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Abstract

This paper addresses the certification issues for
vision based systems embedded on civil air-
craft to assist pilots during the ground naviga-
tion phase. We propose a design methodology,
through the example of a modular architecture
to detect ground mark lines in a color image.
Our detection method is based on the combi-
nation of classical image processing algorithms,
deep learning methods and a particle filter algo-
rithm. We argue that the main interest of this
architecture is to ease the certification problem
when compared to an end-to-end neural network.
We discuss about difficulties around certification
and propose some arguments.

1 Context

Computer vision applications have made consid-
erable progress in recent years, with applications
to many fields, from healthcare to autonomous
vehicles. In this context, the civil aeronautic
is considering using vision based systems to
support pilots in their operations during the
ground navigation tasks. For instance, functions
such as obstacle detection, axis keeping, runway
detection and others are currently studied. How-
ever, due to the complexity of such functions, it
is challenging today to achieve the certification
of systems largely based on computer vision
algorithms in civil aeronautic field.

Actually, all functions embedded in civil air-
craft have to be compliant to standard design
processes defined by the authorities. These
processes are described in documents such as
Certification Specification [1], the ARP-4754a
[2] and DO-178-C [3]. These documents define

Figure 1: General V-model and our scope.

complete guidelines to design, develop and
implement functions to be embedded on civil
aircraft. This whole process is called certifica-
tion. The standard certification process follows
a V-model. It consists in designing, developing,
implementing, verifying and validating a system
by following specific steps described in guide-
lines. An example of V-model is shown in Figure
1. More details are provided in the section 2.1.

Some functions embedded on civil aircraft are al-
ready using vision based systems (VBS). For ex-
ample, the A380 from AIRBUS is equipped with
a camera integrated in the aircraft fin. The video
input can be sent to both passengers and pilots.
The pilot can use the video output as an help to
drive the aircraft during the taxi phase. The im-
age is directly used and interpreted by the pilot
without any algorithm used for its interpretation.
However, actual certified functions based on vi-
sion systems let the pilot as the principal actor
to extract and interpret information represented



in each image. New functions, such as line detec-
tion, motion estimation or obstacle detection are
using complex algorithms to extract and process
features from the image in order to improve the
pilot assistance. The certification of such algo-
rithms has never been done in the European civil
aeronautic field.
That is why, previous studies [4] highlighted the
fact that the design of computer vision-based
systems opens a new paradigm in certification.
These difficulties are mostly due to the com-
plexity of algorithms. For example, most of
recent computer vision algorithms are based on
machine learning (ML). Machine learning algo-
rithms learn through examples how to analyze
images in order to achieve a desired task. This
approach is not compliant with standard design
process [5]. Actually, current standards require
an explicit description of detailed requirements.
This is the opposite of ML systems which
they learn the operational behaviors through
examples and not from requirements. In order
to prepare a new standard, the European Union
Aviation Safety Agency (EASA) is working on
guidelines [6] [7] to safely design such systems.
There are also many public research projects on
this topic. The DEEL project is also currently
working on this problematic and and have
published a White Paper [8]. They address many
questions on the risks, challenges and potential
solutions of using ML in systems submitted to
certification constraints. However, vision based
algorithms are not limited to machine learning.

In this paper, we present our position with
regards to VBS certification issues. In order to
illustrate how to solve these problems, we will
take the example of line detection on airport
runways/taxiways and describe our methodology
to design the modular architecture of a specific
line detection algorithm. Line detection is
a useful function that could make easier the
ground navigation for the aircraft pilot. Due
to its simplicity, it is probably one of the first
task using vision based algorithms which could
be certified. However, most of recent methods
repose on end to end deep learning architecture
[9]. Because of the certification aspects, we desire
to construct a functional architecture without
using end to end deep learning methods. Figure
2 shows an example of system architecture that
could be used to guide an aircraft on a taxiway,
and/or to display information to the pilot. We
will focus our discussions on the design and tests
of this line detection function architecture. We
will not discuss the hardware implementation or

Figure 2: Example of visual based functions
integrated in a civil aeronautic system

interface with other systems. The input of the
function is an image provided by the Fin Taxi
Aid Camera (FTAC) of the aircraft. We make
the assumption that this image gives a correct
representation of the real world.

