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Abstract — A model is proposed for the simulation of the thermo-mechanical behaviour pultruded
Glass Fibre Reinforced Polymer (GFRP) profiles subjected to the action of a standard fire curve. It
consists of two sequential steps: (i) determination of the temperature distribution over time in a rep-
resentative cross section using a thermal model that includes conduction, convection, radiation and (ii)
determination of generalised strains and displacements through a mechanical model that represents the
section walls through a geometrically exact shell theory using large deformations 3D constitutive rela-
tions. The problem is solved numerically using the Finite Element Method (FEM). The independently
approximated fields are: temperature, pressure, velocity, decomposition, displacements, rotations and
thickness variation parameters.
Keywords — thermo-mechanics, coupled problems, shells, pultruded GFRP profiles, fire resistance.

1 Introduction

Composite materials have imposed themselves in several industries over the last decades due to a set
of unique characteristics, such as their self-weight, strength, insulation, low maintenance and durability.
Their usage is already well widespread in several industries, e.g., aerospace, automotive and marine.
However, its application in civil engineering structures is still very limited when compared with the
traditional solutions relying on reinforced concrete and steel elements. Among the factors that limit their
use is the difficulty in guaranteeing its resistance for a certain minimum time in a fire scenario.

This article presents a model for the analysis of pultruded GFRP profiles subjected to thermal and
mechanical actions. Schematic examples of such profiles are shown in Figure 1. More precisely, it
intends to study simply supported beams subjected to a standard fire curve at the bottom face (in between
the supports) and subjected to the action of two concentrated loads applied over the top face.

This type of beam can assume different roles in structural applications, such as the rehabilitation of
pavement slabs. In rehabilitation operations of old buildings, the need to replace the original wooden
floors is frequent due to their time degradation. The replacement by reinforced concrete slabs or other
traditional solutions presents several disadvantages in relation to the use of GFRP profiles, such as:

(i) an increase in the loads transmitted by the slab to the original masonry walls that would inevitably
lead to the need of strengthen other structural members, such as load-bearing walls;

(ii) more complex execution and more demanding in terms of manpower associated with the need for
concreting operations or handling steel beams.

Figure 1: Example of GFRP beam profiles.
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Figure 2: Schematic representation of the thermo-mechanical model.

The model presented here is the result of several years of research [1] and has been subsequently
refined over this period. After a certain point it became clear that, in the case of cellular sections, the air
convection in the cells and especially the internal radiation between the cell walls played a non-negligible
role in the temperature distribution of tubular GFRP profiles. Thus, the most coherent approach would
be to simulate the beam plus the air assembly in the cells in a three-dimensional integrated FEM model.
However, this model presents some disadvantages:

(i) the high cost in terms of computational time, since the air in the cells and the beam itself would be
discretized with 3D finite elements;

(ii) the complexity of making parametric analysis of the model, varying the beam cross section, span,
loading, fire curve, protection system (size, material, thickness), etc.

It was also found through three-dimensional Computational Fluid Dynamics (CFD) simulations that
the air movement in the longitudinal beam direction is not significant and its influence on the temperature
distribution in the cross section is negligible [2]. Thus, two simplifications have been introduced:

(i) the temperature does not vary in the longitudinal direction between the supports. Thus, a coupled
2D thermal-fluid model representing a typical cross-section is sufficient to provide the temperatures
along the duration of the fire at every point of the beam. A schematic example is presented in
Figure 2 for a square tubular beam;

(ii) since the thickness of the beam walls is much smaller than the other dimensions, the three-dimensional
continuum is replaced by a geometrically exact shell model.

Both problems are tackled using the FEM for the spatial discretization, whereas the finite difference
method (FDM) is used along the time dimension.

A constitutive relation is proposed for the description of GFRP composites behaviour under elevated
temperatures considering its anisotropic nature. The adopted simulation setup was inspired on previously
perfomed experiments [3].

2 Thermal model

Figure 3 represents a typical cross-section of a beam, in this case a single-cell square cross-section. It
illustrates the problem and the phenomena involved.

The beam is subjected to a temperature at its bottom face, the lateral faces are insulated with rock-
wool, and the temperature at the upper face is the ambient one.

The set of phenomena involved is large enough for us to refrain from exposing all the equations
involved. In the solid part it is admitted that the heat is transmitted by conduction. On the lower and
upper faces we have boundary conditions of convection and external radiation. On the side faces it is
assumed that the heat flux is null, i.e., they are adiabatic boundaries. On all interior walls it is assumed
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Figure 3: 2D thermal model, including conduction in the solid, convection in the fluid and internal
radiation in the enclosure walls.

that the temperature in the solid and in the air are equal and that the velocity of the fluid in the cavity is
null. It is also assumed that there is internal radiation in-between all walls. The fluid is assumed to be
incompressible and the Boussinesq approximation is introduced, providing the artificial linear variation
of the density with the temperature.

