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Finite volumes method for the cell electrical model

We present a finite volumes method to model and simulate the exposition of a biological cell to a nanosecond electric pulse in the view of electropermeabilization description. A quasi-static electric model based on the metal-dielectric equivalence is proposed for conduction modelling. A Poisson equation is solved. The method -Discrete Dual Finite Volume method (DDFV) -is shown to be efficient in taking electric jump conditions at the cell membrane. The advantages of the method are presented on axisymmetric 2D classic problems.

Introduction

Electroporation, or electropermeabilization, consists in applying an electrical field to modify (reversibly or irreversibly) the cell membrane permeability [START_REF] Weaver | Electroporation theory[END_REF]. It allows the transfer of non-permeable molecules into the cell cytoplasm. This technique is now used in cancers therapy [START_REF] Gothelf | Electrochemotherapy: results of cancer treatment using enhanced delivery of bleomycin by electroporation[END_REF].

Nevertheless, it is necessary to precisely model the cell to adapt the field exposure. This phenomenon is well studied experimentally [START_REF] Teissie | Electropermeabilization of the cell membrane[END_REF], but few predictive computational methods exist in the literature [START_REF] Guittet | A Voronoi interface approach to cell aggregate electropermeabilization[END_REF][START_REF] Guo | Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields[END_REF]. This is mostly due to the difficulty of precisely taking into account the jump condition in the cell membrane and the geometry of the cell. We propose here a method to adress this issue. Some analytical results exist for a spherical model of the cell [START_REF] Kotnik | Analytical description of transmembrane voltage induced by electric fields on spheroidal cells[END_REF]. Nevertheless models are mostly based on numerical methods [START_REF] Guo | Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields[END_REF]. The majority of these methods involve a finite elements (FE) technique [START_REF] Guo | Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields[END_REF][START_REF] Deka | Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions[END_REF] and interpolation or refinement on the cell membrane [START_REF] Guittet | A Voronoi interface approach to cell aggregate electropermeabilization[END_REF].

In this article, we propose a cell model based on the metaldielectric equivalence. It leads to a Poisson equation with jump conditions and mixed boundaries. To solve this problem we introduce and propose an adaptation of the discrete dual finite volume method (DDFV) [START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF][START_REF] Pierre | Modélisation et simulation de l'activité électrique du coeur dans le thorax[END_REF][START_REF] Coudiere | A 2D/3D discrete duality finite volume scheme. application to ecg simulation[END_REF]. We can then take into account both the discontinuity condition on the cell membrane in ε and σ . Moereover, dispersive media are introduced in recent modelisation, this will be also taken into account into the presented cell model. To the author's knowledge, the DDFV method has not been yet applied to solve this problem.

The remaining of this article is organized as follows. Section 2 describes the cell and introduces the electrical model based on the metal-dielectric equivalence. Section 3 focuses on the computational method to solve the Poisson equation with jump conditions. Section 4 finally shows numerical experiment.

Single cell electric model

In this section, we develop the electrical model of the cell. In this article, the cell is described by two subdomains, the membrane and the cytoplasm [START_REF] Salimi | Membrane dielectric dispersion in nanosecond pulsed electroporation of biological cells[END_REF], as illustrated in Figure 1.

Figure 1. Cell model [START_REF] Deka | Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions[END_REF] The cytoplasm, media Ω c , is surrounded by the membrane, media Ω m . There is a jump condition between both mediums. Indeed the parameters σ c and σ m end the permittivity ε c and ε m are very differents, see [START_REF] Vu | Contribution à la modélisation du comportement électromagnétique de milieux biologiques exposés à des impulsions de champ électrique nanosecondes[END_REF] for magnitude examples. Finally, the cell itself is surrounded by the exterior media of parameters σ e and ε e . We assume a uniform exterior electrical field.