The paper is organized as follows: Section 2
presents difficulties that could be encountered in
the certification of computer vision based sys-
tems. Section 3 presents our proposed archi-
tecture in the specific line detection application.
Section 4 explains our arguments to help certifi-
cation of this architecture. Then the last section
concludes.

2 General aspect of the cer-
tification of Computer
Vision-based systems

Computer vision-based algorithms can be sum-
marized in two main parts: extract from each
image discriminant information (often called fea-
tures) and then process this information to
achieve the desired operation. Extracting perti-
nent information is a difficult task. An image can
be seen as a 2D signal and the undesired infor-
mation can be seen as a structured noise. In our
application, we aim at extracting features that
characterize lines. Hence, we desire to remove all
other elements of the image.

In order to answer such problems, complex
algorithms of computer vision are used. We
will show in the following section that standard
guidelines used for the development of civil
avionic function are difficult to be applied on
complex computer vision items.

In this section, we briefly present general aspect
of certification, then we expose steps that could
lead to difficulties in the certification of vision
based algorithms and expose some elements from
the state of art.
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2.1 General aspects of certification

The principal guidelines of the civil aeronautics
certification is provided by standards such as
ARP-4754A [2] and DO-178C [3]. To design a
new avionic high level function, the first point of
the design process consists in analyzing the im-
pact of this function in case of potential hazards.
This step is called functional hazard analysis
(FHA). For instance, if a failure of the function
could lead to endanger the aircraft or passenger
safety, the function will probably be classified as
”catastrophic”. It will be necessary to prove that
the probability for the failure of this function
during a flight hour is less than 10−9. This
FHA step will drive requirements that should
be verified by the implementation of the function.

Then, this high-level function is refined into
lower level functions and a preliminary functional
architecture is proposed. This architecture is
submitted to a preliminary system safety as-
sessment (PSSA). It verifies that requirements
from the FHA are fulfilled by the architecture.
If requirements are not fulfilled the architecture
should be consolidated or a new one should be
proposed.

Once a correct architecture is proposed, for
each item’s architecture a Deasign Assurance
Levels (DAL) is addressed. It drives hardware
objectives for the specific item and software
guideline activities to develop the function. The
highest critical level is of DAL A and the lowest
is of DAL E. For instance, in case of a DAL A
item, the software will be executed on different
hardwares reducing the risk of hardware failure
and ensuring the availability of the function at
every time.

During the design process, multiple tests have
to be defined to guarantee and verify that the
implementation of items is correct and fulfill
requirements at each level. Tests are driven by
the system safety assessment (SSA) to ensure the
availability and the performance of the function
in all identified scenarios.

This safety design process is used to develop
high level safety functions for civil avionic system.

2.2 Difficulties around certification
for VBS algorithms

The certification process ensures that the pro-
posed high-level function is correctly designed

and implemented following specific guidelines de-
pending on the level of criticality of the function.
Each sub-level item should verify specific require-
ments. However, in the case of computer vision
systems some aspects of the guidelines seem com-
plicated to satisfy, in particular in systems using
machine learning. The authors in [5] and [10] dis-
cuss on this problematic for adaptive systems. In
[4] the authors detail the certification challenges
on a specific VBS dedicated for two applications:
visual odometry and obstacle detection.
Considering this previous work and with regards
to the difficulties we encountered during our de-
velopment, we precise some points that seem dif-
ficult to answer considering the current certifica-
tion standards:

• Comprehensible requirements have to
be written. In computer vision applications
writing high level requirements - HLR (e.g.
detect a specific object) could follow the
usual process. However, writing lower level
requirements could be harder (e.g, explicit
evidences that characterize a given object in
all kind of environments).

• Verifiable requirements: In order to ver-
ify that a computer vision algorithm is cor-
rectly working, we have to present different
inputs in the system and verify that the out-
puts correspond to the desired ones. Ide-
ally, we would like to test all potential in-
puts. But, due to the high dimensionality of
images (2551024×768×3 ≈ 104718592 combina-
tions for 1024px ×768px color images) it is
not realistic to test all possibilities. Most of
these images are pure noise or not relevant.
A solution could be to provide a minimal
dataset, with a distribution of images close
to the real application. Furthermore, the
desired outputs have to be known for each
image tested. Manual labelling on a huge
dataset seems impossible and it raises an is-
sue on the accuracy on the labelling process.
When using automatic or semi-automatic la-
belling one has to prove that the algorithm
used for labelling is robust with regard to the
performance for the high-level function. Val-
idating an automatic labelling process raises
similar certification activities. Section 2.3
contain more details about the acquisition
of a test data set.

