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ABSTRACT This paper presents a framework for integrated cyber-physical security propagation study
within critical infrastructures (hospitals use case). The framework includes an ontology for the semantic
modeling of cyber-physical security. The impact propagation approach relies on propagation rules inferring
the cascading effects of security incidents occurring in hospitals. An impact score module allows evaluating
impacts’ severity, considering implemented protection measures. This work is part of the European project
SAFECARE, which provides a set of tests and demonstration sessions in partnership with 3 hospitals
in Europe. During these tests, we measured effectiveness and efficiency metrics, as well as end users’
satisfaction feedback. Experiments performed on real attack scenarios, show high effectiveness rates and
a common agreement from end-users about the added value of the solution to enhance risks analysis practice
and increase hospitals mitigation strategies efficiency.

INDEX TERMS Critical infrastructure, cyber-physical security, impact propagation, ontologies, semantic
modeling.

I. INTRODUCTION
A. GENERAL CONTEXT
Critical infrastructures (CI) are of growing complexity since
they are increasingly integrating Operational Technology
equipment and the internet of things (IoT) devices. In par-
allel, sophisticated attacks continue to rise in frequency and
effectiveness, exploiting the CI cyber systems vulnerabilities
and spreading afterward to the physical ones (or vice-versa).
If not mastered at the right time, these attacks can have detri-
mental effects on the hospital’s patient care mission. There-
fore, to ensure reliable service delivery and to be confident
in their business continuity, hospitals must ensure effective
management of their cyber and physical security.

Hospital risks are generally associated with various
threats. The European Commission reported in [1] a generic
classification of threats targeting critical infrastructures.
It distinguishes natural hazards (floods, severe weather,
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wild/forest fires, earthquakes, pandemics/epidemics, live-
stock epidemics) from non-malicious man-made hazards
(industrial accidents, nuclear/radiological accidents, trans-
port accidents, loss of critical infrastructure) and mali-
cious man-made hazards (those related to Cyber and
terrorist attacks). Moreover, authors in [2] distinguish
cyber-only attacks from physical-enabled cyber attacks and
physical-only attacks from cyber-enabled physical attacks.
They define the latter as physical attacks involving cyber
activities and the first as a cyber-attack in which an attacker
gains physical access to an on-site location from which the
cyber-attack is then launched. In this paper, we are only
concerned with deliberate threats (malicious man-made haz-
ards) that exploit one or many vulnerabilities to trigger cyber
and/or physical attacks leading to risks. When a cyber or
physical attack (incident) occurs, it may provoke far-reaching
cascading effects throughout the entire critical infrastructure,
which need to be identified and estimated to ensure precise
risk management [3]. Many critical assets could be compro-
mised, and measures put in place to protect them could fail.
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This situation might cause harm, perceived as ‘‘injuries or
damages to people’s health, or damage to property or the
environment’’.1

To increase situational awareness and ensure a quick and
effective response to incidents and their cascading effects,
hospitals must first have a comprehensive inventory of their
critical assets and record their profiles, including their inter-
connections. The response to this requirement help, through
risk analysis, to comprehend the nature of risks and to
determine their magnitude. Hospitals must also have an inte-
grated security solution for the prevention, detection, and
response to incidents, whether they are cyber, physical, or a
combination of both. These requirements are part of the
requirements of the European project SAFECARE 2 in which
the contribution of this paper fits. As an indication, this
project brings together 20 partners from 10 different EU
countries (industrial, academics, and governmental organiza-
tions), including 3 hospitals as end-users and demonstration
sites for the produced solution. Thus, the work presented in
this paper is a contribution to the SAFECARE objectives.
It first consists of an ontology, named SafecareOnto, for a
uniform representation and description of critical healthcare
assets and their dependencies. This ontology is used to simu-
late the potential impact propagation of an incident under an
impact propagation process we conceived and implemented.
This process, named IPDSM (the Impact Propagation and
Decision SupportModel), provides the assets impacted by the
incident and by those derived from the cascading effect, and
the impact score of the incidents on the assets. This process,
which is a cornerstone of the SAFECARE tool, serves for the
triggering of the threat response process and feeds the process
that gives information about the hospital availability status
(Availability Management System).

This paper is organized as follows. Themotivating example
in Section I-B introduces a near-real attack scenario used
to illustrate the different parts of the framework along the
paper. Section II describes the ‘‘SafecareOnto’’ ontology,
its building approach, formalization and related knowledge
base. The semantic-based propagation model is explained
in Section III. Since our solution is developed within the
SAFECARE project, Section IV-A shows the global archi-
tecture of the project’s modules and their communications.
Section V reports main results of tests and demonstration
sessions performed in the framework of the project. Research
works related to security semantic modeling and propagation
study approaches are discussed in Section VI. We conclude
in Section VII, with a summary of contributions and future
work.

B. MOTIVATING EXAMPLE
The following use case details a near-real cyber-physical
attack scenario used to illustrate the research problem
since real project data and scenarios cannot be revealed

1ISO 14971:2019
2https://www.safecare-project.eu/

(confidentiality reasons). Figure 1 illustrates the different
steps of the attack scenario.

During the ‘‘COVID-19’’ health crisis, the hospital ded-
icates part of its infrastructure to the vaccination cam-
paign, which mobilizes medical staff to carry out vaccines
and requires particular logistics. With malicious purpose,
an attacker contacts a hospital staff member to identify his
email address (step 1). Then, he sends a spear phishing email
to break into the hospital’s information system (step 2). Then,
the attacker accesses the appointment scheduling system to
modify the appointment planning and set them at one date
DD and hour (step 3). Many patients gather in the hospital
on the chosen day DD, claiming their vaccination, with the
received phone confirmation. The attacker joins the crowd
(step 4). Taking advantage of the situation, the attacker steps
near the pharmacy to spy on the nurse when she types the
security access code (step 5). The attacker enters the phar-
macy (step 6), accesses the freezer, and steals the vaccines
carrying them out in an isothermal backpack (step 7). Before
leaving the hospital (step 9), the attacker attempts to erase his
traces and create a diversion by lighting a fire (step 8). Since
the pharmacy room is near to the technical room hosting the
power supply device, the fire initiates a power cut in the entire
hospital sector.

This attack’s direct consequences are the theft of the hos-
pital’s vaccine stock and fire on the hospital’s localities. The
theft of the vaccine leads to a significant financial loss and
the patient vaccination campaign’s stopping, which seriously
harms the hospital’s reputation. It contributes to delaying
the health crisis’s release, with significant challenges, such
as hospital resources unavailability, the scheduling of opera-
tions, etc. Besides, the fire can propagate tomultiple localities
in the hospital, threatening the lives of patients and employ-
ees. The attacker’s actions lead to a series of indirect impacts,
such as the non-availability of the hospital’s information
system following the cyberattack, the stopping of the care
process, the theft of drugs from the pharmacy, or the power
cut.

II. SafecareOnto, SEMANTIC MODELING
A. THE MODULAR ONTOLOGY
Several definitions of ontology exist, but only one predomi-
nates in the information system field. In [4], Gruber defines
an ontology as an explicit specification of a conceptual-
ization (an abstract representation of the world intended to
represent).

