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Using first-principle lattice simulations, we demonstrate that in the background of a strong
magnetic field (around 1020 T), the electroweak sector of the vacuum experiences two consecutive
crossover transitions associated with dramatic changes in the zero-temperature dynamics of the vec-
tor W bosons and the scalar Higgs particles, respectively. Above the first crossover, we observe the
appearance of large, inhomogeneous structures consistent with a classical picture of the formation
of W and Z condensates pierced by vortices. The presence of the W and Z condensates supports
the emergence of the exotic superconducting and superfluid properties induced by a strong magnetic
field in the vacuum. We find evidence that the vortices form a disordered solid or a liquid rather
than a crystal. The second transition restores the electroweak symmetry. Such conditions can be
realized in the near-horizon region of the magnetized black holes.

Powerful magnetic-field background can modify the
physical properties of the vacuum. For electromagnetic
interactions described by Quantum Electrodynamics, the
relevant intensity of the magnetic field is set by the
Schwinger limit, BQED = m2

e/e ' 4 × 109 T [1] deter-
mined by the electron mass me [2]. At this strength –
which is already bypassed by the fields near the surface of
magnetars [3] – the vacuum acquires optical birefringence
properties [4] and can act as a “magnetic lens” which can
distort and magnify images [5] similarly to the celebrated
galaxy-scale gravitational lengths.

Strong fundamental interactions, described by Quan-
tum Chromodynamics, are affected by the magnetic field
of the strength of the hadronic mass scale, BQCD ∼
m2
p/e ∼ 1016 T where mp is the proton mass. Such

fields generate the magnetic catalysis [6–8], which im-
plies, in particular, a persistent enhancement of the chiral
symmetry breaking in the QCD vacuum as the external
magnetic field strengthens. The QCD vacuum can also
acquire electromagnetic superconducting properties sup-
ported by condensation of electrically charged mesonic
bound states with vector, ρ-meson quantum numbers [9].
The transient magnetic fields of relevant scales appear in
non-central and ultra-peripheral heavy-ion collisions at
RHIC and LHC facilities [10, 11].

Electroweak fundamental interactions provide us with
an additional source of vacuum instability at the critical
magnetic field [12–14]:

Bc1 ≡ BEW
c1 =

m2
W

e
' 1.1× 1020 T , (1)

determined by the mass mW ' 80.4 GeV of the W boson.
It was suggested that this instability marks the onset of
the condensation of the W bosons which can be inferred
from the classical equations of motion of the electroweak
model [13–18]. The condensate solution corresponds to
a crystalline order of parallel vortex-like structures that
shares geometric similarity with the lattice of Abrikosov
vortices of a conventional type-II superconductor: for re-

alistically heavy Higgs masses, mH > mZ , the vortices
in the W condensate arrange themselves into a hexago-
nal lattice [15, 19, 20]. This exotic vacuum state should
possess unusual anisotropic superconducting [9] and su-
perfluid [21] properties [22]. The W condensation may
also develop in the cores of electroweak strings [23–26].

The electroweak vacuum is suggested to experience the
second transition at an even higher magnetic field:

Bc2 ≡ BEW
c2 =

m2
H

e
' 2.7× 1020 T , (2)

determined by the Higgs mass mH = 125.1 GeV. Above
Bc2, the electroweak symmetry should be restored [18,
27, 28]. In this phase, the vortex lattice evaporates
leaving some traces in this new phase [29, 30]. The
magnetic fields of the relevant 1020 T scale might have
been created at the cosmological electroweak phase tran-
sition in the first moments of the Early Universe [31, 32].
Such enormous fields were suggested to exist even in the
modern Universe in the vicinity of the magnetized black
holes [33, 34].

Our work aims to establish, using the first-principle
lattice simulations, the phase structure of the vacuum
subjected to magnetic fields of the electroweak strength.
Despite the ”weak” name, such fields are among the most
powerful magnetic fields that were rarely discussed in the
context of the Standard Model of particles.

The discussions of the effect of magnetic fields on the
vacuum structure reveal certain controversies in the lit-
erature. The transition to the inhomogeneous super-
conducting phase of the electroweak (EW) vacuum pro-
ceeds via the instability of the vacuum at the first crit-
ical field (1) because at B > Bc1, the ground state W
mass becomes a purely imaginary quantity, m2

W (B) =
m2
W − |eB|. At the classical level, the formation of the

periodic vortex lattice in the background magnetic field
has been established in the EW model [35]. However,
this classical-level scenario, together with the arguments
based on loop computations [12] has been questioned in
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Ref. [36] where it was shown that quantum corrections
could add a radiative term to the classicalW mass in such
a way that the mass does not vanish at the critical field
B = Bc1. Consequently, it was concluded that no ther-
modynamic instability should occur in the Electroweak
sector. Earlier numerical simulations of the electroweak
model in the background magnetic field did not reveal
the presence of the vortex-dominated phase around the
finite-temperature electroweak crossover [37] which could
be explained by a destructive role of thermal fluctuations.

A similar no-go theorem was suggested to forbid the
superconducting transition in QCD vacuum [38]. The
instability in QCD should proceed via the spontaneous
ρ-meson condensation similarly to the magnetic-field in-
duced condensation of theW bosons in the EW model [9].
The fact that the ρ-meson mass does not vanish at any
magnetic field was later supported by the effective model
calculations [39] as well as the first-principle numerical
simulations [40]. However, despite the absence of the
thermodynamic singularity at finite magnetic field B, it
was argued that the large-B superconducting phase can
still emerge via a smooth crossover transition implying
that the transition to the new phase occurs at nonvan-
ishing ρ-meson mass in the absence of a thermodynamic
singularity [41]. The latter scenario has a speculative
nature that requires confirmation from a first-principle
simulation. To this end, the electroweak model provides
us with an exciting playground, given the similarity of
the superconducting mechanisms in both systems.