• Robustness: The recent advances in com-
puter vision (in particular with deep learn-
ing methods) have greatly enhanced perfor-
mance for many applications. However,these
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performances must be defined and evaluated
in particular in degraded conditions (fog,
rain, low illumination, etc.). In such condi-
tions with environmental hazards algorithms
could perform poorly. Avionic systems have
to operate correctly despite abnormal inputs
and conditions.

In addition the stability of the results have
to be considered. For a small variation in
the input image, computer vision algorithms
have to output the same value. There is
no evidence that computer vision algorithms
achieve this stability. In particular this case
appears with deep learning methods and ad-
versarial attack [11].

• Traceability: During the design process,
the requirements of a given level are broken
down into one or more requirements of the
next level. It has to be shown that each low
level requirement (LLR) corresponds to a re-
quirement of the higher level (HLR).

• Interpretability: This point is not essen-
tial for the process of certification but it ar-
gues about trustworthiness of the system and
helps to convince authorities about the via-
bility of the system. In order to trust a func-
tionality, each step of a function has to be
explained and must have its proper purpose
based on rationals. This is not true for ma-
chine learning based applications. Machine
learning learn to extract and process features
from the image through examples. Many
works have been done to explain which fea-
tures are extracted, how an interpretation is
generated from these features, especially for
deep learning methods [12]. However, this
aspect should be accepted for classic com-
puter vision algorithms.

2.3 Related works

To address these difficulties, many works have
been done, for example to ensure robustness
of algorithms, to discuss and propose methods
for the creation of test data sets and develop
solutions to interpret complex algorithms such
as convolutional neural networks.

To ensure robustness of algorithms (accuracy and
confidence on the output), methods have been
proposed to compute bounces of confidence [13].
These methods could be based either on the
demonstration of a formal proof that gives a guar-
antee about envelope of the algorithm output, or

on the execution of enough tests to cover all po-
tential use cases.

In computer vision, due to the complexity of al-
gorithms, the large variety of input images and
the lack of precise requirements, it is difficult to
develop formal proofs for applications. However,
this is already the case in many avionic systems.
This is why functions are tested on large data
tests. The construction of these test data sets
raises many interrogations. Since it is not feasi-
ble to test every images, it is necessary to select
pertinent scenarios to test algorithms. But algo-
rithms have to be tested in many corner cases, so
that acquiring real data for every desired scenario
is impossible. A solution consists in generating
synthetic images from simulators. Many works
have been done to provide image generators use-
ful to test computer vision algorithms for given
applications. For instance, we use OKTAL-SE
simulator. It generates color or infrared images
based on a physical model. However, there is a
gap between their simulated image and real im-
age, in particular in the level of detail for the
textures representation.

On the other hand, Zendel et al. [14] have pro-
posed a system of guide-words to quantify and
qualify hazards that could appear in computer
vision applications. Their works provided an
answer to ”Which situations should be covered
by the test data and have we tested enough to
reach a conclusion?”. By using CV-HAZOP,
in [15] and in [16] they propose a standard
procedure devised by the safety community to
validate complex systems.

In the next section, we describe our line detec-
tion algorithm, so that we could illustrate how
to deal with the verification of the properties
summarized here above.

3 Modular architecture of
our line detection method

As said previously, constructing an argument
of certification for VBS is a difficult task. This
section describes our methodology to construct
our line detector. We start by modeling the
problem using prior information. Then a general
architecture solving this problem. Finally we
describe each item in this architecture. Our prin-
cipal objective is to ease the certification process
by diminishing the complexity of verification and
validation on each item of our architecture.
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3.1 Problem modeling

As said in the previous section, an important
point to follow in the certification process is the
definition of requirements. The objectives of the
function (high level requirements - HLR) should
be as clear as possible. In our application, we
aim at detecting lines (ground marks). That is
why, we define the objectives of our function as
the following example: ”The function has to de-
tect ground marks that define lines for aircraft
ground navigation. The input of the function is
an RGB image acquired by an embedded cam-
era (typically in the fin or the cockpit as shown
in Figure 3) and parameters set from operational
concept. Internal and external parameters of the
camera are known. Lines have to be detected un-
til a desired distance to the camera. Output lines
will be defined by a set of points.”.