The ontology ‘‘SafecareOnto’’ has been first designed
as a modular ontology with three sub-ontologies (mod-
ules in the ontology engineering terms): a central ontology
named Asset ontology and two related sub-ontologies
protection and impact [5]. Each module supports one
task dimension: The impact propagation task aims at deter-
mining the cascading effects resulting from an incident occur-
rence. This requires knowledge about the potential threats
and how incidents evolve to impacts. On the other side,
SAFECARE considers the presence of countermeasures to
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FIGURE 1. Steal ‘‘COVID-19’’ vaccine: the attacker path.

attenuate or eliminate incidents, which requires the solution
to handle the implemented protection strategies for reducing
asset vulnerabilities. The protection module manages this
knowledge.

To create and refine this high-level modular ontology,
we adopt a ‘‘from scratch’’ approach with a bottom-up
fashion. This building technique allows formalizing partner
experts’ knowledge and fitting the propagation task. We drew
on scenarios 1, 2, and 7 of the Neon methodology [6] and
followed an incremental, iterative process. Existing seman-
tic resources and standards were used to feed threats and
protection modeling for better reusability and genericity.
This section describes ‘‘SafecareOnto’’ following three steps:
knowledge acquisition, formalization, and knowledge base
creation. Further in Section IV-A, the implementation of the
ontology is discussed within the internal architecture part.

B. KNOWLEDGE ACQUISITION
The knowledge acquisition phase is crucial for collecting the
data required during the ontology design and population. The
SAFECARE project gave the ground for a direct acquisition
process from cyber-physical security experts employed by the
hospitals (project end-users) or their stakeholders (security
systems suppliers).

We had to manage several issues during the task, includ-
ing the heterogeneity of terminologies since the interviewed
experts came from several hospitals and countries. For gener-
icity purposes, we integrated an alignment step to homog-
enize the vocabularies based on literature taxonomies and
security standards (refer to Section VI). We also faced a
classical issue with time-consuming tasks, as a difficulty
to get experts’ engagement. To maximize the collection

of high-quality data, we created an acquisition methodol-
ogy that mixes a passive collection process where experts
autonomously fill pre-formatted files and active collection
phases where ontology designers discuss with experts (online
meetings) to check, complete, and validate the acquired data.

Within the project, twelve complex cyber-security attack
scenarios have been developed with our partners, each
describing a set of actions an attacker performs to accomplish
his malicious aims. For each scenario, we carried out the
following steps illustrated in Figure 2:

1) Phase A: identify the list of involved assets and the
related risks engendered by the attacker actions.

2) Phase B: identify the assets inter-dependencies thanks
to the hospital infrastructures (cyber and physical). The
propagation scope is extended to the links connecting
each involved asset within the cyber infrastructure of
the hospital and its locality dependencies.

3) Phase C: Security experts indicate for all the assets
the risks they are exposed to and potential protections
implemented to secure them. Each protection is indi-
cated with its corresponding efficiency degree.

4) Phase D: each incident occurring on a source asset
might propagate to connected assets in different forms
(impacts). Cyber and physical security experts indicate
what are propagation vectors and how they enable
the propagation of some incidents to specific threats
impacts.

C. FORMALIZATION
The formalization phase corresponds to the definition of the
logical and conceptual framework of the ontology. It includes
identifying concepts, the description of relations and axioms
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FIGURE 2. Knowledge acquisition methodology steps.

translating the dynamic knowledge on the constraints of con-
cepts and relations.

1) CONCEPTS IDENTIFICATION
Concepts identification task is mainly supervised by the
knowledge acquisition outputs. The issued terms have been
generalized and semantically mapped to security manage-
ment standards (refer to Section VI). This task enabled an
iterative refinement cycle of the top-level modular ontology.

1) Asset subontology includes concepts corresponding to
critical assets that the organization (healthcare infras-
tructure) aims to protect for delivering its tasks. The
ISO/TS 11633-1:2019 3 defines an asset as anything
that has value to the organization, which includes tech-
nical data (credentials, passwords), non-health data
(financial data), IT services, hardware, software, com-
munications facilities, media, IT facilities, and medi-
cal devices that record or report data. It is considered
critical if its malfunction induces a high impact on the
overall system’s operation and the patients [7]. Critical
assets can be classified in two hierarchical levels, fol-
lowing their role to serve the organization’s missions:
Business assets and Supporting assets.
Business asset(BusinessAsset v Asset) or Essential
asset in some standards, is according to [8] and [9],
any information or processes deemed important for an
organization, in the framework of a study. Business
assets are intangible assets, and comprise Services and
Operations. The security status of business assets can
be evaluated according to key security needs: availabil-
ity, traceability, integrity, and confidentiality.
• Service, within the organization, the missions are
carried out by different services. For a hospital, the
surgery room service participates in the mission
of providing healthcare. A service corresponds to
a complex process involving a set of elementary
operations.

3https://www.iso.org/standard/69336.html

• Operation: Elementary task achieved as a part of
one or more services. It encodes information or
an act carried out using supporting assets. In the
surgery room, medical acts, cleaning tasks, mon-
itoring, patient data management are examples of
operations.

Supporting asset concept (SupportingAsset vAsset),
is any element of the organization system serving one
or several business assets. A supporting asset can be
of a cyber (digital) or physical. Following the impact
propagation task purposes, an asset is further special-
ized according to the nature of the incidents suffering
from or impacts it creates.
• Building asset (Building v Asset), a geographical
entity that corresponds to the building in which a
hospital (or a part of it) is located. A building asset
has a variable granularity going from ‘‘room’’ to a
‘‘complex of buildings’’. Buildings can be either:
a simple building asset (a non-divisible location,
SimpleBuilding v Building), or complex building
asset that groups multiple simple building assets
(ComplexBuilding v Building). The domain of
the building assets corresponds to the hospital’s
physical infrastructure.

• Network asset (Network v Asset), a com-
puter network denotes a communication and data
exchange channel linking at least two devices
(nodes). Networks connect the components of the
hospital’s cyber infrastructure.

• Staff (Staff v Asset), staff represents any physi-
cal person performing regular or occasional tasks
within the hospital. In addition to direct employ-
ees, the staff includes external stakeholders acting
on-site or remotely [10]. This concept willingly
excludes patients since they are formalized as busi-
ness assets.

• Device asset (Device v Asset): refers to
any tangible equipment, whether associated to
computer software with an automatic action
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FIGURE 3. A global view of ‘‘SafecareOnto’’ concepts and relations.

(camera, sensor, server) or not (door, lamp).
Computer device ComputerDevice v Device,
building equipment such as doors, chairs, includ-
ing those with an automated operating process
BuildingDevice v Device (sensor, camera), med-
ical devices MedicalDevice v Device (scanner,
pacemaker).

• Software asset (Software v Asset), softwares
are virtual programs (sequences of computer code)
with data processing capabilities. They support a
determined business process such as medical acts
or human resources. Note that operating systems
are also considered software.

• Data (Data v Asset): Data play a major role
in security management since multiple attacks are
carried out using or targeting data.We separate two
context categories: patient data, and operating
data used to support the hospital processes (access
policies, camera flows, metadata, etc.).

Other supporting asset subconcepts are related to the
access and control roles.
• Access point concept, the access points are the
gateways that enable access to an asset and allow
the occurrence of an incident. An access point can
be either physical (door for room) or cyber (a port
for network). The access point is an asset with a
security access role (AccessPoint v Asset).

• Controller concept, controllers are physical
equipment or virtual protocols implementing
assets’ access restrictions, formalized in prede-
fined policies. Access to the surgery room requires
a door (access point), supervised by a door access
controller. A controller is a supporting asset that
ensures safe use and anticipates a possible inci-
dent occurrence and propagation (Controller v
Asset). Controller’s scope can be very limited to

one asset (as for door access controller), or can
have a large control extent, in which case they are
distinguished as specific classes: ‘‘electricity con-
trollers’’, ‘‘phone controllers’’, water controllers
are examples of strong roles that some devices
and protocols own. This specification is essential
for the propagation needs, as strong controllers
propagate impacts to a larger set of assets, under
particular constraints.