In this context we can study the electro-quasi static problem [START_REF] Poignard | Différence de potentiel induite par un champ electrique sur la membrane d'une cellule biologique[END_REF], since the magnetic field influence is negligible. With the metal-dielectric equivalence, we have

j = σ E = ∂ P c ∂t . (1) 
The electrical induction D is given by

D = ε 0 E + P lin + P c , (2) 
with

P c = t 0 σ Edt and P lin = ε 0 (ε r -1)E, (3) 
where P c and P lin corresponds to the conductor and linear polarisations, respectively. Finally, putting these equations in the Maxwell-Gauss equation, and rewritting it for the electric potential V

-∇ • ε r ∇V + t 0 σ ∇V dt = ρ. (4) 
This corresponds to a generalized Poisson equation and is equivalent to other cell models [START_REF] Salimi | Membrane dielectric dispersion in nanosecond pulsed electroporation of biological cells[END_REF][START_REF] Poignard | Différence de potentiel induite par un champ electrique sur la membrane d'une cellule biologique[END_REF][START_REF] Guittet | A Voronoi interface approach to cell aggregate electropermeabilization[END_REF][START_REF] Guo | Nonlinear dispersive cell model for microdosimetry of nanosecond pulsed electric fields[END_REF].

To numerically solve this problem, a discretization along the time, step ∆t, is first applied. In this case, we obtain

-∇ • ((ε r + ∆tσ n )∇V n ) = ρ n + ∇ • P n-1 c , (5) 
with n the corresponding discret time, and

P n-1 c = t n-1 0 σ Edt. (6) 
To complete the model, we add the boundary relation between each subdomain :

(ε m D m -ε e D e ) • n = σ s m ε 0 (ε c D c -ε m D m ) • n = σ s c ε 0 , (7) 
with n the normal and σ s i surface density charge on each discontinuity. Also, for dielectric model the Debye model [START_REF] Böttcher | Theory of electric polarization[END_REF] can be used as a differential equation on the polarisation P.

Thus Poisson equation with jump conditions is solved at each time step. This is the focus of the next section.

Computational method for the Poisson equation

In this section, we describe how the Poisson equation ( 5) with jump conditions is numerically solved. For the boundary of the exterior domain, we assume mixed Neumann-Dirichlet. Therefore, at each time step, we need to solve

∇ • (ε r i ∇V ) = f , sur Ω, s.c V (x) = V b , ∀x ∈ ∂ Ω D , ∂V ∂ n (x) = 0, ∀x ∈ ∂ Ω N , (8) 
with the jump conditions [START_REF] Deka | Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions[END_REF]. Also, ε ri = ε r + ∆tσ corresponds to the generalized permittivity for each media. Also, for each time step

f = ρ + ∇ • P n-1 c
is the source term.

To numerically solve this problem, we propose the DDFV method, which is a recent finite volumes method. This latter has been introduced in 2000 [START_REF] Hermeline | A finite volume method for the approximation of diffusion operators on distorted meshes[END_REF] and is more studied since 2005 [START_REF] Pierre | Modélisation et simulation de l'activité électrique du coeur dans le thorax[END_REF][START_REF] Coudiere | A 2D/3D discrete duality finite volume scheme. application to ecg simulation[END_REF]. This finite volumes method is based on a dual mesh to obtain a better approximation of the gradients, with strong convergence. In our context, this method has many advantages: the matrix obtained from the system of equations is positive-definite (and symmetric without discontinuity), the jump conditions can be taken into account [START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF], and we can have mixed conditions on the boundaries. Furthermore, the gradient of V is obtained from one side to another of the discontinuity with at least the same accuracy as a FE method [START_REF] Pierre | Modélisation et simulation de l'activité électrique du coeur dans le thorax[END_REF][START_REF] Coudiere | A 2D/3D discrete duality finite volume scheme. application to ecg simulation[END_REF]. In addition, the potential at the inner and outer surface is directly obtained allowing to compute precisely the trans-membrane voltage.