We consider the bosonic sector of the Electroweak
model with the Lagrangian

LEW = −1

2
Tr (WµνW

µν)− 1

4
YµνY

µν

+(Dµφ)†(Dµφ)− V (φ), (3)

where the field strengths of, respectively, the SU(2) gauge
field W a

µ and U(1)Y hypercharge gauge field Yµ are

W a
µν = ∂µW

a
ν − ∂νW a

µ + igεabcW b
µW

c
ν , (4)

Yµν = ∂µYν − ∂νYµ , (5)

These vector fields interact with the complex scalar Higgs
doublet φ ≡ (φ1, φ2)T via the covariant derivative:

Dµ = ∂µ +
i

2
gW a

µσ
a +

i

2
g′Yµ, (6)

where σa (a = 1, 2, 3) are the Pauli matrices. The ratio of
the U(1) and SU(2) gauge couplings, g′/g = tan θW , de-
fines the electroweak mixing (Weinberg) angle θW fixed in
experiments [42]: sin2 θW ≡ 1−m2

W /m
2
Z = 0.22290(30) .

The last term in the Lagrangian (3) is the potential

V (φ) = λ
(
φ†φ− v2/2

)2
of the Higgs field doublet φ,

where λ is the dimensionless self-coupling of the Higgs
field and the only dimensionful parameter v sets the vac-
uum expectation value of the Higgs field.

In the broken phase, the Higgs field acquires the mass
mH =

√
2λv. The theory possesses the massless photon,

Aµ = W 3
µ sin θW + Yµ cos θW , (7)

and three massive gauge bosons which include the electri-
cally (off-diagonal) charged W bosons W±µ = W 1

µ ± iW 2
µ ,

and the neutral (diagonal) Z boson:

Zµ = W 3
µ cos θW − Yµ sin θW , (8)

with the masses mW = gv/2 and mZ = mW / cos θW .
We consider the electroweak vacuum in the background

of the hypermagnetic field BY = ∇ × Y corresponding
to the hypergauge field Y µ = (Y 0,Y ). In the broken
phase, the two fields are related to each other:

g′BY = eB [broken phase] , (9)

as it follows from the definition of the elementary elec-
tric charge, e = g sin θW = g′ cos θW = gg′/

√
g2 + g′2,

Eqs. (7) and (8), as well as from the fact that in the
broken phase, the Z boson is a massive particle which
carries no global flux. In the symmetry-restored phase,
where the magnetic field B cannot be defined, the hy-
permagnetic field BY plays a role of a genuine field.

Using the first-principle Monte Carlo techniques, we
simulate the lattice version of the EW model (3). The
standard lattice discretization of the model, the known
particularities of the lattice (hyper)magnetic field, the
technicalities related to the choice of lattice parameters,
and the lattice form of the physical observables discussed
in the paper are described in the Supplemental Material,
Sections A, B, C, and D respectively.

In Fig. 1(a) we show the (normalized) vacuum expecta-
tion value of the absolute value of the Higgs field squared〈
|φ|2

〉
as the function of the background (hyper)magnetic

field g′BY . In agreement with the theoretical analysis,
one observes three regions (phases) separated by two in-
flection points of the Higgs condensate. We found the
following values of the pseudocritical magnetic field:

g′BY,c1 ≡ eBc1 = 0.68(5)m2
W , (10)

g′BY,c2 ≡ eBc2 = 0.99(2)m2
H . (11)

The first critical field (10) turns out to be about 30%
weaker than the value (1) predicted by the classical the-
oretical analysis that does not take into account quan-
tum fluctuations. However, the second critical field (11)
agrees precisely with the theoretical value (2).

The classical picture predicts that the magnetic field
affects the Higgs condensate as follows [12–19, 27, 28]:

(i) In the broken phase (B < Bc1), the Higgs conden-
sate does not depend on the magnetic field B.

(ii) When B exceeds the first critical value B = Bc1,
the vacuum develops a raising W condensate which
gradually inhibits the Higgs condensate.
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FIG. 1. (a) Normalized value 〈φ2〉n = φ2
r(BY )/φ2

r(0) of the additively renormalized, volume-averaged, φ2 ≡ 1
V

∫
φ†φ, (squared)

Higgs condensate φ2
r(BY ) =

〈
φ2(BY )

〉
−
〈
φ2(∞)

〉
. The insets show the density plots of the Z12 fluxes in the cross-sections

normal to the magnetic field axis in typical configurations (more details are provided in the description of Fig. 3). (b) The
susceptibility of the Higgs field squared vs. the hypermagnetic field BY . The right inset shows the fit of the Higgs condensate
shown in (a) by the piecewise function (12). The left inset illustrates a typical 3d configuration in the inhomogeneous phase
in the (hyper)magnetic field background g′BY = eB = 1.1m2

W (the total number of vortices is 24). The equipotential surfaces
of the W condensate (the Higgs condensate) are shown in blue and red (green). These quantities, which take their maximal
values at the centers of the corresponding structures, are shown in complimentary regions. We used a cooling procedure to
improve visibility of this 3d picture. The vertical red lines denote the transitions.

(iii) Finally, as the field reaches the second critical
value, B = Bc2, the Higgs condensate should van-
ish, and the electroweak theory should be restored.

All these properties are spectacularly confirmed by our
numerical simulations shown in Fig. 1(a) [43].

The observed dependence of the Higgs expectation
value on magnetic field, shown in Fig. 1(b), can be de-
scribed by an impressively simple piecewise-linear for-
mula predicted by the theory [18, 21, 44, 45]:〈

φ2
〉
r
(B)

〈φ2〉r(0)
=


1, B < Bc1,
Bc2−B
Bc2−Bc1 , Bc1 < B < Bc2,

0, B > Bc2,

(12)

which fits our data everywhere except for small regions
around the (pseudo)critical points B = Bc1 and B = Bc2.

