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Abstract

Modeling the long-range propagation of electromagnetic
waves in the troposphere is a topic of interest for many
applications in surveillance, communication, and remote-
sensing. The split-step Fourier method is widely used in
this context, allowing wide steps along the propagation di-
rection. Recently, a wavelet-based method with lower com-
plexity and efficient in terms of memory storage has been
proposed. Both methods are one way and compute the for-
ward propagation in the troposphere. Based on the Fourier
two-way method, which computes the backward propaga-
tion when reaching an obstacle, we propose here a two-way
split-step wavelet method. Besides, we show that the stop-
ping criterion is intrinsic using compression in the wavelet
domain. Numerical experiments have been performed (in S
band) to validate the method and highlight its advantages.

1 Introduction

A precise model for electromagnetic waves propagation in
the troposphere over large distances is necessary to study
and optimise the performance of many systems, such as
radar. In this context, we need to take into account the
ground composition, relief, and refraction.

Due to the size of the scenario, rigorous methods are pro-
hibited. Therefore, asymptotic methods are used in this
context. One one the most common model in this case
is the parabolic wave equation (PWE) [1]. Based on the
Helmholtz equation, this latter only model the forward
propagation from the source in a paraxial cone around the
propagation direction [1]. This model is well suited for
long-range propagation since it can take into account the
effects of the refraction and the relief [1].

A widely used method to solve the PWE in 2D is the split-
step Fourier (SSF) method [1]. This latter compute the field
iteratively by going back and forth from the spatial domain
to the spectral domain. The propagation is performed with
two steps. First, we propagation in free-space in the Fourier
domain. Second, the effects of the refraction are taken into
account through a phase screen. Relief can also be con-
sidered with this method with various techniques [2]. Fur-
thermore, the ground condition is efficiently incorporated
with the discrete mixed Fourier transform (DMFT) [3]. In
recent years, to avoid spurious solutions a self-consistent
SSF method has been developed, discrete SSF (DSSF) [4].

To obtain an efficient method in terms of memory and
computation time, in particular for generalisation to 3D,
wavelet-based methods have been proposed for electromag-
netic propagation [5, 6]. In particular, a fast and memory-
efficient split-step wavelet (SSW) has recently been pro-
posed [5, 6]. Indeed, a low complexity method has been
obtained from the compression allowed by wavelets and the
low complexity of the fast transform associated. Also, the
sparse signal and propagator obtained in the wavelet do-
main improve the memory efficiency [6, 7].

These methods are one way and only compute the forward
propagation and do not take multipath into account. To
tackle this problem two-way recursive SSF methods [8]
have been proposed. In this case, a condition on the mag-
nitude of the field is applied to stop the algorithm and be
efficient.

In this article, based on the compression introduced in the
wavelet domain, we propose a two-way recursive SSW
method without a stopping condition on the magnitude of
the field.

The remaining of this paper is organized as follows. Sec-
tion 5 introduces the two-way model based on the parabolic
wave equation. Section 3 gives a brief reminder on the 1D
discrete wavelet transform. Section 4 describes the com-
putation method. Section 5 is devoted to the numerical ex-
periments. The last section concludes the paper and gives
perspectives.

2 Model and discretization

2.1 The two way parabolic equation model

In this article, we assume an exp( jωt) time dependence.
We also assume that the refractive index n is slowly-
varying.

In this article, we are interested in the 2D Cartesian config-
uration along x – the propagation direction – and z – the al-
titude. The initial field at x = 0 is known, since the source is
placed at xs ≤ 0 and we compute the propagation for x≥ 0.
The ground is at the altitude z = 0. Thus, the propagation
in the domain [0,xmax]× [0,zmax] is computed. With respect
to z, the field can decomposed in transverse magnetic (TM)
or electric (TE) components. In this article we focus on the



TE case, nevertheless calculations remain the same for the
TM case. We denote by ψ the TE components, which is
solution of the Helmholtz equation

∂ 2ψ

∂x2 +
∂ 2ψ

∂ z2 + k2
0n2

ψ = 0, (1)

with n the refractive index and k0 the free-space wave-
number.

As in [8], we describe the total field with a reduced forward,
uF , and backward, uB, propagation part along x

ψ = exp( jk0x)uF + exp(− jk0x)uB. (2)

This leads to two equations for the forward and backward
propagation

∂ 2uF

∂x2 +2 jk0
∂uF

∂x
+ k2

0(n
2−1)uF = 0,

∂ 2uB

∂x2 −2 jk0
∂uB

∂x
+ k2

0(n
2−1)uB = 0.

