
HAL Id: hal-03717858
https://hal.science/hal-03717858v1

Submitted on 25 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Customizable Visualization of Quality Metrics for
Object-Oriented Variability Implementations

Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna

To cite this version:
Johann Mortara, Philippe Collet, Anne-Marie Dery-Pinna. Customizable Visualization of Qual-
ity Metrics for Object-Oriented Variability Implementations. 26th ACM International Systems
and Software Product Line Conference - Volume A (SPLC ’22), Sep 2022, Graz, Austria.
�10.1145/3546932.3547073�. �hal-03717858�

https://hal.science/hal-03717858v1
https://hal.archives-ouvertes.fr

Customizable Visualization ofQuality Metrics for
Object-Oriented Variability Implementations

Johann Mortara
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
johann.mortara@univ-cotedazur.fr

Philippe Collet
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
philippe.collet@univ-cotedazur.fr

Anne-Marie Pinna-Dery
Université Côte d’Azur, CNRS, I3S

Sophia Antipolis, France
anne-marie.pinna@univ-cotedazur.fr

ABSTRACT
Many large-scale software systems intensively implement vari-
ability to reuse software and speed up development. Such mech-
anisms, however, bring additional complexity, which eventually
leads to technical debt, threatening the software quality, and ham-
pering maintenance and evolution. This is especially the case for
variability-rich object-oriented (OO) systems that implement vari-
ability in a single codebase. They heavily rely on existing OOmecha-
nisms to implement their variability, making them especially prone
to variability debt at the code level. In this paper, we propose Vari-
Metrics, an extension of a visualization relying on the city metaphor
to reveal such zones of indebted OO variability implementations.
VariMetrics extends the VariCity visualization and displays standard
OO quality metrics, such as code duplication, code complexity, or
test coverage, as additional visual properties on the buildings rep-
resenting classes. Extended configuration options allow the user to
choose and combine quality metrics, uncovering the critical zones
of OO variability implementations. We evaluate VariMetrics both by
reporting on the exposed quality-critical zones found on multiple
large open-source projects, and by correcting the reported issues
in such zones of one project, showing an improvement in quality.

CCS CONCEPTS
• Software and its engineering → Software product lines;
Software reverse engineering; Object oriented architectures; •
Human-centered computing→ Visualization systems and tools.

KEYWORDS
software variability, technical debt, software visualization, quality
metrics, object-oriented systems, reverse-engineering
ACM Reference Format:
Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery. 2022. Cus-
tomizable Visualization of Quality Metrics for Object-Oriented Variability
Implementations. In 26th ACM International Systems and Software Product
Line Conference - Volume A (SPLC ’22), September 12–16, 2022, Graz, Austria.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3546932.3547073

1 INTRODUCTION
The constantly increasing demand for software solutions constraints
software practitioners to develop and maintain customizable soft-
ware systems that can be delivered at high-rate while assuring

SPLC ’22, September 12–16, 2022, Graz, Austria
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in 26th ACM
International Systems and Software Product Line Conference - Volume A (SPLC ’22),
September 12–16, 2022, Graz, Austria, https://doi.org/10.1145/3546932.3547073.

an optimal level of quality and security. In this context, monitor-
ing quality is crucial for the maintenance and evolution of such
systems [53]. For example, projects managed using Agile method-
ologies define specific requirements to describe the desired qualities
of the system [9, 94] and limit technical debt (i.e., the impact on
the system’s maintainability and evolution [5]). While technical
debt covers diverse aspects of the software and its development
ecosystem [46], its identification at the implementation level is
mainly done through code analysis (e.g., by computing metrics or
identifying a lack of tests [50]).

Such large-scale configurable systems are variability-rich [28,
29, 35] and make use of various mechanisms to implement their
variability, for instance, annotative approaches (e.g., preprocessor
directives [51]) or aspects [56]. Most annotative mechanisms, how-
ever, are known to impede the quality of the software in multiple
aspects, especially by bringing additional complexity [30] and pol-
luting the code [47, 55], thusmaking the code difficult to understand,
maintain and test [54], and leading to technical debt [50]. The stud-
ies of technical debt due to variability implementations led to new
definitions [1, 58] and adaptations of standard definitions [24, 78]
to consider variability mechanisms. Very recently, Wolfart et al.
[95] reformulated the technical debt caused by variability imple-
mentations under the definition of variability debt.

Many variability-rich systems, however, do not follow a com-
plete SPL approach and do not rely on the previously cited mech-
anisms to implement their variability. This is especially the case
of object-oriented (OO) systems that often implement their vari-
ability in a single codebase, using the traditional OO mechanisms
(i.e., inheritance, overloading of methods and constructors, design
patterns) [12, 27, 82]. This absence of dedicated implementation
mechanisms causes the variability to be intertwined with the imple-
mentation, hampering its identification, analysis, and understand-
ing as there is no traceability with domain information [83, 85].
Being completely dependent on mechanisms causing technical debt,
such systems are prone to introduce variability debt [95] at the code
level, calling for a solution to better identify and understand it.

