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ABSTRACT

In this paper, we propose a new method for auto-
mated flow cytometry data analysis. By modeling a
multidimensional probability distribution as a mix-
ture of simpler distributions, we can reformulate
the problem as a coupled tensor approximation of
3D marginals. In order to reduce the computational
load, we use partially coupled strategies. We also
propose a grouping of rank-one components to-
gether with a new visualization of the results. We
demonstrate the usefulness of the proposed method-
ology on simulated and real data.

Index Terms— Flow cytometry, Naive Bayes
model, Coupled tensor factorization

1. INTRODUCTION

Flow cytometry (FCM) is one of the most popular
techniques for biological cell analysis. It is the ref-
erence technique in immunology because it allows
for identification of rare cell population and thus
improves knowledge of the human immune system
[1]. From a data analysis point of view, a cytome-
ter produces a point cloud in an M -dimensional
space, where each point measured represents M
characteristics called markers. The aim is to iden-
tify the different cell populations in this set of data
points. Conventional analysis carried out manually

by practitioners essentially consists of a series of
2-dimensional analyses; it becomes complex, sub-
jective and costly in terms of manpower and time
when the number of markers M increases. This has
motivated the development of automatic methods
[2, 3], which are still costly and difficult to apply
to large data sets. Furthermore, these methods have
limited performance for the analysis of rare cell
populations, and their associated visualization tools
are often difficult to interpret by end-users. In this
paper, we propose a probabilistic approach based
on the estimation of the joint density of the data. To
cope with the curse of dimensionality, we adopt a
naive Bayes model of the joint density: under this
model, estimating the M -dimensional histogram
can be reduced to estimating the factors of a ten-
sor CP model [4] whose complexity remains linear
with the number of dimensions. Inspired by [5],
the estimation problem is reformulated as a coupled
factorization problem of 3D marginals. In order to
reduce the complexity of the algorithm, different
partial coupling strategies are proposed and evalu-
ated. The cell populations are obtained by applying
a hierarchical clustering to the rank-one terms.

2. NAIVE BAYES MODEL

Let x=
(
X(1), . . . , X(M)

)
be a random vector taking

values in I(1)×· · ·×I(M) where I(m)= [x
(m)
min, x

(m)
max].
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We assume that the N rows xn of X are real-
izations of the random vector x. Our goal is to
estimate the multivariate probability density func-
tion (PDF) p(x)=p(X(1), . . . , X(M)) from the ob-
servation matrix X . One of the approaches for
density estimation is to consider an M -dimensional
histogram. In this case, each interval I(m) is sep-
arated in I equal bins from ∆

(m)
1 = [x

(m)
0 , x

(m)
1 ]

to ∆
(m)
I = [x

(m)
I−1, x

(m)
I ], where x

(m)
0 = x

(m)
min and

x
(m)
I = x

(m)
max. The histogram H ∈ (RI)M can be

interpreted as the discretized joint PDF:

Hi1...iM = Pr(x ∈∆
(1)
i1

× · · · ×∆
(M)
iM

) (1)

=

∫
∆

(1)
i1

· · ·
∫
∆

(M)
iM

p(x)dX(1) · · · dX(M)

A naive approach to estimate the histogram from the
samples is to count the number of samples xn in
each M -dimensional bin: H̃i1···iM =

1

N
Card

{
n∈J1, NK

∣∣∣xn∈∆
(1)
i1

×· · ·×∆
(M)
iM

}
. (2)

However, it requires a number of samples growing
exponentially with the number of dimensions. To
give some figures, with M=8 and I=20, the his-
togram is described with IM ≈ 1010 values and
much more samples are required to produce an ac-
curate estimation. This drawback is referred to as
the curse of dimensionality. To cope with it, we fol-
low the approach of [5] which uses a Naive Bayes
Model (NBM) whose complexity remains linear
with the number of dimensions [6].

