
HAL Id: hal-03717874
https://hal.science/hal-03717874v1

Submitted on 8 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IDE-assisted visualization of indebted OO variability
implementations

Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna

To cite this version:
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. IDE-assisted visualization of indebted OO
variability implementations. 26th ACM International Systems and Software Product Line Conference
- Volume B (SPLC ’22), Sep 2022, Graz, Austria. �10.1145/3503229.3547066�. �hal-03717874�

https://hal.science/hal-03717874v1
https://hal.archives-ouvertes.fr


IDE-assisted visualization of indebted OO variability
implementations

Johann Mortara
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
johann.mortara@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Anne-Marie Pinna-Dery
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
anne-marie.pinna@univ-cotedazur.fr

ABSTRACT
Object-Oriented (OO) variability-rich software systems often imple-
ment their variability in a single codebase, using the mechanisms
provided by the host language (i.e., inheritance, overloading, design
patterns). This variability is not documented and buried deep down
in the code, thus impeding its identification and making it espe-
cially prone to variability debt at the code level. While this kind of
variability implementation can now be detected, visualization sup-
port such as VariCity helps architects and developers understand
the implemented variability using a city metaphor. In this paper,
we demonstrate VariMetrics-IDE, an extension of VariCity that al-
lows to visualize multiple quality metrics (e.g., code complexity,
test coverage) together with the variability implementations, while
supporting navigation between the source code and the visualiza-
tion in an IDE. This extension thus facilitates the identification of
zones of variability implementations with variability debt.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering; Object oriented architectures; •
Human-centered computing→ Visualization systems and tools.

KEYWORDS
software variability, technical debt, software visualization, quality
metrics, object-oriented systems, reverse-engineering
ACM Reference Format:
Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery. 2022. IDE-
assisted visualization of indebted OO variability implementations. In 26th
ACM International Systems and Software Product Line Conference - Volume B
(SPLC ’22), September 12–16, 2022, Graz, Austria. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3503229.3547066

1 INTRODUCTION
When they reach a larger scale, sofware systems mainly become
variability-rich [3] and use various mechanisms to implement their
variability. Introducing additional complexity, these variability im-
plementations are difficult to understand, maintain and test, which
leads to technical debt [4]. The debt caused by variability imple-
mentations has been defined as variability debt, while its different
forms are still to be determined Wolfart et al. [18]. Not following
the Software Product Line (SPL) paradigm, many object-oriented

SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 26th ACM
International Systems and Software Product Line Conference - Volume B (SPLC ’22),
September 12–16, 2022, Graz, Austria, https://doi.org/10.1145/3503229.3547066.

(OO) systems implement their variability in a single codebase, us-
ing the traditional OO mechanisms (i.e., inheritance, overloading
of methods and constructors, design patterns) [1]. The variability
is then intertwined with the structure and implementation of the
business code, and without traceability to the domain knowledge,
the identification and understanding of these variability implemen-
tations are hindered [13, 14]. Moreover, as the OOmechanisms may
cause technical debt, variability debt [18] is likely to be introduced
at the code level.

Some recent approaches such as symfinder and its extensions [8,
9, 13] detect potential variation points (vp-s) with variants in the
targeted systems. Dense zones of detected symmetries have also be
shown to represent interesting locations in terms of variability im-
plementations. As identification is quite cumbersome on large sys-
tems [9] the VariCity visualization, based on the city metaphor, was
proposed and validated on large Java variability-rich systems [6].
While this helps architects and developers understand the imple-
mented variability, no support was given to ease the browsing
between the code and this visualization. This is quite a strong lim-
itation as developers use Integrated Development Environments
(IDEs) as tools support to assist development and program compre-
hension activities [5]. Moreover, with some better knowledge of the
variability implementations, the need for determining their techni-
cal debt naturally arises. In a companion paper [7], the authors have
proposed VariMetrics, an extension of VariCity to display zones of
OO variability implementations with technical debt. It provides
additional visual properties on the buildings representing classes
to display some quality metrics, such as code duplication, code
complexity, and test coverage. VariMetrics was successfully applied
to several large open-source projects.