On one side, multiple tools and approaches exist to compute met-
rics on an OO codebase, analyze its quality [50, 72], and determine
technical debt [6]. Such metrics are often exploited in visualiza-
tions [14, 50], such as CodeCity [90] and Evo-Streets [80] that are
now bundled in reference code analysis tools such as SonarQube1.
Such visualizations, however, do not allow displaying the use of OO
variability implementations mechanisms. Even in case some experts
have good knowledge of the implemented variability of their sys-
tem, they will need to observe the quality of the concerned classes

1https://www.sonarqube.org/

https://doi.org/10.1145/3546932.3547073
https://doi.org/10.1145/3546932.3547073
https://www.sonarqube.org/

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

one by one. On the other side, a first approach to identify OO vari-
ability implementations has been proposed by Tërnava et al. [86],
abstracting the OO mechanisms in terms of variation points (vp-s)
and variants relying on the notion of symmetry [18, 96] to auto-
matically identify zones with a high density of potential variability
implementations [62]. Mortara et al. [59] then proposed VariCity, a
city-based visualization to ease their identification. However, this
visualization does not provide information on the quality of the
system’s classes and experts must rely on other tools to observe
more closely the quality of the classes highlighted by VariCity.
Furthermore, navigating between VariCity and a metric-specific
tool would be cumbersome as it would require manually finding
and mapping information having heterogeneous representations.
Therefore, to the extent of our knowledge, no solution exists to
visualize technical debt in OO variability-rich systems.

In this paper, we propose VariMetrics, an extension of VariCity
to support software quality metrics and reveal critical zones con-
centrating variability implementations prone to cause variability
debt in the context of a single OO codebase. As determining a rele-
vant quality measure relies on numerous factors [44], practitioners
need to define relevant indicators for each system relying on the
profusion of existing metrics [15]. Thus, VariCity’s configuration
capabilities have been extended to enable one to compose state-of-
the-art OO quality metrics as visual properties on the buildings,
which are the classes of the project. We report on the evaluation of
VariMetrics, which was first applied to seven open-source software
systems to show that it reveals quality-critical zones of variability
implementations (section 5.1). We also assess the relevance of the
indebted classes identified in one project by improving a subset of
these classes and their tests, thus showing a global improvement of
the project’s quality (section 5.2).

The rest of the paper is organized as follows. Section 2.1 intro-
duces the motivations for our work. Section 2.2 details related work
on OO variability implementations and quality metrics, as well as
their associated visualizations (VariCity and CodeCity). Section 3
gives background on the identification of OO variability implemen-
tations and on how VariCity uses them to build its visualization.
We then present VariMetrics and how it extends VariCity to support
quality metrics in section 4. We evaluate our approach (section 5)
and discuss threats to the validity and limitations in section 6. Fi-
nally, section 7 concludes the paper while presenting future work.

2 MOTIVATIONS
Software quality is an important field of research due to its broad
impact on the software development cost [77]. In the domain of
OO systems, multiple works focus on determining software quality
metrics [11, 26, 41, 54, 57, 73], measuring the system evolution [34,
75], and validating the relevance of these metrics [43, 66]. Quality
metrics have been recognized as useful for determining technical
debt at the code level, i.e., expedient but costly on the long term
implementation constructs, primarily hampering maintainability
and evolvability [5, 50].

2.1 Problem statement
Wolfart et al. [95] defined variability debt as "Technical debt caused
by defects and sub-optimal solutions in the implementation of vari-
ability management in software systems". They studied 52 industrial
case studies reporting technical debt issues on variable software
systems with the following main results:
1. the lack of knowledge of the implemented variability, as well as
the absence of traceability, causes variability debt;
2. the absence of known variability implementation mechanisms is
prone to cause artifact duplication, an increase of code complexity,
and a "disappearance of links between implementation artifacts to
business values" [22];
3. variability debt mainly impacts source code artifacts;
4. variability debt causes inability to systematically deal with cus-
tomization and poor overall internal quality, complicating mainte-
nance for the development team.

This work focuses on the identification of the part of variability
debt dedicated to object-oriented variability implementations.Many
large object-oriented systems are naturally variability-rich but they
do not follow a systematic approach to manage variability as in the
SPL paradigm [4, 70]. Consequently, they do not define features
at a domain level in a formal model, and these features are not
consistently documented or made explicit in the code assets. While
some organizations adopt a clone-and-own approach [31, 74] to
handle variability, with many disadvantages [23, 32], our work
focuses on object-oriented variability-rich systems that manage
variability in a single codebase.

In such systems, code assets are structured into three distinct
parts, the core being assets included in all software products, com-
monalities being the common part between the related variations of
code assets, and variations representing how and when code assets
vary [7, 17, 35, 87]. Variation points (vp-s) and variants are concrete
constructions in the code assets that usually abstract respectively
the commonality and variation parts [20, 39, 40, 71]. A vp references
one or more locations at which the variation is going to happen,
while the variants express how the variation point varies [39].

In a single OO codebase, vp-s and variants can be implemented
through diverse mechanisms already present in the language, such
as inheritance, parameters, constructor and method overloading,
or variability-related design patterns (e.g., strategy, factory, tem-
plate) [12, 27, 82, 84]. Recently, an approach based on detecting
symmetries in OO mechanisms [18, 96] was proposed to identify
these variability implementations without prior explicit knowledge
of features [86]. Although it can abstract potential vp-s and variants,
Mortara et al. [62] extended it to identify interesting zones of a high
density of variability implementations. In a follow-up work, they
rely on a city metaphor, known to help in software understand-
ing [45], and provide VariCity, a visualization to ease identification
(see section 3 for more details).