The structure of the classical solution around Bc1 im-
plies that the first phase transition should be of the sec-
ond order [17, 21]. In this case, the susceptibility of
the Higgs field should possess a local maximum at the
(pseudo)critical point. We do not see any peaks in the
susceptibility across neither Bc1 nor Bc2, Fig. 1(b). Thus,
these transitions are smooth crossovers.

The W condensates are shown in Fig. 2. In an excellent
qualitative agreement with the theory (the right inset),
the squared W 2

⊥ condensate raises linearly in the inter-
mediate phase. The observed slope of the linear part,
∂|W⊥|2/∂(eB) ' 2.9, is about 30% larger than the slope
predicted by the classical solution, ∂|W⊥|2/∂(eB) ' 2.1
[21]. This deviation indicates the important role of the
quantum fluctuations responsible also for the 30% shift
of the first critical field Bc1. In the restored phase at
B > Bc2, the W condensate flattens, possibly indicat-
ing the presence of the condensate of “zero-field twists”
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FIG. 2. The numerical result for the expectation value of the
W condensate vs. the (hyper)magnetic field g′BY = eB. The
right inset is the theoretical result based on the classical so-
lution for the transverse W condensate squared [21]. The left
inset shows the susceptibility of the transverse W condensate.

which are suggested to be the remnants of the vortex
lattice [29] visible close to B = Bc2 [30]. The W suscep-
tibility (the left inset) exhibits close similarity with the
susceptibility of the Higgs field shown in Fig. 1(b).

To confront our theoretical expectation with the first
principle simulations, we visualize in Fig. 3 the struc-
ture of the electroweak fields in the cross-section per-
pendicular to the magnetic field axis (we take B in the
z direction). We show analytical results in the classi-
cal theory in Figs. 3(a)-(d) and visualize the numerical
data obtained in lattice simulations in Figs. 3(e)-(m).
The numerical results were obtained by taking an aver-
age over a few dozen successive field configurations gen-
erated in the background of the (hyper)magnetic field
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FIG. 3. Density plots of various quantities in the cross-sections normal to the axis of the (hyper)magnetic field. Theoretical
results, (a)-(d), are given for the classical solution of Ref. [21] at B = 1.01Bc. The numerical results of the first-principle
simulations, (e)-(m), are given for a typical lattice configuration in the background of the (hyper)magnetic field g′BY ≡ eB '
1.1m2

W ' 1.6eBc1 (the magnetic number k = 12 for our lattices). (a) and (g): transverse W condensate W⊥ =
√
|Wx|2 + |Wy|2;

(b) and (h): transverse Z condensate Z⊥ =
√
|Zx|2 + |Zy|2; (c) and (i) local excess of the Higgs expectation value over the

condensate, ∆φ(x) = φ(x)−〈φ〉; (d) and (k): local excess of the magnetic field value over the background, ∆B(x) = B(x)−Bext;
(e) and (l): longitudinal W and Z condensates, W‖ = |Wz| and Z‖ = |Zz|, respectively (theoretically, W‖ = Z‖ = 0 at the

classical level); (f): the Z-flux; (m) the neutral Higgs currents JZ
⊥. The red (blue) colors correspond to maxima (minima);

absolute values are given for complex quantities. The same regions are circumvented by the red and green dashed lines
(separately for the analytical solution and simulated configuration) to guide the eye. More details are given in the text.

g′BY ≡ eB ' 1.1m2
W which corresponds to the interme-

diate phase in between two critical fields Bc1 < B < Bc2.

According to the theoretical expectations [15, 18, 19],
the ground state of the intermediate phase corresponds
to a spatially inhomogeneous structure made of the W
condensate with nonvanishing transverse components Wx

and Wy. The inhomogeneities are produced by vor-
tices that are embedded in the condensate. The vortices
should arrange themselves into a hexagonal pattern in the
plane perpendicular to the magnetic field. The transverse
component of theW condensate, W⊥ =

√
|Wx|2 + |Wy|2,

should vanish in the core of each vortex, Fig. 3(a).

Instead of the hexagonal pattern of the classical solu-
tion, Fig. 3(a), our lattice simulations reveal a less regular
structure, Fig. 3(g). However, similarly to the classical
solution, the lattice field W⊥ exhibits a semi-classical be-
havior characterized by large, both in magnitude and in
size structures [46]. We associate these structures with
the inhomogeneous W condensate. The condensate ex-
hibits a set of separate deep minima which point to the
presence of the vortex cores in agreement with the the-
oretical classical picture, Fig. 3(a). Modulo occasional
overlaps, the total number of vortices at chosen mag-
netic number k = 12 appears to be equal to 24, which
corresponds to the number 2k of the elementary fluxes of
hypermagnetic field, as expected.

Contrary to the expectations based on the classical the-
ory, Fig. 3(a), the vortices do not form the crystalline
phase in the vacuum, Fig. 3(g). While some traces of the
crystalline vortex order are seen, the quantum fluctua-

tions disorder the classical hexagonal structure so that
the vortices form a disordered solid or, possibly, a liq-
uid. The formation of the vortex liquid phase is not un-
expected, though, as it has been proposed, in a similar
non-Abelian context, in Ref. [47].

According to the classical picture, the transverse Z
condensate Z⊥ =

√
|Zx|2 + |Zy|2 forms a regular hon-

eycomb structure, Fig. 3(b). This neutral condensate
vanishes in the center of each vortex and a honeycomb-
like manifold in between the vortices. The regions with
nonzero Z condensate are thin pipe-like shells surround-
ing the vortex cores. Strikingly, these classical structures,
disordered by quantum fluctuations, are also seen in our
lattice configurations, Fig. 3(h): the thin shells of the Z
condensate surround the cores of vortices.

