-4). We use the barrier theorem to bound the solutions
of the continuous systems of our model. Consider the system (1), ∀n ∈ N,∀t ∈]tn, tn+D]
.

İ|I=K = −(ν + µI + u)K ≤ 0 thus I(t) ≤ K,

Ȧ|A= pν
µA

K = pνI(t)− pνK = pν(I(t)−K) ≤ 0, thus A(t) ≤ pν

µA
K.

Thus, according to the above, ∀t ∈]tn, tn+D] all solutions of system (1) are bounded. At
time t = nT +D, all these solutions remain bounded. In fact, according to (2) we have:

I(tn +D+) ≤ (1− q)K
A(tn +D+) ≤ pν

µA
K.

For t ∈ (tn + D, tn+1], according to (3) we show in the same way as before, using the
barrier theorem that:

I(t) ≤ K0

A(t) ≤ pν0
µA

K0.

8 ,



For t = tn+1, according to (4), we have:

I(t+n+1) ≤ K0

A(t+n+1) ≤
pν0
µA

K0.

So for t = tn+1, the solutions of the model (1-2-3-4) also remain bounded and therefore,
from the above we finally get: ∀t ∈]tn, tn+1],

I(t) ≤ max {K, (1− q)K,K0} = K

A(t) ≤ max

{
pν

µA
K,

pν0
µA

K0,

}
=
pν

µA
K.

This allows us to show that all solutions of model (1-2-3-4) are bounded, hence the con-
struction of the set D.

APPENDIX B :
Proof of Proposition III.2

1. For all t ∈ (tn, tn+D], the jacobian matrix in the neighbourhood of PFS=(I∗(t), A∗(t)) =
(0, 0) of system (1) is given by:

J(PFS) =

(
−(ν + µI + u) rI

pν −µA

)
In a neighbourhood of PFS, the system (1) is equivalent to a following linearised system:

{
˙̃I(t) = rIÃ(t)− (ν + µI + u)Ĩ(t),
˙̃A(t) = pνĨ(t)− µAÃ(t).

(7)

Where Ĩ(t) = I(t)− I∗(t) = I(t) and Ã(t) = A(t)− A∗(t) = A(t).
i.e {

İ(t) = rIA(t)− (ν + µI + u)I(t),

Ȧ(t) = pνI(t)− µAA(t).
(8)

let’s name

X(t) = (I(t), A(t))T , and B =

(
−α rI
pν −µA

)
, α = ν + µI + u,

.
the system (8) gives

Ẋ(t) = BX(t)

The matrix B is a Metzler matrix and therefore it admits two distinct real eigenvalues
λ1,2 = tr(B)

2
± 1

2

√
tr2(B)− 4det(B), and therefore we have:
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exp

(∫ t

tn

Bdt

)
= eB(t−tn) =

(
Γ1,1(t− tn) Γ1,2(t− tn)
Γ2,1(t− tn) Γ2,2(t− tn)

)
Where

Γ1,1(t) =
1

λ2 − λ1
(eλ1t(λ2 + α)− eλ2t(λ1 + α))

Γ1,2(t) =
rI

λ2 − λ1
(eλ2t − eλ1t)

Γ2,1(t) =
pν

λ2 − λ1
(eλ2t − eλ1t)

Γ2,2(t) =
1

λ2 − λ1
(eλ1t(λ2 + µA)− eλ2t(λ1 + µA))

Therefore (8) has a solution:

{
I(t) = Γ1,1(t− tn)I(t+n ) + Γ1,2(t− tn)A(t+n )

A(t) = Γ2,1(t− tn)I(t+n ) + Γ2,2(t− tn)A(t+n )
(9)

For t = tn +D in (9) we have the following relation:{
I(tn +D) = Γ1,1(D)I(tn) + Γ1,2(D)A(tn)

A(tn +D) = Γ2,1(D)I(tn) + Γ2,2(D)A(tn)
(10)

For all t ∈ (tn + D, tn+1], we considere the system (4). The jacobian matrix in the
neighbourhood of PFS (0, 0) of system (3) is given by:

JPFS =

(
−(ν0 + µI) rI

pν0 −µA

)
If we pose Y (t) = (I(t), A(t))T , in a neighbourhood of (0, 0), the system (3) is equivalent
to a following linearised system :

Ẏ (t) = JPFSY (t) (11)

As previously, we can extract from (11) the following subsystem:{
İ(t) = rIA(t)− (ν0 + µI)I(t),

Ȧ(t) = pν0I(t)− µAA(t).
(12)

The solutions of the system (12) are given by:

{
I(t) = Π1,1(t− (tn +D))I(tn +D+) + Π1,2(t− (tn +D))A(tn +D+)

A(t) = Π2,1(t− (tn +D))I(tn +D+) + Π2,2(t− (tn +D))A(tn +D+)
(13)
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Where the Πi,j are given by:

Π1,1(t) =
1

λ′2 − λ′1
(eλ

′
1t(λ′2 + α0)− eλ

′
2t(λ′1 + α0))

Π1,2(t) =
rI

λ′2 − λ′1
(eλ

′
2t − eλ′1t)

Π2,1(t) =
pν0

λ′2 − λ′1
(eλ

′
2t − eλ′1t)

Π2,2(t) =
1

λ′2 − λ′1
(eλ

′
1t(λ′2 + µA)− eλ′2t(λ′1 + µA))

and λ′1,2 are the eigenvalues of the matrix B0 =

(
−α0 rI
pν0 −µA

)
, α0 = ν0 + µI .

For t = (n+ 1)T = tn+1, taking into account the system (2), the relation (13) gives:{
I(tn+1) = (1− q)Π1,1(τ)I(tn +D) + Π1,2(τ)A(tn +D)

A(tn+1) = (1− q)Π2,1(τ)I(tn +D) + Π2,2(τ)A(tn +D)
(14)

Considering (10) we obtain from (14) the following relation:

{
I((n+ 1)T ) = Φ1,1I(nT ) + Φ1,2A(nT )

A((n+ 1)T ) = Φ2,1I(nT ) + Φ2,2A(nT )
(15)

where

Φ1,1 = (1− q)Π1,1(τ)Γ1,1(D) + Π1,2(τ)Γ2,1(D)

Φ1,2 = (1− q)Π1,1(τ)Γ1,2(D) + Π1,2(τ)Γ2,2(D)

Φ2,1 = (1− q)Π2,1(τ)Γ1,1(D) + Π2,2(τ)Γ2,1(D)

Φ2,2 = (1− q)Π2,1(τ)Γ1,2(D) + Π2,2(τ)Γ2,2(D)

By adopting the following notations I(tn) = In, Xn = (In, An)T , Φ =

(
Φ1,1 Φ1,2

Φ2,1 Φ2,2

)
,

the relation (15) gives Xn+1 = ΦXn =⇒ Xn = ΦnX0 and relation (5) is thus obtained.
2. From relation (15), we obtain the following discrete dynamic system illustrating the pest

dynamics in the neighbourhood of the pest-free solution:

{
In+1 = Φ1,1In + Φ1,2An

An+1 = Φ2,1In + Φ2,2An
(16)

The system of equations defined by relation (16) admits (0, 0) as a unique fixed point.
Let’s pose φi the eigenvalues of the matrix Φ. According to the Jury criteria (1), (0, 0)
is locally asymptotically stable if and only if max|φi| < 1 for i = 1, 2. Hence the basic
reproduction number of pests for model (1-2-3-4) isR0 = max|φi|.
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