While the object-oriented variability implementations can be
more easily identified, they are especially prone to technical debt
at the source code level. They are directly reusing traditional mech-
anisms and variability code is then intertwined with the rest of the
implementation code [83, 85]. Measuring their quality is thus cru-
cial, and using quality metrics is then a natural way [50, 72] to deter-
mine technical debt [6], especially through visualizations [14, 50].

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations SPLC ’22, September 12–16, 2022, Graz, Austria

To structure our definition of the problem, we define a general
usage scenario that will drive our studies and design choices in
the remainder of the paper. From the quality point of view, it has
been shown that, in an agile context, team members involved in
quality requirements definition correspond to senior profiles [2, 9].
Therefore, they represent advanced developers that have enough
knowledge of the system to have an overview of the implemented
domain, as well as of quality to design quality requirements. In
the following, we identify such people as "experts". According to
our analysis above, we phrase the scenario as follows: the expert
wants to analyze the quality of the variability implementations to
potentially identify OO variability debt.

2.2 Related Work
Object-oriented metrics and visualization. Tools have been de-

veloped to automatically analyze OO codebases and extract qual-
ity metrics [49], such as SonarQube2, one of the most frequently
used open-source code analysis tools, adopted by more than 200K
developer teams, including more than 250K public open-source
projects on its cloud version SonarCloud3. Not only the metrics
are extracted, but a set of customizable rules gives more precise
insights into the defects detected, and how to correct them [48, 68].
Finally, a set of plugins complete the tool to provide improved ex-
ploitation of the extracted metrics, such as advanced visualization
solutions. One of them is SoftVis3D4, which embeds CodeCity [90]
and Evo-Streets [79], two popular visualizations relying on the city
metaphor [89] to represent the system and its quality metrics. Fig-
ure 1 illustrates the two visualizations on the GeoTools project5, an
open-source Java library for geospatial data management. Classes
are represented as buildings and their width, height, and color are
used to display the quality metrics, making discernible classes max-
imizing these metrics. Districts in CodeCity (fig. 1a) and streets in
Evo-Streets (fig. 1b) represent the decomposition in packages. As
such visualizations have proven to help the comprehension of a
system’s quality [93], multiple other city-based visualization ap-
proaches for quality have been proposed [25, 69, 91]. However, none
of them allows displaying information on the system’s variability.

Object-oriented variability visualization. While visualizations for
properties of variable systems are focused on systems organized as
an SPL or making use of annotative approaches for which features
are known [3, 10, 33, 42, 52], little work exists on visualization of
OO variability implementations. symfinder [62] proposes a graph
visualization displaying the information output by its symmetry-
based detection of variability implementations. Nodes represent
classes, linked together by edges, being inheritance relationships.
The color and size of a node evolve according to the number of
constructor and method overloads respectively. symfinder was later
extended to take into account usage relationships between classes
with symfinder-2 [64] and the visualization was also extended by
displaying such relationships as dashed arrows.

2https://www.sonarqube.org/
3https://sonarcloud.io/explore/projects
4https://softvis3d.com/
5https://www.geotools.org

(a) CodeCity view (b) Evo-Streets view

Figure 1: Views of GeoTools, using cyclomatic complexity as
footprint, # LoC as height, and complexity as color.

Recently Mortara et al. [59] proposed VariCity, a visualization re-
lying on the citymetaphor to display the information from symfinder-
2. An example of generated visualization is shown in fig. 2. As with
CodeCity and Evo-Streets, a class is represented by a building. The
dimensions, however, represent the class-based metrics related to
variability (cf. section 3.1). Streets departing from a building repre-
sent a usage relationship between this class and every other class
whose building is on the street. Therefore, the discernible classes
are the ones concentrating variability implementations. For ex-
ample, FilterFactoryImpl is shaped as a skyscraper due to an
important number of method overloads (141). Its goal is to cre-
ate filters allowing to select zones from a map6. The large strat-
egy is Query (10 constructors), which uses filters to query infor-
mation from a data source. On the opposite, FilterVisitor is
not very variable in itself but uses all the implemented filters,
in the blue dotted box, noticeable by being a long street. Color-
ing the hotspot classes not only emphasizes the filters having
more variants, but also exhibits some isolated classes, for example
NumberRange, which implements a numerical range of values. On
the opposite, the two red classes exhibited in fig. 1 because of their
too high cyclomatic complexity (gml311.DocumentRootImpl and
gml311.Gml311PackageImpl) are not visible in fig. 2 as they are
not part of zones concentrating variability implementations. More
details on the organization of the visualization are given in sec-
tion 3.2. VariCity, however, does not display information related to
the software quality of the displayed classes.