In this tool demonstration paper1 we present VariMetrics-IDE, an
IDE integration for VariMetrics that embeds the visualization in the
JetBrains IntelliJ IDE, enables its configuration through the IDE’s
menus. The developers can then use all the capabilities of Vari-
Metrics, including the display of OO quality metrics, as any other
IntelliJ plugin without getting out of the development environment.
Both configuration of the view and bi-directional navigation be-
tween the code and the buildings in the visualization are supported.
We expect this extension to facilitate the identification of zones of
variability implementations with variability debt.

1External information about VariMetrics-IDE consists in a video available at https:
//youtu.be/lRPK8nS5JMc and the experimental results from [7] available at
https://deathstar3.github.io/varimetrics-demo/.

https://doi.org/10.1145/3503229.3547066
https://doi.org/10.1145/3503229.3547066
https://youtu.be/lRPK8nS5JMc
https://youtu.be/lRPK8nS5JMc
https://deathstar3.github.io/varimetrics-demo/


SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

Root street

Entry point 
classes

Usage link

Crown =
design pattern

Methods 
overloads

Constructors 
overloads

Hotspot

Hotspot and
VP / variant

Figure 1: Main visual properties of VariCity, taken from [6].

2 IDENTIFYING OO VARIABILITY
IMPLEMENTATIONS

In variability-rich OO systems, the mechanisms used to implement
variability in a single code base , namely inheritance, overloading,
and design patterns, do not align well with domain features, making
their identification difficult. When these mechanisms are used to
implement some variability, they also exhibit a property of symme-
try [2, 15] since the commonality and variability addressed by the
mechanism also represent the unchangeable and changeable parts
in code assets. For example, inheritance allows us to factorize com-
mon parts (unchangeable) of multiple subclasses (the changeable
parts) into a superclass.

As the unchanged and changed parts can be abstracted in terms
of variation points (vp-s) with variants [12], a symmetry-based
identification approach has been previously proposed [15] and
tooled with the the symfinder toolchain [8]. The approach also
relies on the notion of density of symmetries in the code to reveal
the variability organization (i.e., vp-s with an important number of
variants at class or method level) [13] and display it in the shape
of a graph. To fix the lack of precision of this first approach in
symfinder [13], the usage relationships (type used as an attribute or
method parameter) has been taken into account with the definition
of a parameterized density measure that enables to automatically
reveal fewer but more relevant hotspot zones concentrating variabil-
ity implementations [9]. However, the resulting symfinder’s graph
visualization is then harder to interpret on large systems with two
types of relationships being displayed at the same time.

3 A CITY-BASED VISUALIZATION
3.1 VariCity
The city metaphor [16] has been applied to multiple types of met-
rics on software systems. In particular, CodeCity [17] and Evo-
Streets [11] rely on the city metaphor to represent quality metrics
on classes of an OO system. VariCity adapts the city metaphor to
exhibit density of variability implementations [6] (cf. fig. 1). Classes
are buildings whose dimensions evolve according to their method

level variability metrics (method variants for the height and con-
structor variants for the width), exhibiting variability concentration
at method level inside a class. As for design patterns, they usually
involve several classes, but only the identified vp is highlighted in
the visualization through a specific crown on the building.

The streets in the city shape it according to the usage relation-
ships, starting from entry point classes, representing interesting
points to explore the systems. These classes are positioned on a red
street and other streets represent usage relationships. Buildings are
placed by decreasing order of width on both sides of the street to
exhibit density between classes. Additional usage relationships are
represented as underground streets, and inheritance relationships
as aerial links, both displayed when hovering a building. To make
the hotspot zones of variability detected by symfinder (see previous
section) noticeable, they are displayed in color (vp-s in yellow and
variants in blue).

