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INTRODUCTION

Flow cytometry (FCM) is one of the most popular techniques for biological cell analysis. It is the reference technique in immunology because it allows for identification of rare cell population and thus improves knowledge of the human immune system [START_REF] Perfetto | Seventeen-colour flow cytometry: unravelling the immune system[END_REF]. From a data analysis point of view, a cytometer produces a point cloud in an M -dimensional space, where each point measured represents M characteristics called markers. The aim is to identify the different cell populations in this set of data points. Conventional analysis carried out manually by practitioners essentially consists of a series of 2-dimensional analyses; it becomes complex, subjective and costly in terms of manpower and time when the number of markers M increases. This has motivated the development of automatic methods [START_REF] Qiu | Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE[END_REF][START_REF] Van Der Maaten | Visualizing data using t-SNE[END_REF], which are still costly and difficult to apply to large data sets. Furthermore, these methods have limited performance for the analysis of rare cell populations, and their associated visualization tools are often difficult to interpret by end-users. In this paper, we propose a probabilistic approach based on the estimation of the joint density of the data. To cope with the curse of dimensionality, we adopt a naive Bayes model of the joint density: under this model, estimating the M -dimensional histogram can be reduced to estimating the factors of a tensor CP model [START_REF] Harshman | Foundations of the PARAFAC Procedure: Models and Conditions for an "explanatory" Multi-modal Factor Analysis[END_REF] whose complexity remains linear with the number of dimensions. Inspired by [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF], the estimation problem is reformulated as a coupled factorization problem of 3D marginals. In order to reduce the complexity of the algorithm, different partial coupling strategies are proposed and evaluated. The cell populations are obtained by applying a hierarchical clustering to the rank-one terms.

NAIVE BAYES MODEL

Let x = X (1) , . . . , X (M) be a random vector taking values in I (1) ו • •×I (M) where

I (m) = [x (m) min , x (m) max ].
978-1-6654-8547-0/22//$31.00 ©2022 IEEE We assume that the N rows x n of X are realizations of the random vector x. Our goal is to estimate the multivariate probability density function (PDF) p(x)=p(X (1) , . . . , X (M) ) from the observation matrix X. One of the approaches for density estimation is to consider an M -dimensional histogram. In this case, each interval

I (m) is sep- arated in I equal bins from ∆ (m) 1 = [x (m) 0 , x (m) 1 ] to ∆ (m) I = [x (m) I-1 , x (m) I ], where x (m) 0 = x (m) min and x (m) I = x (m)
max . The histogram H ∈ (R I ) M can be interpreted as the discretized joint PDF:

H i1...i M = Pr(x ∈ ∆ (1) i1 × • • • × ∆ (M ) i M ) (1) 
= ∆ (1) i 1 • • • ∆ (M ) i M p(x)dX (1) • • • dX (M)
A naive approach to estimate the histogram from the samples is to count the number of samples x n in each M -dimensional bin:

H i1•••i M = 1 N Card n ∈ 1, N x n ∈ ∆ (1) i1 ו • •×∆ (M ) i M . (2) 
However, it requires a number of samples growing exponentially with the number of dimensions. To give some figures, with M =8 and I=20, the histogram is described with I M ≈ 10 10 values and much more samples are required to produce an accurate estimation. This drawback is referred to as the curse of dimensionality. To cope with it, we follow the approach of [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF] which uses a Naive Bayes Model (NBM) whose complexity remains linear with the number of dimensions [START_REF] Kargas | Learning mixtures of smooth product distributions: Identifiability and algorithm[END_REF].