2) The protection subontology
• Threat (Threat v >), in this work, we use
the threat and attack concepts interchangeably.
A threat is an undesirable action that affects a secu-
rity goal of the system. It can be a physical disaster
(‘‘Fire’’), a fault, a failure (‘‘denial of service’’),
or a human error [10], [11].
A threat exploits one or several vulnerabilities,
either earlier identified or emerging after incidents.
The threats have been classified into physical
threats and cyber threats. The cyber threat taxon-
omy corresponds to the ‘‘MITRE’’ attack cyber
standard [12].

• Vulnerability (Vulnerability v >), vulnerability
is a weakness that exposes the asset to threats and
yields an incident’s occurrence. In some security
ontologies [13], vulnerability denotes the absence
of protection measures against threats.

• Protection (Protection v >), is a countermeasure
that protects the asset by preventing an incident’s
occurrence or attenuating its effect. Protection
effectiveness varies following the threat nature and
the asset. For the same asset, several protections
can be aggregated to increase the effectiveness of
the protection strategy. Protections are valuable
resources of critical infrastructure and risk also to
be targeted. They are assets too.
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3) The impact subontology
• Incident (Incident v >), according to the
NIST [9], an incident is ‘‘an occurrence that actu-
ally or potentially jeopardizes the confidentiality,
integrity, or availability of a system.’’ An incident
could be an attack against one or several assets by
exploiting vulnerabilities. In SAFECARE, we han-
dle both physical and cyber incidents, either with a
criminal intention, human errors or natural events.

• Impact (Impact v >), when an incident occurs,
there is a risk that it propagates to related assets.
An impact is the result of such propagation. This
propagation needs to be precisely qualified and/or
quantified to efficiently help decide about the mit-
igation plans. The cascading impacts is the subject
of the task we describe in Section III.

2) RELATIONSHIPS IDENTIFICATION
The relationships depict how assets interact in the healthcare
context and what are their properties. We have identified
two families of relations. The first one corresponds to con-
cepts attributes (data properties in Web Ontology Language
[OWL]): a staff hasRole, a building hasLevel, a soft-
ware hasVersion, etc. The second family of relations
corresponds to concepts interactions (object properties in
OWL). They are highlighted in Figure 3 with solid labeled
arrows. We organized these relations in groups matching
our propagation channels’ analysis to fit the task purposes.
This analysis revealed some structural patterns that support
reasoning on incidents’ propagation following their nature.
Among patterns we can identify:

1) Operational dependency pattern reflects the depen-
dence that two entities can have in order to function.
For example, the SAMU4 service depends on the tele-
phone operation, this means that any malfunction in
the telephone system implies the unavailability of the
SAMU service. Operational dependency relations are:
depends, supports and requires.

2) Leads to pattern captures the access and communica-
tion possibilities between assets. This access applies
for both physical or cyber flows and is material-
ized through the Leads To Access and Leads
To Asset relations. The access mechanism could be
one-way or bidirectional.

3) The hosts-content pattern assumes that if an incident
happens on an asset named host asset then the
content, referred to as content asset could be
affected by this incident. The structure of the pattern
is enriched by rules to enhance the validity of the
relations description. If the server (Device) suffers from
‘‘fire’’, the information system (Software) it hosts will
be impacted (inaccessible).

4) Controls pattern allows specifying the conditions and
mechanisms for granting or revoking access to cyber

4Service d’Aide Médicale d’Urgence, health assistance service in French

or physical assets. The pattern uses the Controller
that Controls the Access point. The control
patterns requires Data as access policies. For
example, a physical Access Control system based on
a smart card is composed of three elements: the access
rights stored locally or remotely, door readers to check
whether data on the card is consistent with the policy
and the door (Access point) which would be unlocked
when the card is approved.

5) The whole-part pattern assumes that if an incident hap-
pens on the whole, there could be an impact on its parts.
Inversely, if parts are attacked, the whole could also
suffer from the impact of the attack. In the healthcare
structures, this pattern applies to locations Building
assets, that are Composed Of smaller entities.
Moreover, the propagation concerns in this case essen-
tially ‘‘physical incidents’’ such as ‘‘unauthorized
access’’, ‘‘fire’’ or ‘‘flooding’’. For example, if there
is an intrusion on one floor of a hospital, it potentially
affects all the rooms.

3) AXIOMS DEFINITION
Axioms allow defining the semantics of concepts, relations
and express some restrictions on their values or cardinalities.
The use of axioms enables representing specific capabilities
or features of a concept and avoids adding new concepts that
would not be reused [14]. For ‘‘SafecareOnto’’, a set of formal
axioms is defined to specify some ontology elements. The
following paragraph introduces some axioms examples and
their corresponding description.
• OperatingData v Data
(subclass axiom, operating data are data)

• ControlPoint v DevicetBuildingtSoftwaretNetwork
(A control point can be either a device, a building,
a software or a network. This excludes Data, Supply, and
Staff from this asset role)

• Controller v ∀controls(AccessPoint),
• Controller v= controls(AccessPoint) All controllers
necessary control an asset identified as a Control Point.

• PhysicalIncident u CyberIncidents v ⊥
(Cyber incidents and physical incidents are totally dis-
joint concepts, same axiom for threats and protections)

• Data u requiredbyController v operatingData
(Data required by a Controller are exclusively
OperatinData)

• leadsToAsset, leadsToAccessPoint v leadsTo leadsTo is
a super relation for leadsToAsset and LeadsToControl-
Point. This allows expressing constraints and propaga-
tion rules on the superRelation when it applies to both

• ComplexBuilding v ∃ composedof Simplebuilding
ComplexBuilding is composed of at least one
SimpleBuilding

• ProtectionStrategy v ∃ uses Protection
• ProtectionStrategy v ∃ against Threat
• ProtectionStrategy v ∃ covers Asset
• ProtectionStrategy v= covers Asset
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Each protection strategy uses at least one protection,
and is implemented against at least one threat. One
protection strategy covers exactly one asset.

D. KNOWLEDGE BASE
A knowledge base is defined by an ontology and a set of
facts. In SAFECARE, the knowledge base gathers all the
information required to support the hospitals’ cyber-physical
security management, specifically the incident propagation
task. The knowledge acquisition step produced three distinct
knowledge types:
• Security standards used by industrial partners for qual-
ifying cyber and physical threats and cyber protec-
tions. The ‘‘MITRE’’ dictionary [12] is used for cyber
threats, which organizes them in two detail levels:
each threat can have more than one sub-related threat
(Spearphishing Link is a threat of type Spearphish-
ing). The ‘‘MITRE’’ dictionary has also been used for
cyber countermeasures. For physical threats, the phys-
ical threat detection system partner provided a list of
physical threats as ‘‘fire’’, ‘‘theft’’, ‘‘breaking through
access control by force’’.

• Hospital-related facts on assets and protection strategies
implemented for each asset,

• Knowledge about incident-impacts mappings used for
the construction of the rules base.

The Figure 4 shows an extract of the asset knowledge graph
corresponding to the running example scenario.

III. IMPACT PROPAGATION APPROACH
A. PROPAGATION MECHANISMS
Estimating incidents propagation within critical infrastruc-
tures consists of identifying how an incident affecting a first
infrastructure asset evolves by creating a series of cascading
effects on physically or digitally connected assets.