The variables of the problem are: the temperature in the fluid and solid, the pressure and velocity in
the fluid and the radiosity along the inner surface of the enclosure walls. The fluid is discretized into 2D
Taylor-Hood elements, the solid is discretized into quadratic 2D Lagrange elements and the radiosity are
quadratic 1D elements.

An implicit first-order time integration scheme is employed. The resulting problem is solved, at each
time step, using the Newton-Rapshon iterative method. There are two sources of nonsymmetry in the
respective tangent operator: convection and internal radiation. Moreover, the latter gives rise to dense
matrices, as each one of the radiosity elements radiate to all the remaining ones.

3 Structural model

3.1 Thick shells

Historically, the approach to the problem of structural analysis of plates and shells has been based on the
observation that one of the dimensions is much smaller than the remaining ones. In addition to provide
a starting basis for the kinematic hypothesis on which the generalized displacement field is based, it is
also the reason why the constitutive relationship of the material is subject to a static constraint, through
which the so-called plane state of stress is imposed. Basically, an equation that reduces the number of
generalized stresses/strains is introduced in the constitutive relation of the three-dimensional continuum.
In order to take advantage of a true 3D constitutive law and use the full capabilities of Matlib [4], in
the present work it was chosen not to introduce any hypothesis about the distribution of stresses. The
price to pay for this option is the introduction into the kinematic hypothesis of the shell of the thickness
variation possibility. Note that this hypothesis avoids the usual contradiction between what is assumed
for the kinematics and statics of the shell.

In the following a very brief outline of the theory is provided.
Consider the schematic representation exhibited in Figure 4. The reference, initial and current con-

figurations are denoted Ωr, Ωo and Ω, respectively. The vectors er
i represent the reference configurations
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Figure 4: Shell configuration schematics.

basis, with er
α positioned tangent to the plane and er

3 normal to it (if not stated otherwise, the usual index
notation {i, j, k} = [1,2,3] and {α, β, γ} = [1,2] is adopted). In the reference plane, no curvatures are
admitted. The position of any material point on the reference configuration can be obtained by

ξ = ζ+ar, (1)

where

ζ = ξαe
r
α, (2)

is the mid-plane coordinate with ξα ∈Ωr and

ar = ζer
3, (3)

is the relative position along the thickness with ζ ∈ Hr = [−h/2,h/2].
The position of any material point along the initial configuration is given by

xo = zo +ao, (4)

where, analogous to the reference configuration, zo defines the middle plane coordinate and

ao = ζeo
3 (5)

its relative position along the thickness. The initial mapping is set to be of Kirchhoff–Love type, leading
to

ao =Qoar, (6)

whereQo is the initial rotation tensor obtained by

Qo = eo
i ⊗er

i . (7)

The current configuration x is described by

x= z+a∗, (8)

z = zo +u, (9)

where z is the mid-plane coordinate and u the displacement vector. The mid-plane coordinate’s relative
position along the thickness is described by

a∗ =

(
(1+ p)ζ+

1
2

qζ
2
)
e3, (10)
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where p and q are parameters introduced to govern the thickness variation on the current configuration.
The following equation can be used to relate the initial and reference configuration director

e3 =Q
eeo

3, (11)

where Qe is the effective rotation tensor. This tensor is analytically parametrized using the Euler–
Rodrigues formula as

Qe = I+h1(θ)Θ+h2(θ)Θ
2, (12)

where I is the identity tensor, θ is the rotation vector, h1(θ) and h2(θ) are trigonometric functions,
θ = ||θ|| is the rotation angle and Θ= skew(θ).

The previous kinematic assumption can now be introduced in the standard nonlinear continuum
equations. The unknowns are the following functions parameterized along the reference configuration:
the displacement vector, u, the rotation vector, θ and the scalar parameters p and q. These eight unknown
fields are discretized using the T6-3i finite element [5].

3.2 Thermo-visco-elasticity

For the beam material, we use a general thermo-visco-elasticity model, described by the rheological
model illustrated in Figure 5, and written in the incremental variational framework described in [6].

Figure 5: Rheological model.