The visualization is itself configurable through several parame-
ters, the first one being the entry point classes, more entry points
tends to generate a larger city to explore. The classes displayed
are also dependent on the usage orientation (IN to include only
classes using the entry points, OUT for the reverse usage, IN/OUT
for both ways) and the usage level (the number of hops from the
entry points over the usage links).

3.2 Limitations
The visualization provided by VariCity shows multiple improve-
ments compared to the graph visualization of symfinder-2. Using a
navigable 3D representation of a city where the buildings exhibit
the different variability metrics and are grouped by usage allows to
better grasp the organization of the classes [6]. Inheritance and ad-
ditional usage relationships are displayed on hover not to overload
the visualization. However, it still exhibits limitations to be used in
practice on very large systems.

Firstly, variability implementations hamper the quality of a sys-
tem and potentially create variability debt [18], especially since
OO variability implementations have no dedicated mechanism and
are therefore hidden in the codebase. With VariCity, understand-
ing this debt would require to use additional tools extracting and
visualizing quality metrics (such as SonarQube2 that embeds the
CodeCity [17] and Evo-Streets [11] visualizations) on the side and
manually map those two sources of information. As these cities are
shaped differently (the classic ones being shaped through package
decomposition), the simultaneous usage of VariCity and one of
these visualizations would be cumbersome, especially when experi-
menting with multiple metrics.

Secondly, VariCity is configured relying on knowledge from the
codebase (e.g., names of the entrypoint classes). Developers usu-
ally rely on an Integrated Development Environment (IDE) as tool
support for assisting development and program comprehension
activities [5]. Therefore, a user would need to manually input infor-
mation from their IDE in VariCity and then go back to it to explore
the classes exhibited by the visualization, implying important con-
text switching. According to these limitations, we advocate that
VariCity’s usability would be improved by (i) displaying quality
metrics and (ii) being embedded into an IDE.

2https://www.sonarqube.org/

https://www.sonarqube.org/


IDE-assisted visualization of indebted OO variability implementations SPLC ’22, September 12–16, 2022, Graz, Austria

Figure 2: VariMetrics-IDE visualization of JFreeChart. The white and violet boxes have been manually added on the figure.

4 VISUALIZING QUALITY METRICS IN
VARIMETRICS-IDE

As OO quality metrics are usually individual measures on the
classes, we have to determine how to improve the VariCity vi-
sualization. VariCity displays in yellow vp-s being hotspots, in blue
variants being hotspots, and in grey classes not being hotspots
(fig. 1). However classic quality-centric cities, such as CodeCity and
Evo-Streets, simply color the buildings to expose properties inher-
ent to the classes [10, 17]. In VariMetrics, three display strategies are
thus introduced to handle quality metrics. First, buildings can be
colored following a red-to-green sequence (fade). Second, a satura-
tion can be applied for keeping the original colors of the buildings
and lightening or darkening them (intensity). Finally, a crackled
texture (cracks) can be applied over the building with different levels
of cracks, allowing to combine metrics on a single view.

Since there is no single definition of quality and each user might
be interested in different metrics, VariMetrics-IDE allows to con-
figure the view. The user can select and combine the desired qual-
ity metrics on the different visual axes to visualize them simul-
taneously. Combining adequate metrics allows to exhibit critical
classes concentrating variability implementations. Relying on work
from Wolfart et al. [18], it results that OO systems implementing
their variability in a single codebase are prone to exhibit variabil-
ity debt as code duplication, lack of tests, and increased cognitive
complexity.

The VariMetrics visualization has been quantitatively evaluated
on seven industrial open-source projects from several thousands to
2.4MLoC. Using these metrics, the exhibited classes were both criti-
cal and concentrating variability implementations [7]. A qualitative
evaluation was also conducted on the JFreeChart project, with the

refactoring of the indebted zones detected by VariMetrics. An exam-
ple of exhibited classes is visible on fig. 2, where the two classes in
the white dotted box, CategoryPlot and XYPlot, exhibit multiple
method overloads (due to their height) and little test coverage (due
to their cracks). Refactoring those classes led to an improvement of
those classes and the project’s overall quality [7]. More details on
this evaluation are available on VariMetrics webpage3.