The classical EW theory predicts that in the cores of
vortices, the Higgs condensate should get enhanced [21],
Fig. 3(c), while the magnetic field should be locally sup-
pressed due to the anti-screening effect [14], Fig. 3(d).
These properties, which defy our intuition based on the
Abrikosov picture of type-II superconductors, are con-
firmed by the results of our numerical simulations shown
in Figs. 3(i) and (k), respectively. A 3d picture of the
Higgs and W condensates and the magnetic field lines of
a typical configuration is shown in the inset of Fig. 1(b).

We also noticed that |Wx| ' |Wy| holds high precision
in numerical simulations. The unexpected outcome of
our simulations is the presence of the large longitudinal
condensate W‖ ' W⊥, Fig. 3(e) which closely mimics
the transverse condensate, Fig. 3(g). This observation
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disagrees with the classical theory that predicts W‖ = 0
in the ground state. On the contrary, the condensate
of the z component of the neutral Z boson is vanishing
in agreement with the classical picture: we observe only
small quantum fluctuations in this quantity, Fig. 3(l).

Numerically, the Z12 flux provides us with the most
transparent view of the vortex content of field configu-
rations, Fig. 3(f). The peaks in the Z flux point out to
the positions of the vortex cores also seen as the deeps in
the W condensate, Fig. 3(e), the spikes in the Higgs con-
densate, Fig. 3(g), and, much less clear, as the minima
in the magnetic field, Fig. 3(h). The associated neutral
currents JZ of the Higgs field, Fig. 3(m), defined as a
variation of the matter part of the action with respect to
the Z field, circumvents the vortices.

In the inset of Fig. 1(a), we show the evolution of the
Z flux density in the transverse plane of the gradually
increasing (hyper)magnetic field. The vortices start to
form as soon as the magnetic field crosses the first pseu-
docritical value, B = Bc1. The vortex structures are
barely seen. The fuzziness of vortex positions appears
due to the weakness of the condensates right above the
critical point. This property makes the weak classical
structure vulnerable to the disorder caused by ultravi-
olet fluctuations and phonons in the vortex lattice that
lead to the drifting of the vortex cores. The vortices may
form a liquid close to the first critical field Bc1.

In the middle of the superconducting phase, the vor-
tex liquid partially solidifies into a disordered solid. The
physical motion of the vortices leads to enhanced local
fluctuations of all physical quantities that experience ex-
trema at or around vortex cores. In particular, the vortex
motion enhances fluctuations of the Higgs condensate,
thus leading to the elevated values of the Higgs and W
susceptibilities in the inhomogeneous phase that we al-
ready observed in Fig. 1(b) and Fig. 2, respectively.

Close to the second critical field, B = Bc2, the vor-
tex solid starts to melt. Finally, the vortices disappear
entirely as the vacuum crosses into the third phase at
B > Bc2, where the electroweak symmetry gets restored.

In support of earlier theoretical suggestions [9, 21], the
presence of classically significant W and Z condensates
points to the fascinating possibility that in the strong
magnetic field, the vacuum becomes an electromagnetic
superconductor enriched by a neutral superfluid compo-
nent that support dissipationless transport along mag-
netic field lines. In the present time, such conditions
can be realized in the vicinity of the magnetized black
holes [33, 34].

Acknowledgments. M.C. is grateful to M. Shaposh-
nikov for illuminating discussions. The numerical sim-
ulations were performed at the Supercomputer SQUID
(Osaka University, Japan) and the computing cluster
Vostok-1 of Far Eastern Federal University. V.G. has
been supported by RSF (Project No. 21-72-00121) (code
development, simulation, data analysis). A.M. has been

partially supported within the state assignment of the
Ministry of Science and Higher Education of Russia
(Project No. 0657-2020-0015) (theoretical interpreta-
tion). M.C. has been partially supported by the project
IEA-International Emerging Actions No. 00677 (wrote
the text, theoretical interpretation, structure of paper).

[1] We use the units ~ = c = 1.
[2] J. S. Schwinger, Phys. Rev. 82, 664 (1951).
[3] S. Olausen and V. Kaspi, The Astrophysical Journal Sup-

plement Series 212, 6 (2014).
[4] S. L. Adler, Annals Phys. 67, 599 (1971).
[5] N. J. Shaviv, J. S. Heyl, and Y. Lithwick, Monthly No-

tices of the Royal Astronomical Society 306, 333 (1999).
[6] S. P. Klevansky and R. H. Lemmer, Phys. Rev. D 39,

3478 (1989).
[7] K. G. Klimenko, Z. Phys. C 54, 323 (1992).
[8] I. A. Shovkovy, Lect. Notes Phys. 871, 13 (2013),

arXiv:1207.5081 [hep-ph].
[9] M. N. Chernodub, Phys. Rev. D 82, 085011 (2010),

arXiv:1008.1055 [hep-ph].
[10] V. Skokov, A. Y. Illarionov, and V. Toneev, Int. J. Mod.

