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I. INTRODUCTION

Occupational activities often expose individuals to signif-
icant biomechanical strains that may increase the risks of
musculoskeletal disorders (MSDs)[1]. Active exoskeletons are
a promising solution to reduce such risks when workers have
to manipulate heavy loads.

One problem with active upper-limb exoskeletons is to adapt
their assistance to the human motion to provide the correct
amount of physical assistance when needed. Any delay in the
assistance may be detrimental to the performance. Here, we
focused on predicting human motion intention for the control
of an upper limb exoskeleton. Intention prediction is usually
a problem of predicting future trajectories from observations.
It can be done with time series analysis and machine learning
techniques. The benefit of using prediction, for an actuated
exoskeleton, is to compensate actuation delay of the motor.

Probabilistic Movement Primitives (ProMPs) are skills
learning techniques able to reproduce complex motions and
encode human movement variability. It can be used to predict
human intention from early observations. One of the big
advantages is that they require little data for the training
compared to other methods, mostly deep learning methods
(between 10 and 30 demonstrations regarding the movement
complexity). This is more compatible with human-robot situ-
ations, because getting human subject data is ”expensive” and
time-consuming.

II. METHODS

The objective is to predict the required torque to assist a
human during a particular motion. The assistive torque can
compensate the exoskeleton, the payload and the human arm.
We can compensate all torques or only some of them regarding
the control strategy. In this paper, we focused only on the
compensation of the human and payload torques.

ProMPs are used in order to address the problem of
predicting user intention to determine the future trajectory,
from which the torque is computed. The proposed method is
summarized in Fig. 1. In an offline step, we build a database
of all the ProMPs associated to the movements to assist using
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a whole-body inertial motion capture (Xsens system) visible
in Fig. 1. In the online phase, the learned ProMPs are used
to predict the intended trajectory; then we use the Inverse
Dynamic (ID) to get an estimation of the human torque. The
training of the ProMPs and trajectory prediction is detailed in
[2] [3] [4].

To compute required torque from trajectory prediction, we
use RobotDART. RobotDART is a C++11 robot simulator
wrapping the DART physics engine. To replay Xsens data in
RobotDART, a Digital Human Model with 66 dofs (DHM66)
is used. DHM66 is a copy of the Xsens avatar. It has the
same degrees of freedom that allow a direct usage of Xsens’s
data without post-processing. The estimation of corresponding
torques of the dynamics of the human carrying a known
payload are computed using ID (1):

τH+p = M(q)q̈+B(q, q̇)+G(q)+J⊤
RHWRH+J⊤

LHWLH (1)

With τH+p human and payload torque, q joint angle, q̇ joint
velocity, q̈ joint acceleration, M(q) inertial matrix B(q, q̇)
Coriolis effects, G(q) gravity effects, J⊤

X Jacobian transposed
hand, WX payload applied to the hand, LH Left Hand, RH
Right Hand.

First, we compute the torques corresponding to the dy-
namics of the human and the external load. To do so, the
value of the inertial matrix, Coriolis effect and gravity effect
are computed by the physics engine and RobotDart. For the
value of position, velocity and acceleration there are given
by the recorded data from Xsens. In our case, the targeted
exoskeleton only assist the shoulder elevation and the elbow
flexion. Therefore, only the torque generated by the human
model for shoulders and elbows are computed.

III. EXPERIMENT

Kinematic data were collected on 5 participants wearing an
Xsens suit in order to train the prediction algorithms. This
experiment was validated by INRIA’s ethical committee (CO-
ERLE). 4 different gestures were performed corresponding to
different load carrying situations. The 5 participants performed
10 repetitions of each movement.

Data for each movement are segmented into 3 parts. To
generate ProMPs, segmentation of the kinematic data is a
necessary step. This reduces the variability between trials.
More complex movement requires more RBF to encode move-
ment, and increase the computational cost for both training and
prediction. For all movements, the same method was used.



Fig. 1: Global view of the proposed method

Shoulders and elbows joints torques values are computed
for each participant, taking into account the weight of the box
(3kg). Regarding the distribution of the weight of the box,
the hypothesis is a weight uniformly distributed between the
right hand and the left hand when the subject lifts the box.
Considering a weak influence on the joint torques of the upper
limbs, the forces exerted on the lower limbs are not taken into
account.

From the segmented kinematic data and the calculated joint
torques, the ProMPs could be generated as described in the
method.

IV. RESULTS

In Fig. 2 an example of continuous prediction is visible.
In such case, only the 1% next values of the prediction are
considered before making a new prediction and again took the
few next steps after the current observation.

A first result from the proposed pipeline in Fig. 1 is visible
in Fig. 3. In blue there is the predicted torque from a predicted
trajectory knowing initial 30% observation of the ground truth
(in pink).
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Fig. 2: Example of continuous prediction of human shoulder
position from observation every 1% of shoulder trajectory

Fig. 3: Example of a human predicted joint torque vs estimated
joint torque of right shoulder (flexion/extension) when carrying
a load.

CONCLUSION

ProMPs can be used to predict human intention with few
data for the training. At this stage, the prediction algorithm
has been mainly tested in simulation, by replaying collected
kinematic data. The next step is to test in real time in the
simulation. Then, the objective is to inject the prediction torque
or joint trajectory in the exoskeleton controller, similarly to
what has been done in [4].
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