The NBM [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF] introduces a discrete latent variable L taking values in {1, . . . , R}, such that the element of x are conditionally independent on L:

p(x) = R r=1 Pr(L = r) M m=1 p(X (m) |L = r). (3)
By plugging (3) into (1), we get that the NBM corresponds to an order-M Canonical Polyadic Decom-position (CPD) [START_REF] Kolda | Tensor Decompositions and Applications[END_REF] of H:

H i1•••i M = R r=1 Pr(L = r) M m=1 Pr X (m) ∈ ∆ (m) im L = r H = λ;A (1) ,. . .,A (M) = R r=1 λ r a (1) r • • • • • a (M) r (4) 
where λ ∈ R R is containing the probabilities Pr(L = r), and a

(m) r
is the 1D-conditional marginal in the m-th dimension (i.e., the values of Pr(X (m) ∈ ∆ (m) im |L = r)). Thus R corresponds to the tensor rank of H. In addition, as the factor matrices

A (m) = (a (m) 1 . . . a (m)
R ) ∈ R I×R and the vector λ ∈ R R represent probabilities, they should satisfy the nonnegativity constraints (λ ≥ 0, A (m) ≥ 0), and simplex

(sum-to-one) constraints (1 T λ = 1, 1 T A (m) = 1 T ).

COUPLED TENSOR FACTORIZATION

Fully coupled tensor factorization

The coupled tensor factorization approach is based on the fact that the marginalized NBM [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF] is still an NBM. Indeed, the 3D histogram H (jkℓ) of a subset of variables (X (j) , X (k) , X (ℓ) ) has the CPD

H (jkℓ) = λ;A (j) ,A (k) ,A (ℓ) (5) 
due to sum-to-one properties. The 3D histograms for the subset are estimated with

H (jkℓ) ij i k i ℓ = 1 N Card n ∈ 1, N x n ∈ ∆ (j) ij × ∆ (k) i k × ∆ (ℓ) i ℓ ,
which are easily computable compared to the full M -D histogram [START_REF] Qiu | Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE[END_REF]. The idea then is to estimate the factors in the full NBM via a coupled tensor approximation of 3D histograms. For a set of triples T we consider the following optimization problem:

λ , A (1) , . . . , A (M) = argmin λ,A (1) ,...,A (M) (j,k,ℓ)∈T H (jkℓ) -λ;A (j) ,A (k) ,A (ℓ) 2 F s.t. λ ≥ 0, A (m) ≥ 0, 1 T λ = 1, 1 T A (m) = 1 T . (6) If T ={(j,k,ℓ) ∈ 1, M
3 |j <k <ℓ}, the problem is referred to as the fully coupled tensor factorization, which was initially proposed in [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF]. However, as we will show later, it not necessary to consider all possible triples. The problem ( 6) is solved with a coupled AO-ADMM [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF].

Identifiability conditions

Tensor decompositions possess strong uniqueness (identifiability) properties [START_REF] Kolda | Tensor Decompositions and Applications[END_REF]. In particular, if each H (jkℓ) is individually generically identifiable, then the probability tensor H is itself identifiable. For example, the Kruskal generic uniqueness condition for H

(jkℓ)
is R ≤ (3M -2)/2. However, since many H (jkℓ) 's share common factors, the identifiability conditions can be significantly improved. Assuming M ≤ I, H can be shown to be generically identifiable if R ≤ I(M -2) [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF]. Note that these identifiability results were derived in a noiseless setup (exact decomposition) and are stated for real (possibly non-negative) factor matrices. In practice, due to the limited sample size, only noisy

H (jkℓ)
are available, which leads to a low rank tensor approximation problem. Adding nonnegativity constraints on the latent factors is beneficial since this ensures the existence and uniqueness of the low-rank tensor approximation, see [START_REF] Qi | Uniqueness of nonnegative tensor approximations[END_REF]. Finally, a closer look at the proof of the identifiability results in [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF] reveals that only the identifiability of an extended tensor defined by a specific partition of the M variables is required. In other words, only a limited number of triples are necessary to ensure identifiability. This idea is developed in the next subsection to reduce the computational burden of the coupled tensor factorization.