Phys. A 24, 5925 (2009), arXiv:0907.1396 [nucl-th].
[11] W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907

(2012), arXiv:1201.5108 [nucl-th].
[12] N. K. Nielsen and P. Olesen, Nucl. Phys. B 144, 376

(1978).
[13] V. Skalozub, Sov. J. Nucl. Phys.(Engl. Transl.);(United

States) 28 (1978).
[14] J. Ambjorn and P. Olesen, Phys. Lett. B 214, 565 (1988).
[15] V. V. Skalozub, Sov. J. Nucl. Phys. 45, 1058 (1987).
[16] J. Ambjorn and P. Olesen, Nucl. Phys. B 315, 606 (1989).
[17] J. Ambjorn and P. Olesen, Phys. Lett. B 218, 67 (1989),

[Erratum: Phys.Lett.B 220, 659 (1989)].
[18] J. Ambjorn and P. Olesen, Nucl. Phys. B 330, 193 (1990).
[19] S. W. MacDowell and O. Tornkvist, Phys. Rev. D 45,

3833 (1992).
[20] O. Tornkvist, (1992), arXiv:hep-ph/9204235.
[21] M. N. Chernodub, J. Van Doorsselaere, and H. Ver-

schelde, Phys. Rev. D 88, 065006 (2013), arXiv:1203.5963
[hep-ph].

[22] The vacuum superconductivity at QCD [9] and Elec-
troweak [9, 21] scales is similar to reentrant supercon-
ductivity which is suggested to occur in clean supercon-
ducting materials in very high magnetic fields [48].

[23] A. Achucarro, R. Gregory, J. A. Harvey, and K. Kuijken,
Phys. Rev. Lett. 72, 3646 (1994), arXiv:hep-th/9312034.

[24] W. B. Perkins, Phys. Rev. D 47, R5224 (1993).
[25] P. Olesen, (1993), arXiv:hep-ph/9310275.
[26] J. Garaud and M. S. Volkov, Nucl. Phys. B 826, 174

(2010), arXiv:0906.2996 [hep-th].
[27] A. Salam and J. A. Strathdee, Nucl. Phys. B 90, 203

(1975).
[28] A. D. Linde, Phys. Lett. B 62, 435 (1976).
[29] P. Olesen, Phys. Lett. B 268, 389 (1991).
[30] J. Van Doorsselaere, Phys. Rev. D 88, 025013 (2013),

arXiv:1206.6205 [hep-ph].
[31] T. Vachaspati, Phys. Lett. B 265, 258 (1991).
[32] D. Grasso and H. R. Rubinstein, Phys. Rept. 348, 163

(2001), arXiv:astro-ph/0009061.



6

[33] J. Maldacena, JHEP 04, 079 (2021), arXiv:2004.06084
[hep-th].

[34] D. Ghosh, A. Thalapillil, and F. Ullah, Phys. Rev. D
103, 023006 (2021), arXiv:2009.03363 [hep-ph].

[35] D. L. J. Ho and A. Rajantie, Phys. Rev. D 102, 053002
(2020), arXiv:2005.03125 [hep-th].

[36] V. V. Skalozub, Phys. Atom. Nucl. 77, 901 (2014).
[37] K. Kajantie, M. Laine, J. Peisa, K. Rummukainen, and

M. E. Shaposhnikov, Nucl. Phys. B 544, 357 (1999).
[38] Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, 094502

(2013), arXiv:1209.0007 [hep-ph].
[39] M. A. Andreichikov, B. O. Kerbikov, V. D. Orlovsky,

and Y. A. Simonov, Phys. Rev. D 87, 094029 (2013),
arXiv:1304.2533 [hep-ph].

[40] G. S. Bali, B. B. Brandt, G. Endrődi, and B. Gläßle,
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SUPPLEMENTAL MATERIAL

Section A: Lattice Electroweak model in
hypermagnetic field background.

Most lattice simulations [50–55] of the electroweak
model were performed at Higgs masses different from the
physical value of the Higgs mass as these simulations were
carried out before the Higgs particle was discovered ex-
perimentally. Moreover, since the main aim of the most
simulations was to find the location and the strength of
the electroweak transition (the latter property is essen-
tial for baryogenesis [56, 57]), a large number of simu-
lations were done in a dimensionally reduced 3d lattice
model valid at high temperatures [37, 58–62]. In addi-
tion, the hypercharge field Yµ has been taken into account
only in some studies [61, 63] because, in the absence of a
background (hyper)magnetic field, the hypercharge sec-
tor plays a relatively modest role given the weakness of
the hypercharge coupling g′ and the Abelian nature of
this field. Since our aim is different from most of the
previous works, we simulate the model (i) with the phys-
ical Higgs mass (ii) in the four-dimensional formulation
(iii) with the hypergauge field included. All these factors
are required to uncover the properties of the electroweak
vacuum in the background magnetic field.

We use the following lattice action for the theory (3):

S = β
∑
x,µ<ν

(
1− 1

2
TrUx,µν

)
+
βY
2

∑
x,µ<ν

θ2x,µν

+
∑
x

(
−κφ†xφx + λ

(
φ†xφx

)2)
(13)

+
∑
x,µ

∣∣∣φx − ei(θx,µ+θYx,µ)Ux,µφx+µ̂

∣∣∣2 ,
where φx is the Higgs doublet of two complex scalar
fields [64].

In the leading order of a small lattice spacing a, the
lattice SU(2) gauge field Ux,µ and the noncompact U(1)
hypercharge gauge field θx,µ are related to their con-
tinuum counterparts Aaµ and Yµ, respectively, as fol-

lows: Ux,µ = eiat
aAaµ(x) and θx,µ = aYµ(x)/2, where

ta = σa/2 are the generators of the SU(2) gauge group
expressed via the Pauli matrices σa. The lattice pla-
quettes Ux,µν = Ux,µUx+µ̂,νU

†
x+ν̂,µU

†
x,ν and θx,µν =

θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν correspond to the field
strengths (4) and (5), respectively. Using a set of iden-

tifications, β → 4/g2 and βY → 4/g′
2
, as well as the

rescalings Aµ → gAµ and Yµ → g′Yµ, we recover the
continuum theory (3) from the lattice action (13).