Figure 3: Input RGB image from the fin camera.

We start by constructing a model of the lines that
will help to fulfill HLR. We construct this model
by following some key points:

• Use the maximum of prior information to
select important regions of interest (ROI)
in the image. These regions have a high
probability of containing desired information
(presence or absence of ground marks). A
ROI is constructed by using the parame-
ters of the camera and the desired maximum
range. In practice, it will mask unwanted el-
ements like the aircraft (if the image is from
the fin camera) or the sky.

• Construct it in order to facilitate broken high
level requirements into lower level require-
ments. Construct a set of information that
represents the object and its evolution (spa-
tial and/or temporal). In our case, the HLR
specifies the output: a set of points. Thus,

we consider this set of points as the spatial
propagation of points that describe a line.
So, we have to detect a first point, define a
dynamic law that describes the propagation
of points, and precise an end criteria.

• Find and write most of the properties veri-
fied by the desired object in the image (size,
structure, texture, etc.). These properties
will help to verify that extracted informa-
tion is correct. These properties could also
help in writing an end criteria.

Figure 4: Model of a line.

Following these points, we model a line as a
spatial repetition of a pattern (Figure 4). The
pattern is considered known. The pattern will
repeat himself in the presence of some noise
(degradation, orientation, illumination variation,
deformation, etc.). This repetition is done in
respect to some properties provided by the In-
ternational Civil Aviation Organization (ICAO)
[17]: the curve made by central points of the
patterns must satisfy constraints. In addition,
depending on the illumination, the color of the
painting on each pattern should be close to
yellow [18]. The width of lines is known.

To describe a pattern in a thumbnail, we use a
state vector Xk = {(xk, yk), θk, sk}. (xk, yk) is
the position of the center of the thumbnail in
the image, θk is the orientation of element in the
thumbnail and sk is the size of the thumbnail
(considered as a square).
The evolution between state vectors is described
by a function g, where g uses the current state
vector Xk to update the next state vector Xk+1.
The update depends also on external factor noted
in an unknown noisy term Uk:

Xk+1 = g(Xk, Uk) (1)
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This function is unknown and we consider a sim-
plified model. We use the following equations to
update the variables inside the dynamic model:

xk+1 = xk + skcos(θk) (2a)

yk+1 = yk + sksin(θk) (2b)

θk+1 = θk (2c)

sk+1 = min(max(sk, a), b) (2d)

Where the constants a and b determine the min-
imal and maximum size of thumbnails. It mod-
els the line’s trajectory as a linear trajectory and
supposes the two variables sk and thetak are not
evolving. This model is not quite precise. But the
particle filter will correct the evolution of these
parameters according to the observations from
the image. In practice it is good enough to catch
simple line patterns. In the future, we plan to add
other variables to capture and describe environ-
mental perturbations (such as the illumination,
the principal color, etc.) and also enhance the
dynamic model to improve performances.

3.2 General architecture

Using this model, we split our specification into
three parts: find potential starting points of the
line, recognize a pattern of the line from a thumb-
nail described by a state vector and predict the
evolution of the pattern in the image. Each item
has its own requirements driven from HLR and
its own unit tests. The coverage of the HLR by
LLR is ensured by the model. Figure 5 shows
our design. Once the interface between modules
is defined, it is important to note that each part
can be developed independently.

Figure 5: Design and test of our model.

Following the key points expressed above and us-
ing our model, we propose a modular architecture
to detect lines from an image. The architecture
of the system is described in Figure 6. The main
point of our architecture is to separate prediction
from a model to information extracted from the

image (since the image can be considered as a
complex noisy signal). The proposed algorithm
works as follows:

1. The image is acquired by the camera and
considered as a representative data of the re-
ality.

2. Using the image, an initialization based on
simple assumptions (such as gradient, color
and position) will propose some initial con-
ditions (potential starts of lines) as an initial
state vector X0.