The NBM [5] introduces a discrete latent vari-
able L taking values in {1, . . . , R}, such that the
element of x are conditionally independent on L:

p(x) =

R∑
r=1

Pr(L = r)

M∏
m=1

p(X(m)|L = r). (3)

By plugging (3) into (1), we get that the NBM corre-
sponds to an order-M Canonical Polyadic Decom-

position (CPD) [7] of H:

Hi1···iM=

R∑
r=1

Pr(L=r)

M∏
m=1

Pr
(
X(m)∈∆

(m)
im

∣∣∣L=r
)

H=
r
λ;A(1),. . .,A(M)

z
=

R∑
r=1

λra
(1)
r ◦ · · · ◦a(M)

r (4)

where λ ∈ RR is containing the probabilities
Pr(L=r), and a

(m)
r is the 1D-conditional marginal

in the m-th dimension (i.e., the values of Pr(X(m)∈
∆

(m)
im

|L = r)). Thus R corresponds to the tensor
rank of H. In addition, as the factor matrices A(m)=
(a

(m)
1 . . .a

(m)
R ) ∈ RI×R and the vector λ ∈ RR

represent probabilities, they should satisfy the non-
negativity constraints (λ≥0, A(m)≥0), and simplex
(sum-to-one) constraints (1Tλ = 1,1TA(m) = 1

T).

3. COUPLED TENSOR FACTORIZATION

3.1. Fully coupled tensor factorization

The coupled tensor factorization approach is based
on the fact that the marginalized NBM [5] is still an
NBM. Indeed, the 3D histogram H(jkℓ) of a subset
of variables (X(j), X(k), X(ℓ)) has the CPD

H(jkℓ) =
r
λ;A(j),A(k),A(ℓ)

z
(5)

due to sum-to-one properties. The 3D histograms
for the subset are estimated with H̃(jkℓ)

ijikiℓ
=

1

N
Card

{
n∈J1, NK

∣∣∣xn∈∆
(j)
ij

×∆
(k)
ik

×∆
(ℓ)
iℓ

}
,

which are easily computable compared to the full
M -D histogram (2). The idea then is to estimate the
factors in the full NBM via a coupled tensor approx-
imation of 3D histograms. For a set of triples T we
consider the following optimization problem:

λ
∧
,A(1)
∧

, . . . ,A(M)
∧

=

argmin
λ,A(1),...,A(M)

∑
(j,k,ℓ)∈T

∣∣∣∣∣∣H̃(jkℓ)−
r
λ;A(j),A(k),A(ℓ)

z∣∣∣∣∣∣2
F

s.t. λ ≥ 0,A(m) ≥ 0,1Tλ = 1,1TA(m) = 1
T. (6)



If T ={(j,k,ℓ) ∈ J1,MK3 |j<k<ℓ}, the problem is
referred to as the fully coupled tensor factorization,
which was initially proposed in [5]. However, as
we will show later, it not necessary to consider all
possible triples. The problem (6) is solved with a
coupled AO-ADMM [5].

3.2. Identifiability conditions

Tensor decompositions possess strong uniqueness
(identifiability) properties [7]. In particular, if each
H(jkℓ) is individually generically identifiable, then
the probability tensor H is itself identifiable. For
example, the Kruskal generic uniqueness condition

for H̃
(jkℓ)

is R ≤ (3M − 2)/2. However, since
many H(jkℓ)’s share common factors, the identi-
fiability conditions can be significantly improved.
Assuming M ≤ I , H can be shown to be generi-
cally identifiable if R ≤ I(M − 2) [5]. Note that
these identifiability results were derived in a noise-
less setup (exact decomposition) and are stated for
real (possibly non-negative) factor matrices. In
practice, due to the limited sample size, only noisy

H̃
(jkℓ)

are available, which leads to a low rank
tensor approximation problem. Adding nonnega-
tivity constraints on the latent factors is beneficial
since this ensures the existence and uniqueness of
the low-rank tensor approximation, see [8]. Finally,
a closer look at the proof of the identifiability re-
sults in [5] reveals that only the identifiability of an
extended tensor defined by a specific partition of
the M variables is required. In other words, only
a limited number of triples are necessary to ensure
identifiability. This idea is developed in the next
subsection to reduce the computational burden of
the coupled tensor factorization.