(3)

Note that both equations are the same if we change the sign
of k0. Therefore, we only study the forward part, since cal-
culations remain the same for uB. Accounting only for the
forward propagation of uF and applying the wide angle ap-
proximation to the first equation of (3) leads to

∂uF

∂x
=− j

√
∂ 2

∂ z2 + k0− k0

uF − jk0(n−1)uF . (4)

Note that we can obtain the same equation for uB by chang-
ing k0 to −k0. In this article, we thus aim at solving the
equations for uF and uB using a split-step method, whereas
one way method only focus on uF .

2.2 Discretization

For numerical reasons, the domain is discretized. First,
along the z-axis, a discretization of Nz points is performed.
The grid is given by

zpz = pz∆z with pz ∈ {0, · · · ,Nz}, (5)

with ∆z = zmax/Nz the step size. At a position x, the dis-
crete field is denoted by ux[pz]. Second, the x-axis is also
discretized on Nx points and a step size ∆x. Computations
are now performed only in this discrete domain.

3 Brief overview of the discrete wavelet
transform

In this part, we give a brief reminder on the 1D discrete
wavelet transform. First, a wavelet is a short length oscil-
lating function localised both in frequency and space. As
for the Fourier atoms for the Fourier transform, we need to
define a wavelet basis. First, we construct a wavelet family
by dilating, on L levels, and translating of p along z a zero-
mean function ψ – called the wavelet mother. The daughter

wavelets ψl,p, with l ∈ [1,L], are thus obtained. While dila-
tions allow to cover the spectrum from the upper part to the
lower part with L increasing, with the translation we cover
the spatial domain. This functions correspond to a wavelet
family. Nevertheless, since the wavelet are of zero-mean, a
last function φL,p – the scaling function – is added to cover
the lowest part of the Fourier domain and to obtain an or-
thonormal basis.

We can now decompose the any field ux on this basis with
the discrete wavelet transform. This latter is defined [9] as
follows

ux[·] =
Nz/2L−1

∑
p=0

aL,pφL,p[·]+
L

∑
l=1

Nz/2l−1

∑
p=0

dl,pψl,p[·], (6)

where aL,p and dl,p corresponds to the approximation and
details coefficients, respectively. The first are the one corre-
sponding of the decomposition of field on the scaling func-
tion while the second corresponds to the decomposition on
the wavelet functions. These latter are computing using the
fast wavelet transform (FWT) [9].

Different wavelet basis can be used. Important parameters
for the choice are the size of the support and the number
of vanishing moments nv [9]. This latter defines how well
a smooth signal can be described with few coefficients. In
this article, we choose the symlet family with nv = 6 since
these wavelets are of minimal support for a given nv and
almost symmetric. For the maximum level, I choose L = 3.
These choices are discussed in [5].

4 The two way split-step wavelet method

In this section, we desccribe the two-way wavelet-based
split-step method. First, we focus on the one way method
to solve the parabolic equation for uF . Then, the two way
version of the method is introduced.

4.1 Overview of the one way SSW method

First, we focus on the one way SSW method to compute uF .
This latter is an interative methods that solve (4) as follows:

1. The FWT, denoted W, and a compression, denoted C,
with hard threshold Vs are applied to ux to obtain the
sparse vector

Ux = CWux (7)

corresponding to the wavelet coefficients.

2. The coefficients are propagated in the wavelet domain
using a wavelet-to-wavelet propagation operator, de-
noted P, as

Ux+∆x = PUx. (8)

Two main methods exist to compute this propagation.
One consist in computing the matrix that stores all the



wavelet propagation [5]. The other [6] computes a re-
duce propagator and only the non-zero coefficients of
Ux are propagated. In both cases, a compression with
threshold Vp is performed to have a sparse propagator.

3. By applying the inverse FWT, denoted by W−1, to
Ux+∆x we obtain

u f s
x+∆x = W−1Ux+∆x, (9)

that corresponds to the free-space propagated field.

4. Refraction and relief are taken into account in the
space domain through operators R – phase screen –
and L, respectively. Therefore, we obtain

ux+∆x = LRu f s
x+∆x. (10)

To efficiently take into account the PEC ground compo-
sition with the wavelet method, we use the local image
method [5]. To model the relief, a staircase model [1] is
used.

4.2 The recursive two-way method

Now that the one-way method has been fully described, we
introduce the two-way SSW method. In this latter we prop-
agate both uF , with a ∆x, and uB, with a step −∆x, along
the propagation direction. Since both propagation equation
are the same (3), except for the sign of k0, it can be shown
that both propagator are the same [8].

Therefore the two-way SSW consists in iterating back-and-
forth the SSW algorithm described in Section 4.1 for uF ,
and for uB when reaching an obstacle. This allows to
take into account multiple reflections and multipath in the
model.