5 SEAMLESS NAVIGATIONWITH THE CODE
Although VariMetrics-IDE can be used as a standalone application
in a web browser, an integration is provided for the popular IDE
JetBrains IntelliJ IDEA4. As the goal of this integration is to min-
imize the interactions out of the development environment, the
integration embeds all the interactions needed to configure and use
VariMetrics-IDE. As shown on fig. 2, the visualization is embedded
in a panel in the IDE window and provides controls over symfinder
and VariMetrics-IDE (see violet boxes in fig. 2). It also allows the
execution of the whole toolchain as detailed in section 4 from the
editor’s window.

Additionally, bidirectional navigation between the visualization
and the code is provided to ease transitioning between the code
and its visual representation. On one side, it is possible to select
multiple buildings in the visualization and to open their sources
as tabs in the IDE. On the other side, IntelliJ’s context menu has
been enriched, and right-clicking on a class in the Project sidebar
or on the name of the class in the editor panel proposes a Focus
on This Class button, zooming the visualization on the desired
class, and another entry to add or remove a class from the entry

3https://deathstar3.github.io/varimetrics-demo/
4https://www.jetbrains.com/idea/

https://deathstar3.github.io/varimetrics-demo/
https://www.jetbrains.com/idea/


SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

VariMetrics-IDE

symfinder

Single Java codebase

parsing & identifying 
variability implementations

Quality metrics source

gathering variability metrics

fetching quality metrics

Online API

Local server

IntelliJ IDEA

code ↔ variability navigation

Figure 3: Description of VariMetrics-IDE.

points list. Finally, the plugin settings window allows to configure
the usage level and usage orientation, and to browse the classes
of the project to add them as entry points. It also embeds all the
configuration capabilities of VariMetrics.

Although we did not conduct an experiment with real users to as-
sert the quality of the integration, interactions have been designed
following the IntelliJ Platform UI Guidelines5 to ensure visual ho-
mogeneity in the editor, thus giving us confidence in its usability.
In our own experience with the IDE integration, all exploration
tasks conducted in the validation of the metrics part described in
the previous section were heavily facilitated.

6 IMPLEMENTATION
Figure 3 describes the integration of VariMetrics in the analysis
toolchain based on symfinder . First, symfinder [8, 9] parses the
codebase to automatically identify the symmetries and, relying on
them, the vp-s and variants. Then, quality metrics are extracted
either from the SonarCloud6 profile page of the project if available,
or else from a local SonarQube server that is run locally. Vari-
Metrics then combines the variability and quality information to
render the visualization using the Babylon.js 3D library. Outside
an IDE, the resulting view is deployed with Webpack and requires
only a web browser to be viewed. All the toolchain components
(symfinder , metrics fetching and VariMetrics) are packed in several
Docker images to ease reuse of all or parts of the toolchain. The
IDE integration is developed using the IntelliJ Platform SDK7 and
is installed as any other plugin for the IDE.

7 CONCLUSION
VariMetrics-IDE enhances the VariCity visualization by allowing to
exhibit quality metrics as additional and configurable visual prop-
erties on the buildings. Displaying in a single representation vari-
ability and quality information allows to spot zones concentrating
variability implementations and being less reliable. The visualiza-
tion and its configuration are embedded in the JetBrains IntelliJ
IDEA IDE to limit the interactions outside the developers working

5https://jetbrains.github.io/ui/
6https://sonarcloud.io/
7https://plugins.jetbrains.com/docs/intellij/welcome.html

environment. Bidirectional browsing between the visualization and
classes in the code is supported.

As future work, we aim to conduct an empirical evaluation of
VariMetrics-IDE with real architects and developers to validate our
approach and tooling, but also to better understand the industry
needs and expectations for such tools.

