Investigations of pharmaceutical compounds co-crystallization for application to chiral resolution assisted by supercritical CO$_2$

F. Ercicek1,2,*, C. Harscoat-Shiavo2, M. Marchivie1, S. Marre2 and P. Subra-Paternault1

1 CNRS, Univ. Bordeaux, CBMN, UMR 5248, F-33600 Pessac, France
2 CNRS, Univ. Bordeaux, ICMCB, UMR 5026, F-33600 Pessac, France

*fatma.ercicek@u-bordeaux.fr

Keywords: co-crystallization, supercritical CO$_2$, chiral resolution, in-situ observations, microfluidics

Co-crystalline products are becoming increasingly important in the pharmaceutical industry, due to the chirality, low water solubility and low bioavailability of most active pharmaceutical ingredients (API). Solids with a single crystalline phase composed of two entities (API + coformer COF) linked via non-covalent interactions are called co-crystals. The modification of the API crystal lattice through the incorporation of the COF enhances the physicochemical properties of the initial drug without altering its therapeutic purposes. Thus, understanding crystallization processes can help to obtain products with desired properties. The formation of metastable conglomerates by co-crystallization can be a solution for optical resolution [1].

With the rising demand for green technologies, a co-crystal manufacturing strategy has been coupled with supercritical fluids. Supercritical CO$_2$ (scCO$_2$) is non-toxic, inexpensive, and manageable, which is frequently employed as an anti-solvent, like in the Gaseous Anti-Solvent (GAS) method. It enables reaching high supersaturation and directly obtaining dry products [2].

This work, first, highlights the manufacturing process (batch inox reactor) and the characterization of unknown co-crystals of chiral compounds produced by supercritical CO$_2$. The solubility of the selected chiral API and COF in the initial solvent system is reduced by the anti-solvent effect of CO$_2$, resulting in co-precipitation. The parameters influencing the purity of the co-crystals, such as the choice of solvents, temperature, and stoichiometric ratio were studied. The results demonstrate the obtaining of unidentified co-crystal structures, which were elucidated by XRD.

In parallel, a high-pressure microfluidic device has been developed to investigate crystallization phenomena under scCO$_2$. Thanks to optical access being provided by such a device, in-situ observations of time-related events are possible. Visualization of racemic naproxen crystals is shown in Figure 1. From these data, knowledge on the growth kinetics under scCO$_2$ can be acquired. In-situ precipitation monitoring of racemic and enantiopure co-crystals in a high-pressure optical cell thanks to FTIR spectroscopy is in progress. Relevant information on the behavior of racemic and enantiopure compounds precipitation are being obtained thanks to in-situ analysis. These first results could be an opening perspective for enantioseparation in supercritical conditions.

Figure 1: On-chip precipitation of RS-NPX by optical microscope in a micro-pool