3. Using the initial condition and the dynamic
model of lines a filter will predict the next
state of the line X̂k+1.

4. The prediction will be sent to an observa-
tion function that will attribute a measure
corresponding to the probability of the cor-
rectness of the prediction X̂k+1 with regards
to the image and modeled feature of the de-
sired pattern.

5. Using the measures, the filter will update his
predictive model: X̂k+1 → Xk+1.

6. Until an end criterion is verified, the pro-
gram will repeat from step (3).

This algorithm detects one line. In practice, we
applied this algorithm many times to detect many
lines in the image. Some heuristics are used to
discard some elements like the ridges of the lines
(see Figure 3).

Figure 6: Simplified schema of our modular line
detection architecture.
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3.3 Description of modules

Now, we detail and explain our choice for each
module.

Initialization module. The initialization
function uses the image as input. It has to
propose potential starting points of a ground
line. To detect these starting points we de-
veloped an algorithm based on classical image
processing, using gradient and color prior from
the model of line. This algorithm is not detailed
in this paper. The robustness of this function is
low. However, in case of failure (wrong starting
point), the proposed point might be discarded
by the filtering and observation function. That
is why we favor recall over to precision.

Filtering module. To predict the next state
of the line, we have to estimate the solution
from the equation 1. To solve this equation
many filters can be used such as the Kalman
filter. However, in practice, that model is limited
due to the noisy term Uk. If the distribution
of Uk was Gaussian, the Kalman filter would
be a suitable solution. In our case, we choose
to use a particle filtering algorithm similar to
the one presented in [19]. Firstly because it
can solve this problem without knowledge on
the distribution of Uk. Secondly, to provide a
first analysis on problems encountered by the
certification process of particle filters. These
filters are useful for navigating, positioning
and tracking [20], they could be used in more
applications in the future. Since our project is
to put on the table new technologies, we made
the choice to construct our line detector using a
particle filter.

The particle filters are a set of Monte Carlo
algorithms. The objective is to compute the
posterior distribution of a stochastic process.
The first step is to create particles {Xn

k }N
n=1

from an initial prior distribution. Each particle
corresponds to an estimation of the state vector.
A weight wn

k is associated with each particle.
This weight corresponds to the confidence in
a particle to represent the actual real state.
The closer the particle is to the real state the
higher its weight is. In most systems using
particle filters the weight is computed by using
a measure provided from external sensors (such
as GPS or inertial sensor in the case motion
estimation). In our case, we define a sub-item
called ”observation module” that attributes a
weight to a particle using as input the image

and the variables contained in the particle. This
observation module is detailed below. Once all
particles have an associated weight, the particle
filter algorithm will re-sample particles using
the distribution created by {(Xn

k , w
n
k )}N

n=1.
More information about particle filtering can be
found in [21][22] and more about this particle fil-
tering method are provided in a french paper [23].

The principal advantage of particle filter algo-
rithms is their ability to solve nonlinear problems
tainted by a noise without prior knowledge about
this noise. The principal inconvenience of these
algorithms is the computing time. The more
a problem is complex, the more it will require
particles to compute a good estimation. We
don’t cover computation time problematic in our
approach. However, it could be possible to cover
this issue by adapting the amount of particles
depending on the confidence in the observation
module [24].

Observation module. Using a state vector
provided by the filter (through a particle), it se-
lects a thumbnail in the image (between 15 and
51 pixels depending on the variable sk in the state
vector), resize the thumbnail to 33×33 pixels and
attributes it a score. This score is between 0 and
1 and evaluates the pertinence of components in
the state vector in regard to the thumbnail. The
score is the product of the output of tree sub-
items:

• The first one is a binary classifier. It scores
the presence or absence of ground marks in
the thumbnail. After a preliminary study
[23], we selected a small convolutional neu-
ral network (CNN) as classifier. This choice
is also motivated to provide a real applica-
tion to use CNN in a restrained context con-
trolled by other elements. By using a CNN
at this part of the line detection method, it
permits to achieve correct result in the line
detection without using end-to-end CNN. To
train this CNN we constructed a dataset
of 4000 thumbnails with manual annotation
(50% positive and 50% negative). The score
used is directly the output of the classifier.
More details about the creation of the CNN
are provided in [23].