ACKNOWLEDGMENTS
We thank Patrick Anagonou, João Brilhante, Charly Ducrocq, Lu-
dovic Marti, Guillaume Savornin and Anton van der Tuijn for their
contribution in the development of VariMetrics-IDE.

REFERENCES
[1] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software

variability management. Concepts Tools and Experiences (2013).
[2] James O. Coplien and Liping Zhao. 2000. Symmetry Breaking in Software Pat-

terns. In International Symposium on Generative and Component-Based Software
Engineering (GCSE 2000). Springer, Springer, 37–54.

[3] Matthias Galster. 2019. Variability-Intensive Software Systems: Product Lines and
Beyond. In Proceedings of the 13th International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS ’19). ACM, 1–1.

[4] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[5] Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I Know What You Did
Last Summer - An Investigation of How Developers Spend Their Time. In 2015
IEEE 23rd International Conference on Program Comprehension. IEEE, 25–35.

[6] JohannMortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visualization
of Object-Oriented Variability Implementations as Cities. In 2021 Working Con-
ference on Software Visualization (VISSOFT). Luxembourg (virtual), Luxembourg,
76–87.

[7] Johann Mortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2022. Customiz-
able Visualization of Quality Metrics for Object-Oriented Variability Implemen-
tations. In Proceedings of the 26th International Systems and Software Product Line
Conference (SPLC ’22), Vol. Volume A. ACM, Graz, Austria, 1–12.

[8] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2019. symfinder: A
Toolchain for the Identification and Visualization of Object-Oriented Variability
Implementations. In the 23rd International Systems and Software Product Line
Conference, Vol. B. ACM Press, Paris, France, 5–8.

[9] Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Dery-
Pinna. 2021. Extending the Identification of Object-Oriented Variability Imple-
mentations using Usage Relationships. In SPLC 2021 - 25th ACM International
Systems and Software Product Line Conference, Vol. Volume B. ACM, Leicester,
United Kingdom, 1–8. https://doi.org/10.1145/3461002.3473943

[10] Frank Steinbrückner and Claus Lewerentz. 2010. Representing development
history in software cities. In Proceedings of the 5th international symposium on
Software visualization. 193–202.

[11] Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolu-
tion with software cities. Information Visualization 12, 2 (2013), 200–216.

[12] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. 2005. A taxonomy of variability
realization techniques. Software: Practice and experience 35, 8 (2005), 705–754.

[13] Xhevahire Tërnava, Johann Mortara, Philippe Collet, and Daniel Le Berre. 2022.
Identification and visualization of variability implementations in object-oriented
variability-rich systems: a symmetry-based approach. Journal of Automated
Software Engineering (Feb. 2022), 1–52.

[14] Xhevahire Tërnava and Philippe Collet. 2017. Tracing Imperfectly Modular
Variability in Software Product Line Implementation. In International Conference
on Software Reuse (ICSR ’17). Springer, 112–120.

[15] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
visualizing variability in object-oriented variability-rich systems. In the 23rd
International Systems and Software Product Line Conference. ACM Press, Paris,
France, 231–243. https://doi.org/10.1145/3336294.3336311

[16] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
In 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 92–99.

[17] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-
scale software. In Companion of the 30th international conference on Software
engineering. 921–922.

[18] Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021.
Variability Debt: Characterization, Causes and Consequences. In XX Brazilian
Symposium on Software Quality. 1–10.

https://jetbrains.github.io/ui/
https://sonarcloud.io/
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://doi.org/10.1145/3461002.3473943
https://doi.org/10.1145/3336294.3336311

	Abstract
	1 Introduction
	2 Identifying OO variability implementations
	3 A city-based visualization
	3.1 VariCity
	3.2 Limitations

	4 Visualizing quality metrics in VariMetrics-IDE
	5 Seamless navigation with the code
	6 Implementation
	7 Conclusion
	Acknowledgments
	References