Thanks to ‘‘SafecareOnto’’ and the knowledge acquisition
task, hospitals’ cyber and physical architectures are integrated
into a single knowledge graph. The assets belong to the nodes
of this knowledge graph, and the links of the graph encode
their cyber and physical interdependencies. At the occurrence
of the attack, the modules responsible for the threats detection
(see section architecture), create security events as alerts.
These alerts are subsequently confirmed and transformed into
incidents. At the IPM level, each incident message received
can affect one or more initial assets.

Starting with one asset, the propagation can operate
through the knowledge graph links. Basically, any relation-
ship between two assets is a potential vector of propaga-
tion. In fact, incidents do not necessarily propagate, and this
depends on several factors: the nature of the threat, the nature
of the asset, or the implemented protections. For example,
if a virus attacks a computer’s system, the virus would not
affect the room hosting the computer, although the existence
of the physical hosting link. However, the virus can affect

the business process ‘‘patient reception’’ supported by the
computer.

The propagation logic is more complex than the assump-
tion that physical incidents only propagate to physical
impacts and analogically for cybers. Some relationships
could initiate a cyber impact with a physical incident (fire
on a server inducing unavailability of information systems).
Inversely, manipulation of the ATU (Air Treatment Unit)
data results in an uncontrolled increase in room temperature,
which is a potential risk for patients’ health. This knowledge
on the transformations of incidents is security expertise exclu-
sively held by security experts evolving in the medical field,
understanding the consequences of attacks. The following
paragraph explains how this knowledge has been exploited
to build the rules repository (initial model is to be consulted
in [15]).

B. PROPAGATION RULES
The process of building the propagation rules repository,
depicted in Figure 5 is composed of 4 steps:
• Knowledge acquisition: to build the propagation rule’s
base, experts’ knowledge on incident transformation
is gathered. This task is organized according to pre-
defined attack scenarios in an incremental way. Each
propagation case is analyzed, and the resulting rule is
generalized to guarantee maximum coverage of similar
propagation cases.

• Formalization: in this phase, the concepts and proper-
ties of the ontology that can be used to write rules are
identified. A rule engine (we used in this work Jena
inference5) is then used to implement these rules in
the form of premises and conclusions that specify the
conditions in which the propagation of impacts could
occur.

• Validation and refining: the formalized rules are imple-
mented, then tested on different scenarios on real data
and test cases. Domain experts evaluate the inferred
impacts on assets to determine whether the inference
provides coherent and reliable results. At the end of
the validation, rules could be refined to better meet the
expected results.

• Learning: although the attack scenarios have been
designed to cover as much as possible security incidents
occurring within hospitals, the created rules repository
is hardly exhaustive. New types of security incidents are
constantly identified, new vulnerabilities are revealed,
and new protections implemented. All these extensions
need to be considered to study their consequences on the
propagation that might require modifying or adding new
rules. Currently, the incidents backup history is analyzed
to identify possible changes. During the project, some
rules have been added following a real security incident
that occurred a few days before the final phase of the

5https://jena.apache.org/documentation/inference/index.html
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FIGURE 4. An extract form ‘‘COVID-19’’ scenario knowledge graph.

FIGURE 5. Propagation rules creation process.

tests in one of the pilot hospitals. The automation of this
phase is possible and foreseen in future works.

The following examples present some propagation rules
built during the project and illustrated in Figure 6 through
the running scenario example. Each rule has a color code for
the source asset and the target asset, where the source asset
suffers from the initial attack while the target witnesses an
impact of this attack. Notice also that the reception service
(light blue in the figure), designates a business asset.

a: CYBER-CYBER RULE EXAMPLE
In step 2 of the attack scenario from Section I-B, after social
engineering on a hospital employee, the attacker sends a
spearfishing email. If successful, the incident risks spreading
through the network. Spearfishing email initially affects the
mailing system asset, and the first direct impact it may cause
is a ‘‘network service scanning’’ on network assets, in order
to identify the services and components connected to the
hospital network. The following inference rule 6 expresses
this propagation, highlited in Figure 6 as rule 1.

6For the sake of clarity, we use a simplified rule-based syntax similar to
Datalog/Prolog.

b: CYBER-PHYSICAL RULE EXAMPLE
The patient reception service is managed by medical staff
to organize patient visits to the hospital and facilitate their
health care. This service is available thanks to several sup-
port assets such as the appointment management system
and reception facilities. Any manipulation of the data on
the hospital’s appointment management systems could lead
to a mass in the premises reserved for reception. In the
figure, the scheduling software suffers from data manipula-
tion and the waiting room providing the hosting service is
crowded.

c: PHYSICAL-PHYSICAL RULE EXAMPLE
A loitering incident can be detected by a camera and desig-
nates a suspicious movement of the attacker in a locality. Fol-
lowing loitering, many opportunities of attacks are possible:
device destruction, supply theft, or breaking through access
control by force. The later impact is shown as a result of the
following propagation rule.

On the Figure 6, all purple nodes correspond to potentially
impacted assets either with unauthorized access as in rule 3 or
similar: theft of vaccines, drugs, or destruction of the freezer,
computer, or cabinet.
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FIGURE 6. Propagation rules application on ‘‘COVID-19’’ scenario’s knowledge graph.

d: PHYSICAL-CYBER RULE EXAMPLE
A suspicious interaction of an individual with an object is
detected through the intelligence system equipping the cam-
era. This interaction can lead to physical damage, such as
deterioration or theft, but can also produce cyber impact if the
device hosts software. The attacker who enters the pharmacy
can seize the opportunity to plug a USB key in the computer
and hack the authentication thanks to a malicious program to
have access to the patients’ data, for example. The following
rule reflects the propagation of a physical incident (suspicious
interaction, in light pink node) to a cyber incident (exfiltration
over USB, in dark pink node)

e: BUSINESS ASSET RULE EXAMPLE
During surgery, the temperature of the surgery room should
be kept at a fixed level to ensure the safety of patients
during the medical procedure. Many threats can lead to an
unsuitable temperature incident: data manipulation on sensor
data, an electrical shutdown, failure of the ventilators: If the
temperature of the surgery room increases, the health of the
patient is threatened. The surgery service is therefore unavail-
able (dark green node on graph).

C. PROTECTION INTEGRATION
As described in Section II, one or more protection strate-
gies can be assigned to each asset. A protection strategy

is specific to a threat type and can involve multiple pro-
tections. For example, a room can be protected against a
‘‘fire’’ threat thanks to a ‘‘fire door’’, and protected against
‘‘intrusion’’ using a ‘‘door access controller’’. Each protec-
tion attributed to an asset has properties as the efficiency
degree. The efficiency of the door access controller depends
on the integrated authentication system (biometric, imprint,
code) and whether or not other access points exist. This
efficiency is defined in our system as the ‘‘protection degree’’
an asset has against a threat. This parameter is a numerical
value evaluated and provided by security experts. The exis-
tence of several protections leads to the aggregation of their
corresponding protection degrees. Consequently, an asset
can be identified as fully protected against a particular
threat.