To solve our problem (5) under the boundary conditions [START_REF] Deka | Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions[END_REF], we modify the algorithm to take into account both the jump conditions on ε between the medium and on σ s at the surface. Only a discontinuity in the primal mesh is taken into account, since we adapt the mesh to the physic of the problem. For the boundary of the global domain, we use a penalization method for the Dirichlet condition [START_REF] Lakhlili | Modélisation et simulation numériques de l'érosion par méthode DDFV[END_REF] while Neumann one are intrisic from the discrete Green relation [START_REF] Boyer | Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities[END_REF][START_REF] Coudiere | A 2D/3D discrete duality finite volume scheme. application to ecg simulation[END_REF].

We create a conformal and structured mesh using the method described by Hyman et al. [START_REF] Hyman | An algorithm for aligning a quadrilateral grid with internal boundaries[END_REF]. This allows us to manage the quandrangular mesh for the cell. Finally the system is solved using a parallelize biconjugate gradient method (in MPI environment).

Numerical experiments

In this section, we show the results of numerical tests on an academic case of spherical cell. Thus, we study a spherical cell of radius 0.2 µm, with a membrane of size 0.0008 µm corresponding to 0.004 the size of the cell and to experimental magnitude. To obtain a uniform field over the domain of size D = 1 µm in horizontal and 2 µm in vertical, two electrode of V + = 1 V and V -= -1 V are placed on the left and right, respectively. This corresponds to two Dirichlet boundaries. For the top and bottom of the domain, we assume Neumann conditions. For the permittivity of the different subdomains, we use ε c = ε e = 80 and ε m = 2, also corresponding to experimental magnitudes [START_REF] Vu | Contribution à la modélisation du comportement électromagnétique de milieux biologiques exposés à des impulsions de champ électrique nanosecondes[END_REF]. The cell is placed at the center of the domain. This setup is illustrated in Figure 2.

One can note that the problem is symetric, thus the potentiel is computed only in a subdomain containing half the cell of size

[0, 1] × [0, 1] µm 2 .
First, we plot the potential on the whole domain with the mesh in Figure 3.

As expected, the potential is decreasing from 1 to -1 V continuously far from the cell. Looking in the area of the cell, we can see that jump condition has effects on the electrical potential. Therefore, we plot an horizontal cut through the cell in Figure 4 to zoom on the effects of the First, Figure 4 shows that the variation of V are the same in the cytoplasm and in the exterior media, as expected. Indeed, both medium are the same since ε c = ε e . Second, the jump condition is seen with a high decrease of the potentiel in the membrane since ε m ≪ ε c . Also, the results are in line with the one described in [START_REF] Vu | Contribution à la modélisation du comportement électromagnétique de milieux biologiques exposés à des impulsions de champ électrique nanosecondes[END_REF] for the electric cell model.

Finally, we plot the potential in the middle of the membrane in Figure 5. Since the field is uniform in the exterior media, we expect V to decrease slowly and no discontinuity. In the context of electroporation, this figure is essential to see where electroporation occurs. We can see that, as expected, the potential decrese slowly in the membrane due to the uniforme electric field and no discontinuity occurs. Therefore, the method and mesh works well to electrically model a single cell.

In this article, we develop an electric model for the cell based on the metal-dielectric equivalence. We also introduce and propose a modification of a finite volume method to numerically solve the equation associated with the model.

First, using the metal-dielectric equivalence, we have obtained an electrical model for the cell. Thus, we obtain a generalized Poisson equation with jump conditions. This latter use polarisation to describe the different medium. Indeed, the Debye model can be incorporated as an additionnal differential equation on the polarisation.

Second, we have introduced the discrete dual finite volume method to solve this problem. The method is relevant to our context since it can take into account both discontinuity between the medium and at the surface of each medium.

Third, a numerical experiment is proposed to show the efficiency of the method. We studied the classical test of a spherical cell in a uniform electric field. These tests show that the method works well in this context, obtaining results in line with the literature.

Further works include using the Debye model for the dispersive medium and take into account electric pulse. We also would like to compare results with experimental studies. Finally, the method can be easily generalized in 3D.
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 4 Figure 4. Electrical potential (V ) on an equatorial cut along the cell on primal and dual meshes.

Figure 5 .

 5 Figure 5. Electrical potential (V ) in the membrane of the cell.