• The second item measures correlation be-
tween the orientation θk in the state vector
and the principal orientation in the thumb-
nail. We compute the orientation of the ele-
ment in the thumbnail using a method based
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on the Gabor filter.

• The last item measures the centering of the
line in the thumbnail using classical image
processing techniques such as gradient, color
processing, Otsu’s binarization and Hough
transformation. It extracts the principal
straight yellow lines in the thumbnail. Then
it computes a score (between 0 and 1) de-
pending on the projection of the center of
the thumbnail on the line equation.

The product of these scores produces the final
score that will serve as the weight for the particle
in the filter.
In the next section, we discuss the verification
and validation of these modules.

4 Certification Arguments
This section presents our arguments and thoughts
about the feasibility of the certification for this
architecture. This architecture proposes to re-
duce the amount of tests required to verify the
system by using unit tests on each item. The
principal assumption is: ”If each item works cor-
rectly the function works correctly”. This as-
sumption holds because high level requirements
are covered by lower level requirements. Each
item has a simple and comprehensive task. The
next parts develop discussion and arguments
about verifying whenever each item is doing its
task correctly.
This modular architecture should make the cer-
tification easier. The more an architecture is de-
composed on items the more we can hope to re-
duce the complexity of each item and facilitate
the creation of tests to verify performance of each
item. It also helps to implement monitoring sys-
tems. Each item can have its own monitoring sys-
tem and improve confidence on its results. In ad-
dition, when a module is changed (or improved)
the certification should be done for this module
only. It can significantly reduce certification cost
when updating a system.

4.1 Filtering module

From the point of view of certification, Monte
Carlo methods are often used to test algorithms
but are generally discarded in embedded avionic
systems. This is partially due to the fact that
these algorithms use random number generation
and one requirement for certification is repeata-
bility. However, it is possible to generate offline
a set of distributions that verify desired prior
distribution. In addition, some particle filter

algorithms use fewer random steps. A survey of
recent advances in particle filtering can be found
in [25].

Errors in the particle filter could occur depending
on three conditions. Firstly, if the dynamic model
is incorrect and does not match the real trajec-
tory of the line. Secondly, if the prior distribution
is not realistic (e.g. if the distribution has a huge
bias). Thirdly, if the measure provided by the
observation module is wrong and does not bring
information about the evolution of the dynamic
system. Figure 7 shows these potential errors.

Figure 7: Potential errors of the particle filter

To test and validate performances of the filter,
we build a generator of lines. An example of the
generated line is shown in Figure 8. In this gen-
erator, it is possible to compute the perfect mea-
sure (it is computed by checking if the position
of the particle is on the line or not and if the
orientation of the particle is correct or not). We
selected a prior distribution as a Gaussian distri-
bution, where the variance is fixed in regards to
the width of the line. These tests allow validating
that within our dynamic model and prior distri-
bution this method can follow line until a certain
curve and depending of the amount of particles.

Furthermore, authors have been conducting re-
search to prove the convergence of the particle
filter [26] or computing bound of errors in par-
ticle filtering algorithms depending on incorrect
model assumption [27]. Also, they have proposed
solutions to enhance the algorithm in presence of
noise and bias on the measure [28]. In regards
to the state of the art, it should be possible in
some situations to use formal proof to guarantee
confidence of the particle filter. Otherwise, the
feasibility of tests ensure the possibility to com-
pute performance on such algorithms.
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Figure 8: Example of test to validate the
particle filter under the proposed dynamic

model. In white the generated line. In green,
particles with high weight (positioned on the
line). In red particles with low weight (not on

the line).

4.2 Observation module

The observation module obtains as input a state
vector from the filtering module and an image
from the camera acquisition. It has to judge the
pertinence of the state describing a line pattern.
The first step of this module is to create a thumb-
nail by selecting a specific region of interest in
the image using information in the state vector.
Then it attributes a measure by combining the
result of three sub functions. The first one is a
classifier that predicts the presence or absence of
the desired pattern in the thumbnail. The second
one is a function that estimates the principal ori-
entation of elements in the thumbnail. And the
last is a function that estimates if the element is
centered in the thumbnail.