In our system, the ‘‘full protection’’ status is pre-evaluated
and stored in the knowledge base. Knowing that an asset
is fully protected is valuable for reporting its non-impact
on the indicated threat, which affects the following propa-
gation chain: If the asset is not impacted, the propagation
stops at its level, which indirectly protects its neighbors.
The following rule shows how the ‘‘fully protected’’ (or
its inverse) predicate is integrated to impact propagation
rules:

In the graph of Figure 7, we observe that the use of the
‘‘Firewall’’ and the ‘‘Network segmentation’’ on the ‘‘Net-
work port’’ prevents the ‘‘Network-Scanning’’ incident and
therefore all subsequent cyber impacts on related softwares.
The combined protection degree of the asset exceeds 100%
which provides full protection, stopping the propagation of
the threat.
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FIGURE 7. Propagation rules application of ‘‘COVID-19’’ scenario’s knowledge graph, after integrating protection assets.

D. IMPACT SCORE
The protections implemented to protect assets do not always
guarantee complete security coverage. Nevertheless, they
allow attenuating the impacts’ severity. As introduced in the
previous section, the global protection degree related to an
asset is a value provided by security experts referring to how
the different implemented measures capabilities aggregate.
The identification of this global value depends on the nature
of the threat, the asset and the protection. The couple (camera
(90%), human guard (95%)) has a global degree of protection
that does not correspond to a trivial sum or maximum over
their separate degrees of protection, and the addition of an
intrusion detection system to this set does not guarantee a
full protection either. In the same vein, implementing two
different antivirus tools do not increase the protection degree
if they both cover the same scope of attacks. These examples
illustrate that the computation of the global protection degree
rely on security experts knowledge and analysis of the system
features. Accordingly, we define the impact score of an asset
for a given threat and protections’ set as follows:

impactScoreth(a) = 1− γ pj=1protectionDegree
j
th(a) (1)

where, p is the number of protections for an asset a per threat
th, and γ is an aggregation function allowing to compute the
global protection degree for an asset, associated with p pro-
tectionmeasures. Considering that the aggregation of individ-
ual protection degrees to compute the global degree is specific
to security solutions providers, the γ function is variable.
This variation can be illustrated thanks to physical and cyber
systems particularities for example. The protection degree
ensured by a unique camera or when this camera completes
a security guard varies. Global protection is also increased

with the combined use of an intrusion detection system. This
aggregation model that building security experts master is in
no way comparable to that of cyber solution providers who
aggregate for example different antivirus protection degrees
by comparing the scope of viruses they cover. Examples of
γ function can be: Max, weighted sum, probabilistic model
output..

It is worth noticing here that if an asset a has numerous pro-
tections against threat th, it will be potentially less impacted
by such a threat. Concretely, on equation (1), the second
term expresses how much an asset a is protected against a
threat th.
Recall that the propagation mechanism is implemented on

top of the knowledge graphs built for each hospital.Following
the aforementioned propagation rules, the potential impact
navigate from an asset (graph node) to another through their
cyber-physical relationships (graph edges).

The extent of an incident corresponds to the graph path
(sequence of edges) it crosses. Which means that if an asset
in the path is not impacted (its impact score for a given threat
equals zero), it acts as a barrier stopping the propagation of
the incident and the following assets in the path are saved.
We generalize the impact score definition to any asset in the
graph as follows.

impactScoreth1(at )

=

{
0, if ∃ai ∈ Path(as, at ) | impactScoreth2(ai)=0

1− γ pj=1protectionDegree
j
th1(at ), otherwise

(2)

where Path(as, at ) is the set of all the assets in the path
connecting the asset source as to the asset target at . In the
case of multiple paths connecting as and at , the impact could
be propagated through all paths if the rules are applicable.
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IV. IPM ARCHITECTURE
A. GLOBAL ARCHITECTURE
In this section, we describe the global architecture of SAFE-
CARE. The project is composed of sixteen 16 different
prototypes, those directly interacting with our module are
depicted in Figure 8. First, there are the physical and cyber
detection systems that will detect, validate and alert to
all the other modules about an incident through the Data
Exchange Layer (DXL). The data exchange layer implements
publish-subscribe mechanisms to trigger notifications to the
other components when new physical and cyber incidents
or new impacts are sent. The impact propagation model is
the aim of this paper, its role is to generate the cascading
effect after receiving an incident from either physical detec-
tion system or cyber detection system and send the impact
message through the DXL. The impact message will be sent
to two different models, the threat response and alert system
(TRAS), this model aims to alert in a timely fashion the
relevant stakeholders when incidents and impacts occur. The
secondmodel that receives the impact message is the Hospital
Availability Management System (HAMS). This service will
improve the resilience of health services and the communica-
tion of availability information among hospital staff and first
responders.

FIGURE 8. Extract of the SAFECARE project global architecture.

B. IPM COMMUNICATION
The impact propagation solution requires interacting with
other project modules to acquire the necessary inputs to
its functioning: a Central DataBase (CDB) gathering assets,
protection lists, and security standards. This information is
retrieved by using different APLs (Application Programming
Interface). The module also interfaces both physical and
cyber detection systems to get notified of incidents’ occur-
rences. Each time IPM is notified about an incident, themodel
will analyze it and generate the impact cascading effect on
all the other assets. These impacts need to be sent to the
threat response and alert system and the hospital availability
management system.

The IPM communicates with the other modules by
exchanging JSON messages through the MQTT (Message
Queuing Telemetry Transport) broker. When it receives an
incident message from the detection systems, the impact

module is triggered, and the JSON impact message is gen-
erated and published through the MQTT broker.

The MQTT broker of DXL has been implemented with
Apache ActiveMQ client. The communication channels are
secured using TLS 1.2 protocol (Transport Layer Security)
over HTTPS. Implementation and tests have been conducted
authenticating clients through X.509 certificates.

Figure 9 shows the communication between the IPM and
the other modules.

FIGURE 9. Architecture for the Communication between IPM and the
other Models.

Themodule is organized into two parts, the online part, and
the offline part. In the offline sub-module, the knowledge base
is created by retrieving information from the central database
using specific APIs. This information consists of the list of
all assets, the types of the assets, and the list of protections
associated with each asset. The online sub-module is trig-
gered by the reception of an incident message. It consists
of (i) propagating incidents and calculating impact scores
and (ii) creating the impact propagationmessage that contains
the list of impacted assets regarding threats in the incident
message along with their impact score. Concretely, when an
incident message is received, the CDB is queried to update
the protection degree value for all the assets in the knowledge
base. After that, the list of impacted assets is generated by
running the inference rules. The impact score is calculated
for each impacted asset based on the last updated value of the
protection degree in the CDB. The final step is to publish the
impact propagation message by using the MQTT broker.

The visualization of the propagation is made in a graphical
way, where the nodes represent the assets, and the edges
represent the relationship between them. The impact score
on impacted assets is expressed by changing the color of the
corresponding node. The red color represents a strong impact
and the orange represents a moderate impact.

V. EXPERIMENTS AND EVALUATION
The SAFECARE project provides a set of regular tests for
the different modules, including IPM. In addition, three
real-life demonstration sessions were organized with the
project pilot hospitals (Marseille,7 Turin,8 Amesterdam9).
Each demonstration session was realized within the premises
of the hospital and attended by all the project partners and the
end-users (hospital employees or stakeholders). The session

7APHM: Assistance Publique Hopitaux de Marseille: http://fr.ap-hm.fr/
8ASLTO5: https://www.aslto5.piemonte.it/
9AMC: https://www.amc.nl/web/home.htm
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FIGURE 10. Overview of the IPM module global architecture.

aims to prove the efficiency and effectiveness of SAFECARE
solutions for managing security events following 12 cyber-
physical attack scenarios. The evaluation includes two dimen-
sions: quantitative metrics evaluated by security experts
and satisfaction questionnaires filled by the end-users. This
section reports the results of both evaluations within the three
hospitals.