Summary. Consequently, to the extent of our knowledge, no
solution exists to visualize at the same time, for an OO system,
its variability implementations, and quality metrics over them. As
the cities of VariCity and Evo-Streets are shaped differently, the
simultaneous usage of both visualizations would be cumbersome,
especially when experimenting with multiple metrics. This thus
calls for a unified but customizable visualization and we propose to
extend VariCity to incorporate quality metrics over a variability-
centric visualization.

3 BACKGROUND
In this section, we give background details on how OO variability
implementations are identified and how VariCity, which we ex-
tend in this work, exploits this information to provide a dedicated
visualization.
6https://docs.geotools.org/latest/userguide/library/main/filter.html

https://www.sonarqube.org/
https://sonarcloud.io/explore/projects
https://softvis3d.com/
https://www.geotools.org
https://docs.geotools.org/latest/userguide/library/main/filter.html

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

org.geotools.filter.
FilterFactoryImpl

org.geotools.data.
Query

org.opengis.filter.
FilterVisitor

org.geotools.util.
NumberRange

org.geotools.data.jdbc.FilterToSQL

Figure 2: VariCity visualization of GeoTools.

3.1 Identification of OO variability
implementations

The concept of symmetry has been studied in software [16, 18], and
especially in mechanisms of object-orientation, such as inheritance,
overloading, and design patterns, which can all be interpreted as
forms of symmetry [19, 96]. Taking a codebase as a whole, Tërnava
et al. [86] have shown that these implementation techniques can be
seen as local symmetries, which allow a part of code to change while
another part remains unchanged. Detecting seven techniques (class
as type, class subtyping,method and constructor overloading, strategy,
template, decorator, and factory patterns) in Java and C++ code with
the symfinder toolchain [61, 62], the authors have also shown that
the location where they are detected (mainly classes) represent
accurate potential vp-s and variants [86].

The identification is facilitated in zones where variability imple-
mentation is dense because several techniques are used together, or
a technique is heavily used (e.g., many methods being overloaded)
in a set of classes related by their usages (e.g., one being attribute or
method parameter of another) [64]. These zones have been defined
as hotspots in the last version of the symfinder toolchain [64, 83]
with direct relation to the computed variability metrics7 (e.g., num-
ber of overloaded methods, number of subclasses). A follow-up
work has also shown that the detected OO variability implemen-
tations can be successfully mapped to domain features when they
are available [63].

3.2 Visualization support in VariCity
3.2.1 Visualization dimensions. In VariCity, the city representing
the system is organized to exhibit the classes concentrating variabil-
ity implementations. A tall building shows an important number
of method variants (e.g., FilterFactoryImpl in fig. 2), whereas a
large building shows an important number of constructor variants
(e.g., Query), exhibiting variability concentration at method level
inside a class. Identified design patterns have a crown on their
7It must be noted that these metrics are used to identify variability, but are not quality
metrics like code complexity or test coverage.

building (e.g., FilterFactoryImpl is a Factory, whereas Query is
a Strategy) 8. The placement of the buildings by decreasing order
of width on both sides of the street allows for exhibiting density
between classes. Additional usage relationships are represented as
underground streets, and inheritance relationships as aerial links,
both displayed when hovering a building. Finally, classes being part
of hotspots are displayed in color (vp-s in yellow and variants in
blue) to make them easily noticeable.

3.2.2 Configuration capabilities of the visualization. Three param-
eters allow configuring the view. First, some classes selected by the
user to represent points of interest of a system (e.g., API endpoint,
. . .) can be defined as entry point classes to start its exploration.
Then, the usage orientation determines whether buildings on a
street are using the class initiating the street (orientation IN), or
used by it (orientation OUT), or both (orientation IN/OUT). Finally,
the usage level can be set to define the maximum number of hops
to be traversed in the usage relationships from the studied classes
(starting from entry points) to other classes to be displayed. With a
usage level of 𝑛, all classes distant from an entry point by 𝑛 usage
relationships will be displayed.

The city is shaped by first aggregating the entry point classes
on a red street. Then, starting from them, classes using (or being
used by) them up to the usage level set are displayed. For example,
a visualization set up with one entry point, usage orientation IN,
and usage level of 2 will display the entry point, the classes using
the entry point, and the classes using these classes. To generate
fig. 2, VariCity has been configured to use SimpleFeatureSource9
and MapContent10 as entry points. The usage orientation has been
set to OUT, and the usage level to 4.

8Although design patterns often involve multiple classes, the crown is only present on
the vp of the design pattern.
9org.geotools.data.simple.SimpleFeatureSource
10org.geotools.map.MapContent

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations SPLC ’22, September 12–16, 2022, Graz, Austria

4 VARIMETRICS: EXPLORING THE QUALITY
OF VARIABILITY IMPLEMENTATIONS

As shown in section 2.2, although state-of-the-art approaches allow
visualizing either the density of variability implementations (e.g.,
with VariCity [59]) or quality metrics (e.g., with CodeCity [90] or
Evo-Streets [80]), no existing approach allows the simultaneous
representation of both aspects of OO software systems. Therefore
we adapt VariCity to display information about quality in the city.