The spatially uniform hypermagnetic field,

BY = (0, 0, BY ) , BY =
2

g′
· 2πk

(Lsa)2
, (14)

is expressed in a standard way. The integer k ∈ Z de-
termines the total number 2k of the elementary fluxes

ΦY = 2π/g′ carried by the hypermagnetic field through
a lattice cross-section. In the lattice action (13), the hy-
permagnetic field (14) is introduced via the shift of the
lattice hypercharge field θx,µ → θx,µ + θYx,µ similarly to
the standard practices [65]. The flux quantization (14)
appears as a result of periodic boundary conditions im-
posed in our calculations (more details are given in Ap-
pendix B).

In addition to the external hypergauge field θYx,µ, we
have four parameters of the theory: β, βY , κ and λ.
These parameters can be fixed via the requirement that
the lattice model matches the known phenomenological
parameters of the electroweak model at a zero magnetic
field. As a matching criterion, we choose the mass ratios,
mW /mH and mZ/mH (that also determine the Weinberg
angle θW ), and one of the charges, g or g′ (the other one
is determined by the Weinberg angle θW ). A remaining
degree of freedom corresponds to the variation in the lat-
tice spacing a, which plays a role of an ultraviolet cutoff.
The technical details highlighting our choice of lattice
couplings are described in Appendix C.

We employ the Hybrid Monte Carlo technique to gen-
erate lattice field configurations [66]. For a zero value
of the hypermagnetic field BY , we use about 16 × 106

configurations in order to fix the physical scale. For each
nonzero value of BY , we work with about 106 configu-
rations. We perform our calculations in the Euclidean
lattice volume Lt × L3

s with Lt = 64 and Ls = 48 corre-
sponding to the zero-temperature limit.

Section B: Hypermagnetic field

This article aims to study the behavior of the elec-
troweak model (3) in the background magnetic field B.
However, the very notion of the magnetic field B =
∇ × A loses its physical meaning in a phase with the
restored electroweak symmetry, which is suggested to be
induced by this same field. Indeed, the definition of the
electromagnetic gauge field Aµ = (A0,A) (and, there-
fore, of B) depends on the direction of the condensate of
the Higgs doublet field 〈φ〉 in the internal SU(2) space.
For example, in the broken phase, the electromagnetic
field (7) is identified in the unitary gauge where the up-
per component of 〈φ〉 vanishes while the lower component
is kept nonzero. As we expect that the magnetic field can
restore the electroweak symmetry, 〈φ〉 → 0, the electro-
magnetic direction becomes an ill-defined quantity, thus
questioning the very meaning of the magnetic field B
itself.

The flux quantization of an Abelian flux (14) is the
result of periodic boundary conditions imposed on the
appropriate Abelian gauge field: the Wilson loop, which
includes the whole cross-section of a periodically com-
pactified space, equals a unity because the contributions
from the opposite parallel segments of the loop cancel
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each other exactly.

The loop is a product of the link transporters, which
can be read off from the interaction of the gauge field
with a matter field. In our case (13), the link trans-
porter is the phase eiθx,µ , where, as we mentioned above,
θx,µ = a(g′/2)Yµ(x) in a continuum limit. The total
flux (14) in a periodic space can therefore introduce the
hypermagnetic fluxes only in pairs (namely, 2k vortices
for k ∈ N) due to the presence of the g′/2 factor in the
interaction term (6). A similar situation also appears
in QCD, where the fractional electric charge of quarks,
+2e/3 and −2/3, leads to the quantization of the mag-
netic fluxes in triples [65].

Thus, the flux quantization of the hypermagnetic flux
(and, therefore, the value of a possible minimal nonzero
flux) is a result of the periodic boundary conditions
rather than a consequence of the lattice discretization.
The latter introduces an ultraviolet cutoff which sets an
upper bound, kmax = L2/2, on the total number k of
pairs of the elementary hypermagnetic fluxes that can be
introduced on the lattice: k = 0, 1, . . . , L2/2.

We introduce the hypermagnetic field (14) as a hyper-
charge field θYx,µ similarly to the standard practices [65]:

θYx,2(k) =
2πk

L2
s

x , θYx,1(k)|x=Ls−1 = −2πk

Ls
y , (15)

with θYx,3 = θYx,4 = 0. Alternatively, one could introduce
the hypermagnetic field via a “chemical potential” for the
magnetic flux [37] that, as we checked, gives an identical
result.

Notice that the emergence of possible mixed phases is
not disfavored by the uniform nature of the hypermag-
netic background field (14) since the background field
fixes only the global flux through the whole lattice cross-
section without affecting the local structures correspond-
ing to possible inhomogeneities in the field.

Section C: Masses and physical point

We fix the ratio of the masses of the Higgs particle as
well as the Z and W bosons to their physical values at a
vanishing hypermagnetic field. To this end, we calculate
the following slice-slice correlation functions:

CH(l) =
1

Lt

Lt−1∑
t=0

〈
ρ2(t) · ρ2(t+ l)

〉
, (16)

CZµ (l) =
1

Lt

Lt−1∑
t=0

〈zµ(t) · zµ(t+ l)〉 , (17)

CWµ (l) =
1

Lt

Lt−1∑
t=0

〈
w∗µ(t) · wµ(t+ l)