While the cyber architectures of hospitals are similar
(despite the varying number of assets), physical architec-
tures differ. This variation is a crucial factor explaining
the propagation patterns and impacts severity. Two types
of physical architectures are represented across the partner
hospitals:
• Architecture A: with small buildings spread over the
hospital’s geographical area.

• Architecture B: big connected building entities (high
density).

A. SCENARIOS SUMMARY
Twelve security attack scenarios were designed with the
project partners and end-users to organize the test and demon-
stration sessions. Each scenario has been described follow-
ing the Ebios Risk Management method [16], including 4
steps:
• Know: the set of preparation actions the attacker
achieves to target the hospital. In the ‘‘COVID-19’’ sce-
nario introduced in Section I-B this corresponds to the
social engineering effort.

• Get In: the incidents created as the attacker accesses
physically or digitally the hospital’s cyber or physical
infrastructure. The intrusion uses access point assets as
a network port to reach the hospital’s network.

• Find: this step includes actions performed within the
hospital to identify the targeted assets. Loitering around
the pharmacy room enables the identification of the
access code and the vaccine locality.

• Control: the achievement of the purposes of the attack
such as the theft of the vaccine, the destruction of assets,
or putting the fire.

The consequences of the scenarios explicit the attacker
action impacts on the supporting and business assets. The
Table 1 lists all the used scenarios with their corresponding
attack objective.

TABLE 1. Summary of scenarios tested in SAFECARE demonstration
sessions.

B. KNOWLEDGE BASE AND RULES STATISTICS
Table 2 reports a description of the knowledge graphs and
rules built and derived for, respectively, hospital architectures
A and B. For dense physical architecture B, the number of
links between assets is greater due to the connectivity of phys-
ical elements, which also implies a dense cyber architecture.
The size of the knowledge graph does not correspond to all the
assets in the hospitals, but only a part used in demonstrations
that is proportional to real attributes. This extraction was
performed to study the propagation on particular dimensions.
The module itself applies to the entire asset base of all
hospitals.

On the other hand, the number of rules per architecture only
indicates the number of rules built with the experts for each
particular architecture type. However, the rules repository
remains single, valid for any type of architecture without
inconsistency. Rules will be activated automatically when
they apply.

TABLE 2. IPM module demonstration settings.

C. IMPACTS GENERATION EFFECTIVENESS
In each tested scenario, at least one incident has been tested,
with a total number of 23 incidents; 12 physical, and 11 cyber.
Some of these incidents have been tested in the two different
architectures (architecture A and architecture B) while others
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are tested over only one. Table 3 summarizes the results of the
demonstration. The columns incident label and incident type
indicate the label of the received incident (in the JSON mes-
sage) and its type (physical or cyber). The first column reports
inwhich scenario this incident has been tested. An assetmight
suffer from more than one impact, that’s why we report both
the total number of impacts generated by IPM, overall assets,
along with the number of distinct impacted assets. Following
the loitering incident, if the room initially impacted hosts a set
of devices, they can be impacted by either physical damage or
stolen by the attacker. Consequently the number of impacts is
greater than the number of impacted assets.

We derive from the results the impact that has the physical
topology on the incident propagation. Dense building struc-
tures is an acceleration factor for the propagation of physical
incidents such as loitering, for which we notice the largest
propagation dynamic (20 for architecture B vs. 11 for archi-
tecture A). Connected rooms help the attacker access critical
assets following a loitering action. For the same reasons,
physically-enabled cyber incidents such as data manipulation
on a computer’s system are of greater occurrence and impact
in architecture B.

FIGURE 11. Evolution of the execution time following the knowledge
graphs sizes.

D. IMPACTS GENERATION EFFICIENCY
1) EXECUTION TIME
The execution time in our module represents the global time
needed to both generate impacts and calculate the impact
score, after receiving an incident. To study the impact of
the knowledge graph size on the execution time, we used
5 knowledge bases with similar characteristics (links’ density,
distribution of asset types), but a different number of assets.
Figure 11 shows the execution time with respect to the graph
size. We notice a linear-like evolution of the execution time
following the increasing number of assets. This evolution is
still reasonable since the global answer is less than 1 second
for 500 assets. Further developments for diminishing this
complexity are under investigation using parallel program-
ming by isolating impacts computation for different asset
types.

2) PRECISION AND RECALL MEASURES
An essential set of metrics about any estimation/prediction
task is the evaluation of the exactness of the estimation:
whether all expected impacts have been identified (true pos-
itives), the number of impacts that should not be identified
(false positives), or the number of assets that should be
impacted but were not computed by the IPM (false negative).
The precision, recall and F-score are defined as follows:

- Precision: the proportion of true positives out of all
predicted impacts.

- Recall: the proportion of true positive out of the real
impacts.

- F-score: computed based on precision and recall as:

F-score = 2 ∗
precision ∗ recall
precision+ recall

(3)

All these metrics were measured during demonstrations on
23 incidents. Table 4 reports their values for four significant
incidents.

In general, the Table 4 shows satisfying results for the
IPM; the F-score is always higher than 75%. We notice that
IPM perform better when the initial incident is cyber, since
the rule repository for cyber propagation patterns is better
documented and based on rich cyber security standards and
protocols.

E. KEY PERFORMANCE INDICATORS
A set of key performance indicators has been defined to eval-
uate the SAFECARE project, including sixteen (16) ques-
tions for the end-users. The purpose of these questions is
to evaluate all the modules that are involved in the project.
Two questions are the most relevant for IPM performance
measuring: the first relates to the time needed by the agent to
react after the detection of the event by the system. This time
corresponds mainly to the necessary time for IPM to generate
impacts. Sending the impact message faster will support the
agent to take action quickly. The results of this questioner are
presented in Figure 12.

FIGURE 12. Reaction time following a security incident for end-users
traditionally and with the use of SAFECARE.

According to the pie chart, more than 50% of the end-users
report that the time needed to take the action with SAFE-
CARE is less than 10 minutes and more than 78% answer
that the same time is less than 1 hour. In comparison, without
SAFECARE, only 32% of the end-users said that this time
is less than 1 hour, and according to 67% of the end-users,
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TABLE 3. The number of impacts and impacted assets following some incidents.

TABLE 4. Precision, Recall and F-score measures.

more than 1 hour is needed to react after the detection of
the event. We can conclude that end-users largely agree on
the fact that SAFECARE diminishes agent reaction time
to correct/intervene on the alert (without SAFECARE 1 to
4 hours and with SAFECARE less than 10 minutes).

The second questioner was to check whether the agents
have a clear view of the impacts and potential escalation of the
threat before presenting the SAFECARE and after presenting
it. The results are presented in Figure 13

FIGURE 13. Quantification of the field of knowledge of the environment
for the agent in charge of the alert.

The bar chart shows that 59% of end-users assert that
alerted agent has a much better view and knowledge of
impacted assets when using SAFECARE. Also, we can
observe that the more we are providing information about
the impact, the easiest the agent quantifies the alert and
handles it.

F. END USERS SATISFACTION
At the end of each demonstration, questionnaires were asked
to check two satisfaction elements: the end-users satisfaction
regarding all the components of SAFECARE and the overall
objectives of SAFECARE from the stakeholders’ point of
view. One hundred and twenty-five 125 questionnaire copies
were provided in three different languages to the audience

attending the demonstrations. These participants are from dif-
ferent professions like health practitioners, security experts,
crisis managers, police, firefighter, technical operators, etc.