4.1 Main principles
AlthoughVariCity’s configuration capabilities detailed in section 3.2.2
allow to shape the city and show a desired subpart of the project, it
is not possible to configure the displayed variability metrics (i.e.,
the number of method overloads for the height, and the number of
constructor overloads for the base). VariMetrics, however, aims to
focus the expert on the quality-critical zones concentrating variabil-
ity implementations. State-of-the-art proposes a plethora of quality
metrics to measure several properties of a software system [15],
ranging from the architecture [65] to the source code level [54, 81].
Since no metric is relevant for all software systems due to the elu-
sive definition of quality [44], software practitioners need to pick
and combine different metrics to obtain a quality measure relevant
for their use case. VariMetrics extends the configuration of VariCity
so that experts can choose the quality metrics they want to display,
and how to combine them, to tailor the visualization according to
their needs.

By default, VariCity displays in yellow vp-s being hotspots, in
blue variants being hotspots, and in grey classes not being hotspots
(fig. 3a). On their side CodeCity and Evo-Streets color the build-
ings to expose properties inherent to the classes [79, 92]. We thus
propose two coloring strategies for quality metrics: a coloration
following a red-to-green sequence (fig. 3b), and a saturation keep-
ing the original colors of the buildings and lightening or darkening
them (fig. 3c). While VariMetrics should enable some combination
of metrics, combining both coloring strategies leads to bivariate
chromatic maps, which are known to be difficult to read [88]. On the
opposite, applying textures on colors has shown to be an efficient
way to display multiple software quality metrics [36]. We hence
provide a crackled texture (fig. 3d) variably covering the building,
thus enabling views simultaneously exhibiting two quality metrics.

These three visual properties are configurable to be adapted to
the metric they represent, as some quality metrics are symptoms of
lower quality if they have a high value (e.g., complexity) but other
metrics with such values may instead indicate good quality (e.g.,
test coverage). Analogously, not all projects have similar ranges of
values for the same metric, and proposing a fixed range of values
may not allow revealing a difference of quality in some projects,
thus VariMetrics allows to specify these ranges.

4.2 Determining relevant quality metrics for
OO variability debt

OO variability debt identification does not only require an appro-
priate visualization but also adequate metrics to be exploited in
the visualization. Wolfart et al. [95] introduced a catalog of ten
forms of variability debt, detailing for each of them its cause(s),

(a) VariCity (b) Red-green (c) Saturation (d) Cracks

Figure 3: Visual properties used to display quality metrics
compared to the original VariCity visualization.

consequence(s), and concerned type(s) of artifacts. In the following
analysis, these forms are written in italics.

As OO variability implementations rely solely on standard OO
mechanisms, the availability of the source code is the only require-
ment to identify them. FindingCode duplication is therefore possible,
as well as System-level structure quality issues in the implementa-
tion. Most often, tests sources are provided along with the source
code, enabling identification of Lack of tests.

However, other information is not always available, especially
in the case of open-source systems, such as the documentation,
leaving aside Out-of-date or incomplete documentation and Dupli-
cate documentation. Identifying Architectural anti-patterns needs
information on the domain and the associated design choices (e.g.,
we cannot say if a Strategy pattern has the desired behavior solely
by analyzing its structure). Covering Poor test of feature interac-
tions would require a list of features and their mapping with their
implementations, which are often not available in our case, while
covering Old technology in use and Multi-version support implies
having information about the versions of the supporting language
and used libraries. Finally, identifying Expensive tests implies deter-
mining whether test cases have been formally defined or not [76],
thus requiring test cases definitions.

It results that relying on the source code and its tests, we can
cover Code duplication, Lack of tests, and System-level structure
quality issues in the implementation. Hence, we need to determine
quality metrics to identify these types of variability debt. A common
metric to identify a lack of tests is the code coverage, which can
be measured at different granularities (line, condition, . . .). For
our evaluation, we opted for a coverage metric that aggregates
measures for different granularities. Similarly, code duplications
are commonly identified at two levels of granularity: line or block.
We advocate that blocks aremore likely to represent duplicated code
related to variability than a single line of code. Finally, structure
quality issues in the codebase impact maintainability and evolution
of the system. Even though code duplication and lack of tests impact
maintainability and evolution of the system, the understanding
of the implementation by the maintainers of the project is also
an important aspect, and cognitive complexity [11] appears to be
relevant for this purpose [67]. We thus choose as relevant metrics
for our evaluations duplicated blocks, test coverage, and cognitive
complexity.

Most often, standard tools formeasuring software qualitymetrics
also determine technical debt measures giving an estimation of
the effort, as a duration, to fix the identified code smells [6]. We
did not use such measures in our evaluation for multiple reasons.
First, by providing an aggregated duration, this measure is more

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

org.geotools.filter.
FilterFactoryImpl

org.geotools.data.Query

org.geotools.util.factory.Hints

org.geotools.util.NumberRange

org.geotools.data.jdbc.FilterToSQL

org.geotools.filter.visitor.
SimplifyingFilterVisitor

org.opengis.filter.FilterVisitor

Figure 4: Figure 2 in VariMetrics. The view is configured to display the cognitive complexity using the red-to-green color scale.

helpful in estimating effort at the management level, but it does
not describe the real causes of the debt. Then, some first empirical
results seem to indicate a possible inaccuracy in the given values [8],
and exploiting such metrics may therefore require some knowledge
of the system and its implementation, which we do not have for
our subject systems. Nevertheless, VariMetrics allows visualizing
this metric if the experts find it relevant.