〉
, (18)

where the gauge-invariant quantities,

ρ2(t) =
1

Vs

∑
x∈Vs

(
φ†xφx

)
(t) , (19)

zµ(t) =
1

Vs

∑
x∈Vs

zx,µ(t) , (20)

wµ(t) =
1

Vs

∑
x∈Vs

U12
x,µ(t) , (21)

zx,µ = arg
(
φ†xe

i(θx,µ+θYx,µ)Ux,µφx+µ̂

)
, (22)

are given by the spatial averaging over the spatial volume
Vs = L3

s for each time slice fixed by the Euclidean time t.
We extract the physical Higgs mass mH from the corre-

lation function (16) of the ρ2 field (19) following Ref. [49].
The definition of the lattice Z-boson field (20) in the cor-
relator (17) comes from the form of the interaction term
of the lattice action (13). It corresponds to the con-
tinuum neutral vector Z boson field (8) which is rigidly
fixed by the covariant derivative (6) which appears in the
continuum action (3). The two-point correlation func-
tion (18) includes the off-diagonal component U12

x,µ of
the SU(2) matrix Ux,µ which corresponds to the phys-
ical W field in the Unitary gauge. In our calculations,
we fix the Unitary gauge for the SU(2)W subgroup sup-
plemented by the maximal tree gauge for the U(1)Y sub-
group. The gauge fixing is needed to correctly identify
the W -boson field and reduce the noise associated with
the residual Abelian gauge freedom. To reduce the effect
of the perturbative noise further, we use the spatial APE-
smearing procedure [67] with parameters αAPE = 0.5 and
nAPE = 100 with respect to the Ux,µ and θx,µ fields.

The numerical results for the two-point functions (16),
(17) and (18) are then fitted by the exponential function,

C(l) = C0

(
e−M l + e−M (Lt−l)

)
+ C1 , (23)

where the amplitude C0, the (squared) condensate C1,
and the lattice massM are the fit parameters. The lattice
mass M ≡ M lat = Mphysa is related to the physical
mass Mphys via the lattice spacing a. The examples of
the fits (23) of all three correlators (16), (17) and (18)
are provided in Fig. 4. Table I shows the masses and
corresponding to the set of parameters used in the paper.

The correct choice of the ratios of the W, Z, and
Higgs boson masses is essential for determining the cor-
rect structure of the vortex ground state [15, 18, 19].

The determination of the SU(2) gauge coupling seems
to provide us with the uncertainty that has been, for-
tunately, resolved a few decades ago. In the literature,
one customarily sets β = 8 for the SU(2) lattice coupling
since this value corresponds to the renormalized SU(2)
gauge coupling g2R ' 0.5 which, in turn, lies closely to its
phenomenological value in continuum limit [49, 50, 53].
We also explored other values of the SU(2) coupling con-
stant. We ensured that all the conclusions of our paper
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FIG. 4. The correlation functions for the Higgs (16), Z-boson
(17), and W -boson (18) fields that are used for calculate the
their masses at a vanishing background hypermagnetic field,
BY = 0, via the fits by the function (23)

.

β βY λ κ mHa mZ , GeV mW , GeV
12 10.45 0.175 0.4030 0.3827(9) 93.42(24) 81.1(6)

TABLE I. Parameters of the lattice Lagrangian (13), the cor-
responding lattice spacing a (expressed in terms of the Higgs
mass mH = 125.25(17) GeV [68]), and the masses of the W
and Z bosons. Set 1 corresponds to the physical point (given
to the Particle Data Group [68], mW = 80.377(12) GeV,
mZ = 91.1876(21) GeV). The Weinberg angle θW equals to
its physical value with the relative error of less than 2%.

are independent of the actual value of β in a wide set
of values, provided the mentioned mass ratios are kept
fixed. This property is valid even on the quantitative
level, including the positions of the phase transitions. In
our paper, we use β = 12 for which we have the best
statistics. In the paper, we use the set of the lattice pa-
rameters shown in Table I.

The value of the lattice spacing for the physical point
allows us to achieve the resolution of the hypermagnetic
field about 10% in units of the first critical field Bc1. The
finite resolution, which appears as a result of the quanti-
zation of magnetic flux, provides us with the systematic
uncertainty in estimating the values of the critical mag-
netic fields (10) and (11).

In our simulations, we choose the lattice Higgs mass
around the value mHa ' 0.38 which corresponds to the
lattice W -boson mass mWa ' 0.25 at a vanishing back-
ground field BY = 0. For our lattice 64×483, this choice
of the lattice spacing allows us to reach sufficient accu-
racy for all mass correlators while, at the same time, mak-
ing it possible to achieve an acceptably small value of ele-
mentary hypermagnetic flux that determines the distance
between nearest values of the hypermagnetic field (14).
The latter factor is crucial for the precise determination
of the magnetic-field-induced transitions with sufficient
accuracy because of the elementary flux given the com-
putational restrictions imposed on the maximal lattice
volume.

The values of our quartic coupling λ and the parameter
κ, shown in Table I, are different from typical values used
in the literature to investigate the finite-temperature
phase transition in the dimensionally unreduced, 3+1
dimensional model. For example, after an adaptation
to our notations, the quartic coupling used in a finite-
temperature study of Ref. [54] lies in the λ ' 0.02, which
is an order of magnitude smaller than our value. This
difference can partially be explained by the fact that we
work with a heavier (in physical units) Higgs particle. In
addition, we aim to decrease the gap δBY = 4π/(g′L2a2)
between the nearest values of the hypermagnetic field
strengths (14) in order to resolve better the evolution
of the vacuum properties with increasing hypermagnetic
field. To this end, we need to increase the physical
size of the spatial lattice, which implies, in particular,
augmenting the physical length of the lattice spacing.
On the other hand, we cannot set a too large since it
would lead to substantial ultraviolet artifacts. In the
finite-temperature studies, one tends, on the contrary, to
choose the lattice spacing as smaller as possible in or-
der to increase temperature and to reach the symmetry-
restored part of the wide electroweak crossover.

Our choice of the lattice spacing provides a compromise
between these two purely technical constraints. More-
over, the slight deviation of the mZ and mW masses from
their phenomenological values is already of the order of
the systematic resolution of the hypermagnetic field in
our work. Therefore, we conclude that the present ac-
curacy is sufficient for our purposes related to determin-
ing the approximate values of the critical fields and the
nature of the new, magnetic-field-induced phases in the
model.