The system performance was tested based on two aspects:
the detection level which is the ability of the system to detect
cyber and/or physical threats and the response to this threat.
The evaluation shows that 56% of the respondents completely
agree that SAFECARE is a significant improvement over
current solutions in the detection level for cyber threats while
81% of them agree on the detection level for physical threats.
For the response to the threat the percentage is higher, 73%
agree that SAFECARE is better than current solutions in
responding to cyber threats and 87% in responding for phys-
ical threats.

1) SYSTEM USABILITY
A widely used metric for system usability evaluation is the
System Usability Score (SUS) [17] which represents a reli-
able tool for measuring the usability of a software or a tool.
The SUS provides ten (10) question items, each with five
response options, from strongly agree to strongly disagree.
The result of the SUS questionnaire is considered as good
if above the value 68, and below the average otherwise. The
SUS evaluation for the SAFECARE framework is displayed
in Table 5, and demonstrates good global results for the
usability, with a smooth variation between the two architec-
tures, explained by the richness of demonstrated scenarios in
architecture B compared to architecture A.

TABLE 5. System usability score.

Another evaluation was done which is the module specific
performance, in this evaluation the participants fill a ques-
tionnaire about the understanding, efficiency and the useful
of the module. The score varies from 1 to 7 where 1 means
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strongly disagree and 7 refers to strongly agree. The results
are shown in the Table 6.

TABLE 6. Module specific performance.

The end users were asked if the SAFECARE system meet
all their requirements for the integration of cyber-physical
security in the hospital and the results are depicted in
Figure 14.

FIGURE 14. SAFECARE system compliance with end users’ requirements.

We can observe from the figure Figure 14 that 44 out
of 51 participants approve that these requirements can be
reached with SAFECARE while 31 believe that the require-
ments can be reached without SAFECARE. The SAFCEARE
system includes multiple modules in addition to the IPM.
Some of them are enhancements of already existing security
solutions which explains that some end-users had already the
necessary tools to achieve some tasks without SAFECARE.
On the other hand, and as stated in Figure Figure 13, the
propagation module brings a significant gain in achieving the
incident propagation task.

VI. RELATED WORK
Healthcare infrastructures are consensually agreed as critical.
They are so vital assets for the maintenance of people’s
health. Their destruction or disruption would have a signif-
icant societal impact, hence the growing interest in securing
them. Their adoption of more and more recent technologies
raises a wide range of security issues and challenges that are
the subject of several research papers. This section summa-
rizes the research work related to our contributions. We have
classified them into two categories: those describing models
for asset management and analysis and those depicting inci-
dent propagation approaches.

A. MODELS FOR ASSET MANAGEMENT AND ANALYSIS
The hospital must hold perfect knowledge of its critical assets
to maintain its mission despite the occurrence incidents.
Assets identification and documentation fall within the scope
of the risk analysis, a crucial process in risk management.

The latter is described in a wide range of national and inter-
national standards: ISO/IEC 27000:2018, Common Criteria
ISO/IEC 15408, ISO/IEC 27002:2013, IEC 80001-1:2021,
and NIST SP 800-30. Some resources, like the HITRUST risk
management framework [18] from the Health Information
Trust Alliance (HITRUST) are associated with the health-
care sector. To achieve risk analysis, it is possible to rely
on existing methodologies based on standards like LIRA
methodology [19], CRISRRAM approach [1] and EBIOS
RM methodology [8]. Some of these methodologies give
descriptions of assets that are very often informal and light.

However, several models are presented in the literature
for asset analysis ( [20]–[25]). Authors in [22] propose an
ontology called OLPIT, and claim that it reflects the layering
suggested by the ITIL and CoBit frameworks. It defines hier-
archical relationships between the three represented levels:
process level, service level, and infrastructure level. Refs. [21]
represents the assets dependence chain by an oriented graph
where the assets are the nodes. They are organized hierarchi-
cally into the business system layer, information system layer,
and system component layer. In [24] assets dependencies are
arranged in a tree-based hierarchy with the ‘‘building’’ asset
as the top-level node. There are two kinds of hierarchy links:
the ‘‘OR’’ and the ‘‘AND’’ links. The ‘‘AND’’ is a normal link
expressing the exclusive dependency that an asset has on its
direct superior asset, while the ‘‘OR’’ link expresses redun-
dant assets. In [23], a first version of a metamodel describing
the Mission and Asset Information Repository (MAIR) is
described. A representative set of assets is depicted with their
type of dependencies on other assets through hierarchical
layers from [26]: the mission layer for mission and business
processes assets, the service layer containing common IT
service, and asset layer gathering IT infrastructure assets. For
asset analysis, in [20], four dependency layers are defined: the
mission, the operational, the application, and infrastructure
layers. In [25] where a survey of IoT-related solutions for
COVID-19, threats in IoT-Based healthcare systems are gath-
ered by layers: threats affecting the cloud computing layer,
those affecting the fog computing layer and the ones affecting
the healthcare sensor layer. A classification of solutions to
combat COVID-19 threat is also provided. We can also find
through the paper some covid-19 mobile applications and
other IoT-based covid-19 assets that could be capitalized
in our ontology in the same way as the identified threats
and solutions. On another side, we can also mention for the
description of assets ArchiMate 2.1, an open and independent
Enterprise Architecture modeling language within TOGAF
Framework 9.2 and the CIM standard produced by DMTF
(formerly known as the Distributed Management Task Force)
that is internationally recognized by ANSI and ISO.

The literature also provides a plethora of models con-
structed to serve a security purpose ( [13], [27], [28]–[30]).
Most of them are ontologies. In [30] the proposed ontology
is used for generating attacks while [28] and [29] ontologies
contribute to social engineering analysis and targeted attacks
mitigation. These ontologies emphasize the link between the
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asset concept and the other security concepts (threat, vulner-
ability, etc.). No description neither refinement of the con-
cept ‘‘asset’’ is provided. Only dependency link is expressed
between assets.

Finally, let us note that some earlier researchworks focused
on the characterization of the dependencies between and
within critical infrastructures. Although the terms ‘‘depen-
dency’’ and ‘‘inter-dependency’’ are commonly used inter-
changeably, some of these research works distinguish them.
The consensual distinction is this of Rinaldi et al. [31]. The
authors define dependency as a relationship between two
infrastructures in a single direction whereas inter-dependency
is bidirectional (implicitly multi-directional) with two
(implicitly more) infrastructures influencing each other. This
definition is also shared by [32]. A more precise definition
of the dependency concept is given by [33]. The European
Union Agency for Cybersecurity (ENISA) proposes to con-
sider dependencies within critical infrastructures (CIs) and
dependencies between CIs. These kinds of dependencies are
qualified as upstream, internal, or downstream dependen-
cies in [34]. An upstream dependency expresses the fact
that the products or services provided to one infrastructure
by another external infrastructure are necessary to support
its operations and functions. Downstream dependencies are
the consequences to a critical infrastructure’s consumers or
recipients from the degradation of the resources provided
by the critical infrastructure. Internal dependencies represent
the internal links among the assets constituting a critical
infrastructure. Therefore, upstream and downstream depen-
dencies are between CIs whereas internal ones are within
CIs. Several works have focused on the characterization of
dependencies between CIs. Ref. [35] distinguishes spatial
dependencies from functional ones. Refs. [31] and [33] pro-
pose a categorization of dependencies into physical, cyber,
geographic, and logical ones. Refs. [36] and [37] consider
physical, informational, geo-spatial, policy/procedural and
societal dependency. For reasoning purposes, [38] propose
another taxonomy of dependencies. They suggest consider-
ing five types of dependencies: generic, indirect, inter, co,
and redundant dependency. Although the categorizations pro-
vided by the literature could be applied for the description
of dependencies between assets within an infrastructure, they
remain very generic. The complexity of dependencies in hos-
pitals’ real-life scenarios did not allow us to exploit these cat-
egorizations for a detailed description of the propagation of
cyber or physical incidents inside a healthcare infrastructure.