Figure 4 shows the VariCity view of fig. 2 in VariMetrics show-
ing the cognitive complexity using the red-to-green color scale.
Where the classes concentrating variability implementations re-
vealed by VariCity (cf section 3.2) remain visible independently of
their quality (e.g., FilterFactoryImpl or NumberRange), VariMet-
rics also exposes quality-critical classes, being variable (e.g., Query
or FilterToSQL) or not (e.g., Hints or SimplifyingFilterVisitor).

4.3 Implementation
The symfinder toolchain, used by VariCity to identify the variability
implementations and compute the related variability-related met-
rics, has been extended to support fetching of the quality metrics
and their mapping with the identified variability information. If a
SonarCloud account exists for the system, metrics are fetched by
using the SonarCloudWeb API11. Otherwise, a SonarQube server is
executed locally to extract the metrics while running the symfinder
analysis. The symfinder configuration has been extended to specify
wherever running a SonarQube instance is needed or not.

5 EVALUATION
The evaluation of VariCity presented byMortara et al. [59] validates
its capacity to exhibit zones in the code concentrating mechanisms
used in OO variability implementations (cf. section 3.1). VariMetrics
should therefore be able to reveal the subset of these classes having
quality issues. To evaluate VariMetrics against the requirements ex-
pressed by section 2.1 (i.e., identifying variability implementations
for which quality metrics are problematic), we apply our approach
11https://sonarcloud.io/web_api

Table 1: Subject systems and their available metrics.

Project Version
Java # vp-s / Available metrics
LoCs variants DB COMP COV

Azureus 5.7.6.0 633,248 10,105 A S ✗

GeoTools 23.5 1,312,727 22,534 A S ✗

JDK 17-10 2,434,983 71,489 S S ✗

JFreeChart 1.5.0 94,203 2,849 S S S
JKube 1.7.0 40,952 795 A S S
OpenAPI Generator 5.4.0 88,172 768 S S S
Spring framework 5.2.13 662,579 12,622 A S ✗

DB – duplicated blocks, COMP – cognitive complexity, COV – coverage
✗ – unavailable metric, A – available metric, S – significant metric (available and
showing differences between classes)

to multiple open-source systems. We select views with metrics com-
binations revealing the variability implementations that are shown
by VariCity while being the most quality-critical (section 5.1). We
then validate the relevance of such classes by applying maintenance
actions on these classes within one project, JFreeChart (section 5.2),
and show the impact on the view of the project.

5.1 Quantitative evaluation
Subject systems. We used for this evaluation 7 variability-rich

open-source Java systems of various sizes, depicted in table 1. Five
of them were chosen as their documentation clearly states they
implement variability: Azureus (Vuze) is a BitTorrent client which
supports multiple network communication protocols, GeoTools a
library for geospatial data management providing multiple tools
and filtering capabilities to manipulate maps, JKube, a Maven
plugin to generate different types of container images, OpenAPI
Generator, a library to create APIs for a plethora of programming
languages, and the Spring framework, providing a Java-based
support for components and services with many different plugins,
on persistencemanagement, validation, security, etc.We also picked
the Java Development Kit (JDK) for its large size of ~2.5M LoC
to evaluate the scalability of our approach. Finally, we also used

https://sonarcloud.io/web_api
https://github.com/Corpus-2021/Azureus/tree/5.7.6.0
https://github.com/Corpus-2021/geotools/tree/23.5-AnalysisReady
https://github.com/Corpus-2021/jdk/tree/17-10-AnalysisReady
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree
https://github.com/eclipse/jkube
https://github.com/OpenAPITools/openapi-generator
https://github.com/Corpus-2021/spring-framework/tree/5.2.13-AnalysisReady

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations SPLC ’22, September 12–16, 2022, Graz, Austria

Table 2: Number of noticeable classes due to their variability concentration, criticality, and both aspects for the given views on
all subject systems.

Project
View configuration Noticeable classes w.r.t.

Entry point classes
Usage Usage Metrics

variability criticality both
orientation level (visual property)

Azureus com.aelitis.azureus.core.AzureusCoreComponent OUT 4 COMP (red-green) 74 32 12

GeoTools org.geotools.data.simple.SimpleFeatureSource
OUT 4 COMP (red-green) 104 27 18

org.geotools.map.MapContent

JDK java.net.URI
IN 1 COMP (red-green) 84 17 13

java.net.URL DB (cracks)

JFreeChart org.jfree.chart.JFreeChart
OUT 4 COV (red-green) 35 31 10

org.jfree.chart.plot.Plot DB (cracks)

JKube
org.eclipse.jkube.generator.api.support.BaseGenerator

IN/OUT 7
COV (red-green)
COMP (cracks) 28 115 14org.eclipse.jkube.generator.javaexec.JavaExecGenerator

org.eclipse.jkube.generator.api.Generator

OpenAPI Generator org.openapitools.codegen.languages.OpenAPIGenerator IN/OUT 6 COV (red-green) 77 51 21
COMP (cracks)