3.3. Partially Coupled Tensor Factorization

The partially coupled strategies are motivated by the
high number of 3D histograms in the case of a fully
coupled approach [5]. Indeed,

(
M
3

)
histograms must

be estimated which leads to difficulties in practice
(lack of storage and prohibitive computational com-

Table 1: Coupling strategies for M=10.

Strategy Card (T ) Triples

+2 5 (1,2,3), (3,4,5), (5,6,7)

(7,8,9), (9,10,1)

+1 10 (1,2,3), (2,3,4), . . .

(9,10,1), (10,1,2)

1/8 15=120/8 random triples
1/4 30=120/4 random triples
1/2 60=120/2 random triples
1 120=

(
10
3

)
random triples

plexity). To overcome this problem, partial cou-
pling considers a subset of triples in T , thus less 3D
marginals are considered in the coupling. Strate-
gies of different complexity can be considered but
each subset must always contain at least one occur-
rence of each variable. In our study, we considered 6
strategies explained in Table 1. The ’+2’ strategy, in
which two consecutive triples have only one marker
in common, is one of the smallest subset of triples
possible, whereas ’+1’ consecutive triples have two
markers in common. For the other strategies, a sub-
set of triples is randomly selected from one eighth
of all triples (’1/8’) to all triples possible (’1’).

3.4. Performance evaluation

To study the performance of coupling strategies, we
applied our method with all strategies of Table 1
with M=10 dimensions synthetic data. R=20 mul-
tivariate Gaussian distributions were generated ran-
domly and added with weights λ together to create
a theoretical histogram H. We generated different
number of samples N=

{
104, 3 · 104, 105, 3 · 105, 106

}
and computed the histograms for I=30 bins. We set
N1=103 outer iterations and N2=20 inner iterations
for the coupled AO-ADMM and the target rank
equal to R. The reconstruction error

Err1D =

M∑
m=1

∣∣∣∣∣
∣∣∣∣∣

R∑
r=1

λra
(m)
r −

R∑
r=1

λr

∧
a
(m)
r

∧∣∣∣∣∣
∣∣∣∣∣
2

(7)

is evaluated for each strategy and averaged over 10
experiments. Fig. 1 shows that the coupling strat-
egy ’1/8’ yields similar performance with the fully



Fig. 1: Evolution of 1D marginals error for different
strategies presented in Table 1

coupled strategy. This shows that partial coupling
strategies are beneficial in terms of computational
cost as the computational complexity is linear with
the number of triples in consideration.

4. APPLICATION TO FLOW CYTOMETRY

4.1. Visualization and clustering

The output of the coupled tensor factorization are

the M factor matrices A(m)
∧

and λ
∧

which approx-
imate the M -dimensional density function using R
rank-one components. The choice of the CP decom-
position rank R is crucial. The quality of the ap-
proximation increases with the rank R at the price
of a longer computation time. In order to allow end
users to properly analyze and interpret the data, ade-
quate visualization tools should be developed. This
is not a simple task when the number of dimensions
is large. From this point of view, the CP decom-
position is often appealing since it allows for joint
visualization of the M variables representing the M-
dimensional density. However, when R is larger
than the actual number of populations, a single pop-
ulation is obtained by gathering the rank-one terms
with similar properties. In that respect, a hierarchi-
cal clustering procedure [9] is applied to the rank-

Table 2: Properties of the 3 populations used in the
controlled experiment. + represents high marker ex-
pression and - low expression.

Marker expression

Population CFSE CD4 CTV MHCII

Macrophage - - + +
Lymphocyte B + - - ++
Lymphocyte T - +- - -

one components with the following distance:

D(r, s) =

∣∣∣∣∣∣∣∣E[a(m)
r

∧]
− E

[
a
(m)
s

∧]∣∣∣∣∣∣∣∣2
2

(8)

where E[a(m)
r

∧

] =
I∑

i=1

∆
(m)
i a

(m)
ri

∧

is the (scaled)

expectation of the estimated marginal distributions

(∆(m)
i represents the centroid of the i-th bin). The

clusters are then obtained by grouping rank-one
terms in the dendrogram whose distance (8) is
lower than a specified threshold. Each cluster is
represented using the same color. The whole pro-
cessing pipeline is termed CTFlowHD.