Partially Coupled Tensor Factorization

The partially coupled strategies are motivated by the high number of 3D histograms in the case of a fully coupled approach [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF]. Indeed, M 3 histograms must be estimated which leads to difficulties in practice (lack of storage and prohibitive computational com- 1. The '+2' strategy, in which two consecutive triples have only one marker in common, is one of the smallest subset of triples possible, whereas '+1' consecutive triples have two markers in common. For the other strategies, a subset of triples is randomly selected from one eighth of all triples ('1/8') to all triples possible ('1').

Performance evaluation

To study the performance of coupling strategies, we applied our method with all strategies of Table 1 with M =10 dimensions synthetic data. R=20 multivariate Gaussian distributions were generated randomly and added with weights λ together to create a theoretical histogram H. We generated different number of samples N = 10 4 , 3 • 10 4 , 10 5 , 3 • 10 5 , 10 6 and computed the histograms for I=30 bins. We set N 1 =10 3 outer iterations and N 2 =20 inner iterations for the coupled AO-ADMM and the target rank equal to R. The reconstruction error

Err1D = M m=1 R r=1 λra (m) r - R r=1 λr a (m) r 2 (7) 
is evaluated for each strategy and averaged over 10 experiments. Fig. 1 shows that the coupling strategy '1/8' yields similar performance with the fully Fig. 1: Evolution of 1D marginals error for different strategies presented in Table 1 coupled strategy. This shows that partial coupling strategies are beneficial in terms of computational cost as the computational complexity is linear with the number of triples in consideration.

APPLICATION TO FLOW CYTOMETRY

Visualization and clustering

The output of the coupled tensor factorization are the M factor matrices A (m) and λ which approximate the M -dimensional density function using R rank-one components. The choice of the CP decomposition rank R is crucial. The quality of the approximation increases with the rank R at the price of a longer computation time. In order to allow end users to properly analyze and interpret the data, adequate visualization tools should be developed. This is not a simple task when the number of dimensions is large. From this point of view, the CP decomposition is often appealing since it allows for joint visualization of the M variables representing the Mdimensional density. However, when R is larger than the actual number of populations, a single population is obtained by gathering the rank-one terms with similar properties. In that respect, a hierarchical clustering procedure [START_REF] Johnson | Hierarchical clustering schemes[END_REF] is applied to the rank- 

+ + Lymphocyte B + - - ++ Lymphocyte T - +- - -
one components with the following distance:

D(r, s) = E a (m) r -E a (m) s 2 2 (8) 
where E[a

(m) r ] = I i=1 ∆ (m) i a (m) ri
is the (scaled) expectation of the estimated marginal distributions (∆ (m) i represents the centroid of the i-th bin). The clusters are then obtained by grouping rank-one terms in the dendrogram whose distance ( 8) is lower than a specified threshold. Each cluster is represented using the same color. The whole processing pipeline is termed CTFlowHD.

Applications on FCM controlled data

To validate our method, CTFlowHD is applied to FCM controlled data sets after compensation [START_REF] Roederer | Compensation in flow cytometry[END_REF] and a non-linear transformation [START_REF] Parks | A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data[END_REF]. Three cell lines were considered: Lymphocytes B (LB), Lymphocyte T (LT) and Macrophage (MP), having different responses according to M =4 markers (see Table 2). Then, cells were mixed in different proportions resulting in 3 different data sets with N =10 5 cells, where the MP proportion varies (approximately 20%, 8% and 1%). 3D histograms with I=20 bins were estimated from the data sets. Ground-truth population sizes were obtained by a manual gating Fig. 2 as the 3 cell lines are easily recognizable.