Nevertheless, for the backward propagation and the multi-
ple reflections, we need the initial field at the obstacle, po-
sition xo. To obtain a relation between uB(xo) and uF(xo),
we use the condition on the transverse field at the obstacle.
Since we use a staircase model for the relief, the condition
is [8]

ψ(xo) = 0 = e jk0xouF(xo)+ e− jk0xouB(xo). (11)

Thus, using (11) we can compute the initial field for the
recursive two-way SSW when reaching any obstacle.

Note that, if only one obstacle is present, the method is easy
since only one forward and backward propagation is com-
puted. Indeed, we can compute the backward propagation
until the beginning of the domain. Nevertheless, for multi-
ple obstacle, we need a stop condition on the multiple for-
ward and backward propagation. In [8], a condition on the
magnitude of the field is introduced as a stopping condi-
tion of the recursive algorithm. Here, we differ from this
approach by showing that the compression applied on the

field in the wavelet domain works as an intrinsic stopping
condition.

First, we define the operator norm as

‖P‖op =
‖Pu‖2

‖u‖2
. (12)

If the propagation is computed in free-space then we have
‖P‖op = 1. Otherwise, since the energy can only leave the
domain, we have ‖P‖op ≤ 1. In all generality, we can thus
keep

‖P‖op ≤ 1. (13)

Furthermore, note that the signals we are dealing with are
smooth.

Using (13), we know that

∀n≥ 0 ‖un‖2 ≤ ‖u0‖2. (14)

This relation is true in both way the norm of all propagated
field is smaller or equal to the norm of the initial field. Then,
we use the Moyal relation [9], or energy conservation in the
wavelet domain, to obtain

‖Un‖2 ≤ ‖U0‖2. (15)

Using the relation (15) and that the signals are smooth we
have that the wavelet coefficient are decreasing with the
propagation. Thus, since a compression with a threshold
Vs = vs‖U0‖∞ is applied on the wavelet decomposition at
each step then the relative threshold vs has the same effect
as the stopping criterion on the field in [8]. Therefore, the
stopping condition is intrinsic in two-way SSW. Besides,
for each recursive propagation we can change this thresh-
old to reduce the computation time. Also, the error due to
the compression is managed through a theoretical formula
[10].

5 Numerical test

The goal of the numerical experiment is to show that two
way SSW works well. A comparison with the one-way ver-
sion is proposed.

We compute the propagation from a complex source point
(CSP) at f0 = 3 GHz. The parameters of the source are as
follows: xs =−50 m, zs = 50 m and W0 = 5 m. The propa-
gation is performed over 60 km and 512 m with a grid size
of ∆x = 200 m and ∆z = 0.1 m. To validate the method,
we consider a PEC ground condition and n = 1. Two knife
edge obstacles at 20 km and 40 km of size 100 m and 150 m
are considered. The threshold are set so as to obtain a max-
imum error of −20 dB with DSSF, for the one way SSW,
with the theoretical formula [10]. The same wavelet param-
eters are used for the two-way SSW.

The normalised field obtained with the one way and two-
way SSW are represented in Figure 1 (a) and (b), respec-
tively. Note that, for the one way method the error with
DSSF is below −45 dB.



(a) One-way SSW (b) Two-way SSW

Figure 1. Propagation of the normalized field u with one-way and two-way SSW.

First, with the one way method the effects of the relief con-
sist in shadow zones, and is limited, since multipath are not
taken into account. Second, we can see in Figure 1 (b) that
the two-way method the results of propagation differ from
the one way method, Figure 1 (a), since multipath effects
and interference patterns are taken into account. Also, af-
ter the second relief, the results of both methods are the
same, as expected. The results are in line with the one
in [8]. Therefore, we are confident that the method works
well. Note that here the stopping criterion is intrinsic to the
method, whereas in [8] they need a condition on the mag-
nitude of the field to stop the method.

6 Conclusion and perspectives

In this article, we propose a recursive two-way split-step
wavelet method, with an intrinsic stopping criterion.

First, the two-way model based on the parabolic wave
equation has been introduced. Second, the 1D discrete
wavelet transform has been briefly reminded. Third, the
forward and backward model are solved with a SSW two-
way method. With this latter, the stopping criterion is
intrinsic through the compression performed on the field
wavelet coefficients. Finally, numerical tests have been per-
formed to show that the method works well and highlight its
advantages in comparison with the one-way version of the
method.

Further works include comparison with geometrical optic
and uniform theory of diffraction. Other numerical experi-
ments will also be considered with other type of relief and
in other frequency range (such as X band).
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