Classification. We provide here a minimal
scope to use deep learning methods. Instead
of using them to achieve complex tasks in high
dimensional images, we reduce the problem to a
simple binary classification of small thumbnails.
In addition, the output of the classifier does not
require a very high integrity. As said previously,
the filtering module accepts a part of error from
the measure. It is acceptable for the classifier to
make some wrong prediction.

In this context, it is still not possible to test the
classifier on every possible image (2563×33×33 ≈
107843). At the same time it should be possible
to compute confidence bounds for the classifier
by using methods proposed in the state of art.
For example, the Pac-Bayes theory [29], adver-

sarial method [11] or bounce generalization[30]
seem promising.
This part is still ongoing and at the moment the
only confidence in our classifier comes from a data
test consisting of approximately 4000 thumbnails
(50% positive and 50% negative). This dataset
is constructed by manual annotation and we lack
arguments in the confidence of this test. Figure
9 shows examples of thumbnails of the dataset.
Our convolutional neural network achieved 88.3%
of accuracy on training and 87.2% on the test
data set.

Figure 9: First line shows thumbnails considered
as positive. Second line shows thumbnails

considered as negative.

Orientation and center measure. The ori-
entation measure defines the general orientation
of a line in the thumbnail. The orientation is
found by filtering the thumbnail using the Gabor
filter on every possible orientation. The maxi-
mum response of the filter appears when the di-
rection of the line is in the same orientation that
the filter. In the case of absence of line in the
thumbnail, the response of the filter is not pre-
dictable. This function is checked from a dataset
similar to the one built for the classifier. In ad-
dition, because of the pattern of line, we can en-
sure that the Gabor filter has one of the best
response when the line is the principal element in
the thumbnail.
Another measure consists in determining when-
ever the line is or not in the center of the thumb-
nail. This is done by geometric image processing
without much difficulty. It is verified on the same
data set as for orientation measure.

4.3 Initialization

The initialization extracts features that lines
should verify: color, gradient and position as-
sumptions. From camera parameters we defined
the region of interests where the starting points of
the lines can be. In each region, we use color pro-
cessing to separate ”yellow” elements from oth-
ers. Then we use the morphological operator
and skeleton algorithm to select potential start-
ing points. Due to the use of color processing,
environmental hazards impact the result. To im-
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prove performance and robustness against illumi-
nation variation and other hazards, the defined
color ”yellow” is adapted in each region by using
a method proposed in [18]. In case of a false start-
ing point, other modules should detect and dis-
card this point (absence of ground marks, length
of line, etc.). It is still possible to miss a line be-
cause the minimal requirements are not fulfilled
(illumination, camera resolution, etc.).

4.4 Verification

The final verification is done qualitatively on real
images from different scenarios. Figure 10 shows
results to illustrate the function. Points of the
same color correspond to the result of the filter
at each iteration. Red curves correspond to the
quadratic regression of these points. Currently,
the system is not designed to be robust to oc-
clusion. As we can see, the initialization step
captures only three lines. Lines far away from
the camera are not detected because of this step.
The architecture is designed to reduce false pos-
itives (erroneous detection).

Figure 10: Results with our architecture.

5 Conclusion and future
works

This paper focuses on the design methodology of
vision based algorithms. We proposed a mod-
ular architecture for line detection applications
designed to ease the certification process. This
proposition avoids the use of end to end deep
learning methods. They seem to have better ac-
curacy but they are not compliant with the actual
certification process. The main interest of de-
composing vision architecture into smaller parts
is to facilitate the generation of tests. Each part
of the architecture has its own specifications and
its own test data set. In addition, it provides a
minimal restrained context where complex algo-
rithms, such as deep learning methods, could be

studied. Also, it should be easier to update and
improve components one by one.
To build this architecture, we propose a general
method describing the spatial or temporal dy-
namic of the visual object and decompose the
architecture into two parts. The first one will
predict features that should describe the object.
The second one will check in the image if this
feature corresponds to reality. This architecture
should work for object tracking.
We are currently working to build larger test
data sets and a monitoring system using tempo-
ral information (video processing). The question
about test data sets is still ongoing. The use of
guidelines such as CV-HAZOP helps the identi-
fication and construction of potential hazardous
scenarios. However, data from these scenarios are
not easily acquired and we have to base tests from
simulators. It raises the question about the cer-
tification of such simulators.
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