Spring org.springframework.beans.factory.parsing.BeanComponentDefinition
IN 8 COMP (red-green) 57 13 6

framework org.springframework.beans.factory.support.AbstractBeanFactory

JFreeChart, a charting library used as a subject system in the
evaluation of VariCity by Mortara et al. [59], as its size enables us
to master the implemented variability at a fine granularity. Five
projects are forks from their original repositories in the Corpus-2021
GitHub organization12, designed by Irrazábal et al. [38] to serve as
a catalog of software projects to analyze their metrics. They provide
a SonarCloud instance for these projects13, allowing us to reuse
these metrics for our study. Two others have also a SonarCloud
instance and JFreeChart is the only one for which we had to use
our prototyped setup with Sonarqube to obtain the quality metrics.
Besides, the JFreeChart’s build configuration was also adapted to
be analyzed by a local SonarQube instance [60].

Evaluation process. We first generated for each project a visual-
ization with VariCity following the same stages as in the VariCity’s
evaluation [59]. After determining entry points by selecting im-
portant classes after exploring codebases and documentations, we
experimented empirically with different combinations of usage level
and usage orientation to obtain a visualization we consider relevant
(i.e., exhibiting classes detaching from others because they concen-
trate variability implementations). We finally identified manually
on each view the classes that are the most visible for us (by being a
hotspot or a design pattern, or due to their dimensions) to obtain a
set of "noticeable classesw.r.t. variability". For example, for GeoTools
(fig. 2), classes such as FilterFactoryImpl, FilterToSQL, Query,
and NumberRange draw attention due to their size and/or the fact
that they are hotspots, as opposed to FilterVisitor.

To determine a relevant VariMetrics view, we systematically
applied all available metrics on each project and selected the ones
being relevant to identifying OO variability debt (cf. section 4.2).
During this step, it happened that no building stood out for a metric
(i.e., no class exhibits variability debt), suggesting that the overall
quality is decent w.r.t. this metric. On the opposite, if all classes
appear as quality-critical, it may indicate that this metric has been
neglected in quality requirements for the project as a whole. We
thus restrained in this evaluation the set of significant metrics
12https://github.com/Corpus-2021
13https://sonarcloud.io/organizations/corpus-2021/projects

relevant to identify OO variability debt to those showing some
differences in quality between classes. Table 1 summarizes for each
system the relevant metrics being available and significant. We
then manually identified on the views the classes appearing to
be quality-critical, regardless of their variability, by enumerating
the classes that appeared to be the most cracked and/or red to
obtain a set of "noticeable classes w.r.t. criticality". For example,
for GeoTools (fig. 4), Hints, Query, SimplifyingFilterVisitor,
and FilterToSQL are easily discernible. The quality-critical and
variability intense classes of the project thus correspond to the
intersection between the two sets of classes (i.e., in this example,
FilterToSQL and Query).

In all observed systems, it appears that although fewer classes
are noticeable w.r.t. criticality than w.r.t. variability, there is no di-
rect relation between variability and quality, as it can already be
seen in fig. 4. Whereas some vp-s have an important number of vari-
ants, they can be reliable, such as FilterFactoryImpl in GeoTools,
and thus do not need particular attention. On the opposite, some
critical classes may not concentrate variability implementations,
such as Hints in GeoTools, and they are therefore less important
for maintaining the functional code. This shows that, in the stud-
ied systems, visualizing both variability and quality is useful to
determine quality-critical variability implementations. To evalu-
ate to which extent, we calculated for each project the number of
noticeable classes w.r.t. variability, w.r.t. criticality, and w.r.t. both
aspects. The results with the configuration for each view are re-
ported in table 2. This shows that representing on a single view
variability and quality information allows reducing the number
of classes appearing as relevant on the visualization between 50%
(JKube) and 91% (Spring framework) compared to the VariCity vi-
sualization. We believe the mildly encouraging results obtained
on JKube come from its size, so that less variability intense zones
have been identified by VariCity compared to larger projects. An
important number of classes are also noticeable in this project as it
has globally a low code coverage. Besides, by adapting the thresh-
olds on which the hotspot detection relies, we could obtain fewer
zones and better results, but we consider these experiments as out

https://github.com/Corpus-2021
https://sonarcloud.io/organizations/corpus-2021/projects

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

XYPlot
(COV = 70.0%,

DB = 24)

CategoryPlot
(COV = 74.9%,
DB = 23)

(a) Before refactor

XYPlot
(COV = 69.9%,

DB = 21)

CategoryPlot
(COV = 75.4%,

DB = 16)

CategoryXYCommon
(COV = 77.4%,

DB = 97)

(b) After refactor

Figure 5: View of XYPlot and CategoryPlot before and after
the refactor. Block duplications are displayed on the red-
green scale (range: 0 → 50 blocks) and test coverage using
the crackled texture (range: 0%→ 100%).

of the scope of this paper. The definition of a hotspot is elusive [64]
and determining whether a class is a hotspot or not depends on
user-defined thresholds, a limitation already evoked in the work on
VariCity [59]. Nevertheless, we consider these results as satisfying,
because without VariMetrics, finding OO variability debt would
have needed to manually map relevant classes on the VariCity view
to their metrics, which, already on the smallest project being JKube,
represents 28 classes.