Section D: Lattice observables

The evolution of the expectation value of the Higgs
field squared with the magnetic field, Fig. 1(a), as well
as the local excess of the Higgs expectation value in the
transverse (x, y) plane, Fig. 3(i), have been numerically
calculated using the following gauge-invariant operator:

φ2(x) =
1

NtNz

∑
t,z

φ†xφx . (24)

We denote x = (x, y) the coordinate in the longitudinal
plane. The sum in the longitudinal (t, z) plane is applied
to all observables to diminish statistical fluctuations and
increase the noise-to-signal ratio. This averaging is ap-
plied to all numerically calculated quantities in Fig. 3. To
visualize the local Higgs structure in Fig. 3(i), we took a
square of the local value of the condensate (24).

The (squared) components of the W field, W 2
‖ and W 2

⊥,
are plotted, as function of the background magnetic field,
in Fig. 2. The spatial behavior of the same components,
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W‖ and W⊥, is visualized in Figs. 3(e) and 3(g), respec-
tively. We calculate the squared condensates with the
help of the gauge-invariant operator,

W 2
µ(x) =

1

NtNz

∑
t,z

wx,µ , (25)

wx,µ =
1

2

[
(1− 1

2
Tr
(
n̂xUx,µn̂x+µ̂U

†
x,µ

)
)
]
, (26)

where we introduced the auxiliary matrix field:

n̂x = naxσ
a ≡ ~n · ~σ (27)

nax = −φ
†
xσ

aφx

φ†xφx
. (28)

The field (26) is invariant with respect to the U(1)Y hy-
pergauge subgroup of the entire electroweak group. Un-
der the subgroup of SU(2) gauge transformations, the
fields transform as follows:

SU(2)W :

 Ux,µ → ΩxUx,µΩ†x+µ̂,

φx → Ωxφx,
n̂x → Ωxn̂xΩ†x,

(29)

implying that the field (26) is a gauge-invariant quantity.

The meaning of the construction (26) becomes clear
in the Unitary gauge, φx = (0, ρ)T , where the adjoint
vector n̂x points out to the third direction, n̂x = σ3. In
this gauge, the off-diagonal components of the W boson
field Wµ = W a

µσ
a/2 correspond to the standard charged

W bosons: W±µ = (W 1
µ ∓ iW 2

µ)/
√

2. Representing the
SU(2) gauge field Ux,µ as an exponent of the continuum
W field, Ux,µ = exp{i 12aW a

µσ
a}, and expanding Eq. (26)

in terms of the lattice spacing a, one gets the W conden-
sate squared, |Wµ|2 = W+

x,µW
−
x,µ:

wx,µ =
1

2
a2W+

x,µW
−
x,µ +O(a4) . (30)

Here, no sum over the repeating index µ is implemented.
Thus, in the continuum limit, the composite field (26) is
proportional to the W condensate (squared) (30). While
the unitary gauge has been assumed in the derivation of
Eq. (30), the expression (26) is a gauge-invariant quantity
implying that the association (30) of wx,µ with the |Wµ|2
condensate works in any gauge.

In Fig. 2, we give the W condensate in the leading
order in the lattice spacing a:

W 2
⊥ ≡

1

a2
(wx,1 + wx,2) . (31)

The Z flux in Fig. 1(f) is defined, similarly to the W
condensate, as a gauge-invariant expression:

Z12(x) =
1

NtNz

∑
t,z

Zx,12 , (32)

Zx,µν = ϕx,µ + ϕx+µ̂,ν − ϕx+ν̂,µ − ϕx,ν , (33)

ϕx,µ = arg
(
ei(θx,µ+θ

Y
x,µ)φ†xUx,µφx+µ̂

)
. (34)

In the continuum limit, Eq. (34) reduces, up to a factor,
to the usual expression of the Z flux expressed via the Z
boson field (8): Z12 = ∂1Z2 − ∂2Z1.

The fields Z‖ and Z⊥ in Fig. 1(h) and (l), respectively,
are the longitudinal and the transverse components of
the Z field defined via the lattice angle ϕ, Eq. (34):

Zµ(x) =
1

NtNz

∑
t,z

ϕx,µ . (35)

The excess of the electromagnetic field,

∆B(x) =
1

NtNz

∑
t,z

θ̄ e.m.
x,12 , (36)

shown in Fig. 3(k), is expressed via the electromagnetic
gauge-invariant flux:

θ̄ e.m.
x,µν = arg

(
eiθx,µνTr

[1

2
(1l + nx)Vx,µν

])
, (37)

θx,µν = θx,µ + θx+µ̂,ν − θx+ν̂,µ − θx,ν , (38)

Vx,µν = Vx,µVx+µ̂,νV
†
x+ν̂,µV

†
x,ν , (39)

Vx,µ =
1

2

(
Ux,µ + nxUx,µnx+µ̂

)
. (40)

In the unitary gauge, the flux (37) is reduced to the stan-
dard expression of the magnetic field in terms of the pho-
ton gauge field (7). Being a gauge-invariant expression,
Eq. (37) gives us the magnetic flux without a need for
the gauge fixing.

Finally, the current JZ⊥ in Fig. 3(m) is identified as a
weak current coupled to the hypercharge field:

J (θ)
µ (x) =

−2

NtNz

∑
t,z

Im
(
ei(θx,µ+θ

Y
x,µ)φ†xUx,µφx+µ̂

)
. (41)

This neutral current corresponds to the variation of the
matter action in the lattice electroweak Lagrangian (13)
with respect to the lattice hypergauge vector field θ.