With CTFlowHD: 3 groups were separated by the hierarchical clustering. As LB and LT did not represent rare cell populations in the 3 experiments (always above 25%), estimated sizes were accurately estimated and their estimation Fig. 2: Manual gating of the 3 populations. The plot shows three gates : P3 groups CFSE+ cells (LB), P4 groups LT cells and P5 CTV+ cells (MP). Logicle scale is used on this plot [START_REF] Parks | A new "Logicle" display method avoids deceptive effects of logarithmic scaling for low signals and compensated data[END_REF] will not be addressed here. Concerning the MP cell population, Fig. 3 shows the estimation of MP proportion for the 3 experiments and clearly shows comparable results between manual gating and CT-FlowHD. Increasing the rank of the decomposition improves the accuracy of the estimated percentage. It is also noted that R=85 is higher than the rank bound given by the identifiability condition of [START_REF] Kargas | Tensors, learning, and "Kolmogorov extension" for finite-alphabet random vectors[END_REF] which appears to be pessimistic. Table 3 gives a comparison of the results obtained with the full and partial coupling ('+1' strategy). The partial coupling strategy yields to similar sizes but with an accuracy loss as compared to the full coupling. 

Application to 8-dimension FCM data

To validate partial coupling strategies, we ran CT-FlowHD on a M =8 FCM real dataset of N =10 6 cells currently analyzed by immunologists. Our method was applied with I=30 bins and a R=100 decomposition rank for strategies '1' and '1/4' (see Table 1). Fig. 4 shows CTFlowHD visualizations are similar, while Table 4 shows similar population size estimation results for both strategies. This shows that partial coupling reduces the computational burden while keeping interpretability. 

CONCLUSION

We provide a new probabilistic method that allows biologists to interpret the flow cytometry data jointly with all dimensions, compared to existing flow cytometry methods. This method is able to recover high-dimensional histograms and separate them into populations of cells. Even if coupled ten- sor factorization is able to cope with the curse of dimensionality, partial coupling permits to reduce even more the computational burden while keeping similar performance of the estimation.

Fig. 3 :

 3 Fig. 3: Rank influence on the macrophage population size estimation. Gating is considered groundtruth.

Fig. 4 :

 4 Fig.4: CTFlowHD results in 8 dimensions for coupling strategies '1' and '1/4' (see Table1). Upper plots: Factor matrices where 1D marginals are plotted in rows for each component. Middle plot : dendrogram obtained with a complete linkage clustering. Lower plot : size of each rank-one component in %.

  Fig.4: CTFlowHD results in 8 dimensions for coupling strategies '1' and '1/4' (see Table1). Upper plots: Factor matrices where 1D marginals are plotted in rows for each component. Middle plot : dendrogram obtained with a complete linkage clustering. Lower plot : size of each rank-one component in %.

Table 1 :

 1 Coupling strategies for M =10.

	Strategy Card (T )	Triples
	+2	5	(1,2,3), (3,4,5), (5,6,7)
			(7,8,9), (9,10,1)
	+1	10	(1,2,3), (2,3,4), . . .
			(9,10,1), (10,1,2)
	1/8	15=120/8	random triples
	1/4	30=120/4	random triples
	1/2	60=120/2	random triples
	1	120= 10 3	random triples
	plexity). To overcome this problem, partial cou-
	pling considers a subset of triples in T , thus less 3D
	marginals are considered in the coupling. Strate-
	gies of different complexity can be considered but
	each subset must always contain at least one occur-
	rence of each variable. In our study, we considered 6
	strategies explained in Table

Table 2 :

 2 Properties of the 3 populations used in the controlled experiment. + represents high marker expression and -low expression.

			Marker expression
	Population	CFSE CD4 CTV MHCII
	Macrophage	-	-

Table 3 :

 3 Estimation of MP population sizes for fully and partially coupled strategies (4 vs. 2 triples).

		Macrophage proportion
	Gating Fully coupled Partially coupled
	20.7%	20%	17.2%
	8%	7.7%	8.3%
	1.1%	0.91%	0.83%

Table 4 :

 4 CTFlowHD estimation of cell population sizes for fully and partially coupled strategies in M = 8 dimensions. Colors match with Fig. 4.

	Blue	36.3%	34.4%
	Red	11.8%	12.4%
	Green	28.2%	29.4%
	Purple	1.3%	1.1%
	Orange	22.1%	22.4%
	Brown	0.27%	0.23%

Population size

Cell population Full ('1') Partial ('1/4')