4.2. Applications on FCM controlled data

To validate our method, CTFlowHD is applied
to FCM controlled data sets after compensation
[10] and a non-linear transformation [11]. Three
cell lines were considered: Lymphocytes B (LB),
Lymphocyte T (LT) and Macrophage (MP), hav-
ing different responses according to M=4 markers
(see Table 2). Then, cells were mixed in different
proportions resulting in 3 different data sets with
N=105 cells, where the MP proportion varies (ap-
proximately 20%, 8% and 1%). 3D histograms
with I=20 bins were estimated from the data sets.
Ground-truth population sizes were obtained by a
manual gating Fig. 2 as the 3 cell lines are easily
recognizable. With CTFlowHD: 3 groups were
separated by the hierarchical clustering. As LB
and LT did not represent rare cell populations in
the 3 experiments (always above 25%), estimated
sizes were accurately estimated and their estimation



Fig. 2: Manual gating of the 3 populations. The plot
shows three gates : P3 groups CFSE+ cells (LB), P4
groups LT cells and P5 CTV+ cells (MP). Logicle
scale is used on this plot [11]

will not be addressed here. Concerning the MP
cell population, Fig. 3 shows the estimation of MP
proportion for the 3 experiments and clearly shows
comparable results between manual gating and CT-
FlowHD. Increasing the rank of the decomposition
improves the accuracy of the estimated percentage.
It is also noted that R=85 is higher than the rank
bound given by the identifiability condition of [5]
which appears to be pessimistic. Table 3 gives a
comparison of the results obtained with the full and
partial coupling (’+1’ strategy). The partial cou-
pling strategy yields to similar sizes but with an
accuracy loss as compared to the full coupling.

Fig. 3: Rank influence on the macrophage popula-
tion size estimation. Gating is considered ground-
truth.

Table 3: Estimation of MP population sizes for fully
and partially coupled strategies (4 vs. 2 triples).

Macrophage proportion

Gating Fully coupled Partially coupled

20.7% 20% 17.2%
8% 7.7% 8.3%

1.1% 0.91% 0.83%

4.3. Application to 8-dimension FCM data

To validate partial coupling strategies, we ran CT-
FlowHD on a M=8 FCM real dataset of N=106

cells currently analyzed by immunologists. Our
method was applied with I=30 bins and a R=100
decomposition rank for strategies ’1’ and ’1/4’ (see
Table 1). Fig. 4 shows CTFlowHD visualizations
are similar, while Table 4 shows similar popula-
tion size estimation results for both strategies. This
shows that partial coupling reduces the computa-
tional burden while keeping interpretability.

Table 4: CTFlowHD estimation of cell population
sizes for fully and partially coupled strategies in
M = 8 dimensions. Colors match with Fig. 4.

Population size

Cell population Full (’1’) Partial (’1/4’)

Blue 36.3% 34.4%
Red 11.8% 12.4%

Green 28.2% 29.4%
Purple 1.3% 1.1%
Orange 22.1% 22.4%
Brown 0.27% 0.23%

5. CONCLUSION

We provide a new probabilistic method that al-
lows biologists to interpret the flow cytometry data
jointly with all dimensions, compared to existing
flow cytometry methods. This method is able to
recover high-dimensional histograms and separate
them into populations of cells. Even if coupled ten-



(a) Fully coupled (strategy ’1’) (b) Partially coupled (strategy ’1/4’)

Fig. 4: CTFlowHD results in 8 dimensions for coupling strategies ’1’ and ’1/4’ (see Table 1). Upper plots:
Factor matrices where 1D marginals are plotted in rows for each component. Middle plot : dendrogram
obtained with a complete linkage clustering. Lower plot : size of each rank-one component in %.

sor factorization is able to cope with the curse of
dimensionality, partial coupling permits to reduce
even more the computational burden while keeping
similar performance of the estimation.
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