Following the framework of Generalized Standard Materials, the model is described by a combina-
tion of a free energy potential W (F ,Z;T ) and a dissipation pseudo-potential ψ(Ḟ ,Ż;F ,Z,T ), whereF
is the deformation gradient, Z = {F v

1 , . . . ,F
v
n ,F

v
f } are the viscous deformation gradients corresponding

to the n Maxwell branches, plus the fiber contribution, and T is the temperature (treated as an external
parameter in this setting). The mechanical part of the model follows quite closely the structure proposed
in [7], and is summarized below. The internal variable update over a time step [tn, tn+1] is performed by
minimizing an incremental potential

Zn+1 = argmin
Z

[
W (Fn+1,Zn+1;Tn+1)−W (Fn,Zn;Tn)+∆tψ(Ḟn,n+1,Żn,n+1;Tn+α)

]
(13)

where Ḟn,n+1 and Żn,n+1 are incremental approximations of the rates (not detailed here) and α ∈ [0,1] is
an algorithmic parameter. Both free energy and dissipation potentials are additively decomposed into an
isotropic matrix contribution and a anisotropic fibre contribution. The free energy potential is given by

W (F ,Z;T ) = (1− f )

[
ϕ(Ĉ;T )+U(J;T )+

n

∑
i=1

ϕ
e
i (Ĉ

e
i ;T )

]
+ f ϕ

e
f (C

e
f ;T ) (14)
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where J = det[F ], F̂ = J−
1
3F , Ĉ = F̂ T F̂ , F e

i =FF v
i , and f is the volume fraction of fibres. The poten-

tials are of Hencky or Ogden type, following [6] and [7], with temperature-dependent elasticity moduli
and thermo-elastic coupling. For the fibre contribution, we more specifically use a Hencky potential and
the fibre stretch λ2

f = C : M f , where M f = n f ⊗n f is the material structural tensor. Similarly, the
dissipation potential is written as

ψ(Ḟ ,Ż;F ,Z,T ) = (1− f )
n

∑
i=1

ψi(d
v
i ;T )+ f ψ f (dv

f ;T ) (15)

where dv
i = Ḟ v

i F
v
i
−1 and dv

f = λ̇ f /λ f are the viscous strain rates. The model was implemented in
MATLIB [4].

4 Numerical examples

In this section we present a test case application of the full thermo-mechanical model described above.
The model is applied to the GFRP tubular component named Ultra Duty Planck

TM
, commercialized by

Fiberline Building Profiles (a more detailed geometrical description of the component can be found at
the company’s website [8]). Unfortunately, the available material data for this component is significantly
scarce, specially under elevated temperatures. Nonetheless, we can still obtain representative results by
roughly estimating these properties.

The 2D thermal Finite Element mesh used in the simulations was generated using Gmsh [9] and is
illustrated in Figure 6. The local refinement near the cavity walls is applied so that the fluid boundary
layer is accurately captured. Also using Gmsh, the 3D mechanical mesh was generated by extracting and
extruding the mid-surface of the profile’s section walls.

Figure 6: Thermal model test case mesh.

The thermal part boundary conditions follow the schematic representation shown in Figure 3. For
the mechanical problem, the tubular component is set to be simply supported with two loads applied to
its top surface.

Sample results for the thermal part of the problem can be seen in Figures 7 and 8. As the fire
temperature increases, heat enters the profile (by convection and radiation) and spreads into the material
through conduction. As it reaches the inner cavities, it gets transferred to the air, causing a temperature
gradient and generating a natural convection phenomenon. Whenever the internal walls temperature gets
high enough, internal radiation also becomes non-negligible, contributing to the overall heating of the
material’s top flange. In its solid part, the high temperatures cause the material to decompose. At the
final stages of the simulation, the material reaches a quasi steady state condition, with the temperature
well spread throughout the profile and its walls almost fully decomposed.

Sample results for the mechanical part of the problem are shown in Figure 9. The deformed com-
ponents are presented at 3 different time instants with their corresponding profile temperatures on the
top. As the temperature increases at the bottom flange, the material’s mechanical properties start to
degrade and the overall displacement increases. Thermal dilation and viscous (creep) effects also play
important roles on the overall displacement increase. Notice that all these phenomena occur at a constant
mechanical load, applied in the first time increment.
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Figure 7: Thermal model test case results at intermediate time.

Figure 8: Thermal model test case results at final time.

5 Conclusion

In this work we presented a thermo-mechanical model developed for the simulation of pultruded GFRP
profiles under the influence of a standard fire curve. As mentioned, the problem is separated into two
main parts:

(i) The thermal problem is solved for a representative 2D profile section including conduction, internal
convection and internal radiation.

(ii) Using the temperature results provided by the thermal problem, the mechanical problem is solved
using a geometrically exact thick shell theory in conjunction with a thermo-visco-elastic 3D con-
stitutive model.

A test case application considering a commercial GFRP profile under a fire curve was presented
along with its corresponding thermal and mechanical results. Considering the lack of material data,
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the model is already showing very promising results, which should be further improved as more data
becomes available.

Figure 9: Mechanical model results for three distinct time instants.

———————————————————————-
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