B. INCIDENT PROPAGATION MODELS AND APPROACHES
Because of frequent threats whether they are natural hazards,
non-malicious man-made hazards or malicious man-made
hazards, risk propagation catches the attention of many schol-
ars. Thus, manifold research efforts are devoted to the cap-
ture, modeling and assessing of cascading effects of incidents.
The most recent ones are dedicated to critical infrastructures.
Some of them analyze impacts within networks of interrelated
critical infrastructures (e.g. [39]–[42], [43]). Others focus

on a single critical infrastructure (e.g. [44]–[49] [50]–[53]).
Moreover, some of the contributions are specific to a type
of threat (ransomware, malware [54], spoofing attack [46],
terrorist attacks [40], etc.). Others are a little less specific
in the sense that they are interested in types of threats like
natural disaster (flooding, heatwave, etc.) [44], cyber and/or
physical attacks [47]–[49], [51], [55], etc. Some research
works concentrate on a type of asset whatever its granularity
(healthcare [44], civil aviation [46], power systems [50], [51],
[53], [56], port infrastructure [48], airport infrastructure [57],
supply chain [56], ADS-B system [46], etc.). However, to our
knowledge, no research work is dedicated to the definition of
an approach for cyber or physical incident propagation in a
healthcare infrastructure as a whole.

Dependency graphs are frequently used to formalize the
knowledge useful for analyzing cascading effects between
and within critical infrastructures. In [49] the dependency
graph represents causality relationships between components
in a cyber-physical system. These relationships are quan-
tified using statistical methods. Their approach to identi-
fying these interdependencies relies on observation of the
system’s behavior in response to each set of failure cases.
A failure sequence triggered from a failure case could be
the data obtained from a simulation. Ref. [48] also chooses a
dependency graph to represent interrelations between assets
of the same critical infrastructure. To simulate the behav-
ior of physical and cyber assets after an incident, it pro-
poses to model assets (nodes of the graph) as a probabilistic
automaton. In [42] the nodes of the graph are critical infras-
tructures. They are described by a finite number of differ-
ent states representing their operational condition. A direct
dependency between two critical infrastructures describes the
semantics of supplier/customer and is tagged by a variable
representing the probability that the source (customer) goes
from one state to another state based on the current state
of its supplier. In [39], the assessment of cascading effects
of common-cause failures on critical infrastructure exploits
an oriented graph where cyber and physical dependencies
are represented and tagged by the likelihood that a source
disruption effects, in cascade, the target. Other artifacts are
also used to capture cascading effects. For instance, [58]
proposes a domain ontology that captures the core concepts
useful for the propagation of physical and cyber incidents
in an airport system. They argue that through reasoning it
is possible to automatically assess which assets are affected
by a given incident. However, no propagation rules have
been proposed and the approach to collect these rules is
not described. Ref. [59] uses a matrix that gathers potential
causal relationships between failures for a set of selected
threat scenarios. Its content is produced following workshops
bringing together experts. It is produced during a phase of the
qualitative method called ISFI (infrastructure service failure
interdependency) method focusing on the service level fail-
ure interdependencies between different infrastructure and
that could be used for crisis management. As far as we are
aware, excepting the latter method and ours, there is a lack of
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approaches guiding the capture of the knowledge to be used
for the identification of cascading effects. Moreover, most of
the proposed artifacts for the representation of dependencies
between assets also lack contextualization which would cal-
culate the potential effects more precisely. Our contribution
goes in this direction since we consider the protections put
in place and could be enriched, without major changes by
other elements of the context like the availability of the assets
(connected or not for the devices, out of order, or in service
for certain assets, etc.). The lack of methods for constructing
artifacts is compensated by the proliferation of approaches
that assess the cascading effects. Most of these approaches
focus on interdependencies between critical infrastructures.
They are sometimes domain-oriented. However, most of them
are based on mathematical models (stochastic colored Petri
net model [44], discrete eventmodel [42], [46],Markov-chain
model [54], [60], L-hop propagation model [61], etc.) and
then requires a simulation step.

The approaches proposed for attack cascading effect mit-
igation can be grouped into two different sets. The first
category focuses on physical infrastructure as in [62], where
authors study the inter-dependency relationship among phys-
ical elements to detect indirect propagation of critical assets.
Other works only focus on specific physical threats such as
flooding [63]. In another hand, cyber incident propagation
has been studied in [64] and [65]. The latter focuses on
risks in administrative domains. Several approaches can be
applied to deal with the risk assessment in cybersecurity,
such as Bayesian networks [66]. These works do not cover
incident propagation to connected infrastructure elements.
The work of [67] addresses the impact propagation of cyber
incidents using the Petri Nets model, to identify impacted
elements and assess their impacts. In recent work, one of the
only papers dealing with the propagation of incidents in an
integrated cyber-physical context is that of [3]. It considers
asset interdependencies for the estimation of the cascading
effects of threats. Finally, the literature supplies contributions
that generates attacks graphs to simulate a behavior of a infor-
mation system when an attack occurs. As an example we can
cite [30], [68], They often use a simulation environment like
cyber ranges to improve, for example situational awareness,
to help in risk analysis or teams training.Some of them are
purely cyber. Others integrate cyber-physical systems (CPS)
or the Internet of Things (IoT) systems. However, none of
them take into account physical attacks. They also do not
integrate physical assets like building.

To the best of our knowledge, there is no research work
measuring the impact of cyber or physical incidents on the
assets of healthcare infrastructure.

VII. CONCLUSION
Facing challenges related to the complex cyber-physical
attacks targeting critical infrastructure, such as healthcare
infrastructure, is of utmost importance given the disastrous
damage that can have on organizations and individuals. The
approach that we proposed within the SAFECARE project

is a response to these challenges as it provides to agents on
the front line, the tools to respond quickly and effectively
to these complex threats. Indeed, our approach, based on
a semantic model and a reasoning engine, allows anticipat-
ing impact propagation and helps mitigate potential harming
effects while distinguishing highly and moderately impacted
assets.

Experiments performed on real scenarios, in different EU
hospitals, show effectiveness always higher than 80%, and
a time saving reaching 95% which decreases the agent’s
reaction time after the incident has occurred. IPM guarantees
a better view and knowledge of the impacted assets when
processing an alert, or before alerts occur as part of the
assessment of the risks to which hospitals are exposed. This
represents a practical training tool for risk analysis.

The way the approach has been designed makes its exten-
sion easier and enables considerably improving its perfor-
mances by enriching, for example, the rules repository with
well documented cyber and physical propagation patterns.

As future work, we plan to expand our research by taking
into account additional types of threats, as human faults
and natural hazards, and proposing different metrics for
the impact score computation that goes beyond protection
degrees, as evaluating the severity according to vulnerabil-
ities. We also plan to conceive a user-friendly GUI to help
security experts add new propagation rules. To anticipate
further complexity matters while expanding to large hospitals
with big knowledge graphs and rule bases, we investigate
some technical solutions to parallelize the computation of the
impact for scaling purposes.
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