Summary. By representing OO variability implementations and
quality metrics in a unified representation, VariMetrics not only
allows to visualize both classes concentrating variability implemen-
tations and critical classes, but also to focus on specific zones of
OO variability debt.

5.2 Qualitative evaluation
Identifying technical debt helps to understand where to apply main-
tenance actions aiming to improve software quality. Therefore, if
zones of variability debt identified by VariMetrics are relevant, cor-
recting identified weaknesses should improve the project quality,
and the effects should be visible in the visualization. To validate
the relevance of these zones, we conduct an experiment in which
we apply modifications to the identified classes in one project,
JFreeChart.

Subject system. We chose JFreeChart as a subject system not
only for its intermediate size allowing an easy discovery of the
codebase, but also because this system has been extensively studied
in previous work from VariCity’s authors [59, 83, 86], where they
provide details on the implemented variability.

Evaluation process. We first selected in the set of 10 critical
variability intense classes determined in the quantitative evalu-
ation (cf. table 2) the ones maximizing their number of duplicated
blocks or minimizing their test coverage. Six classes remained, of

Table 3: Measures of the refactored and added classes, before
and after the refactor.

Class name
Coverage

duplicated Cognitive
(in the org.jfree.chart package) blocks complexity

Identified relevant classes

plot.CategoryPlot
before 74.9% 23 503
after 75.4% 16 392

plot.XYPlot
before 70.0% 24 666
after 69.9% 21 603

axis.DateAxis
before 71.8% 10 201
after 77.2% 0 139

axis.NumberAxis
before 78.7% 12 163
after 77.8% 4 127

entity.ChartEntity
before 30.7% 0 26
after 90.5% 0 26

ChartPanel
before 25.7% 7 322
after 52.2% 2 295

Other already present classes

axis.LogarithmicAxis
before 16.0% 4 315
after 17.1% 0 281

axis.LogAxis
before 45.3% 10 92
after 47.0% 7 87

axis.PeriodAxis
before 29.3% 2 112
after 30.6% 1 104

Added classes

plot.CategoryXYCommon
before – – –
after 77.4% 6 97

axis.DatePeriodCommon
before – – –
after 46.2% 0 8

axis.NumberLogCommon
before – – –
after 81.6% 0 5

Overall project
before 54.5% 604 15,858
after 55.3% 565 15,622

NumberAxis
(COV = 78.7%,

DB = 12)

DateAxis
(COV = 71.8%,
DB = 10)

(a) Before refactor

NumberAxis
(COV = 77.8%,

DB = 4)

DateAxis
(COV = 77.2%,
DB = 0)

DatePeriod
Common

(COMP = 46.2%,
DB = 0)

NumberLog
Common

(COV = 81.6%,
DB = 0)

(b) After refactor

Figure 6: View of DateAxis and NumberAxis before and after
the refactor. Visualization settings are identical to fig. 5.

which four suffer from code duplication (CategoryPlot, XYPlot,
DateAxis, and NumberAxis, visible due to their extensively cracked
texture on fig. 5a for the first two and on fig. 6a for the last two)
and two others from a lack of tests (ChartPanel and ChartEntity,
visible due to their orange and yellow colors on fig. 7a).

We then defined and applied maintenance actions for these
classes. Regarding classes suffering from code duplication, dupli-
cated blocks were factorized in new methods. It happened that
block duplications were present in different classes (e.g., behavior

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations SPLC ’22, September 12–16, 2022, Graz, Austria

ChartEntity
(COV = 30.7%,

DB = 0)

ChartPanel
(COV = 25.7%,

DB = 7)

(a) Before refactor

ChartEntity
(COV = 90.5%,

DB = 0)

ChartPanel
(COV = 52.2%,

DB = 2)

(b) After refactor

Figure 7: Classes lacking tests before and after the refactor.
Visualization settings are identical to fig. 5.

NumberAxis
(COMP = 163,

DB = 12)

DateAxis
(COMP = 201,
DB = 10)

(a) Before refactor

NumberAxis
(COV = 127,

DB = 4)

DateAxis
(COMP = 139,
DB = 0)

DatePeriod
Common

(COMP = 8,
DB = 0)

NumberLog
Common

(COMP = 5,
DB = 0)

(b) After refactor

Figure 8: Figure 6 displaying cognitive complexity on the
red-green scale instead of the coverage (range: 0→ 150).

from CategoryPlot is duplicated in XYPlot). In this case, the fac-
torization was placed in another class, created for that purpose
(here, CategoryXYCommon). Regarding classes lacking tests, new
test cases for several methods that were little to not tested have
been added to the existing test classes. To ensure as much as possi-
ble that our modifications did not hamper the system stability, we
did not change the logic of existing tests and made sure that the
project could build with all tests passing.

A first observationwemade concerns the nature of the duplicated
blocks.Whereas some duplications are pure technical debt in classes
concentrating variability implementations, others clearly corre-
spond to improperly managed variability implementations. For ex-
ample, in DateAxis, multiple lines of the refreshTicksHorizontal14
method are duplicated in refreshTicksVertical15. They corre-
spond to the common part creating the time tick, whereas the vari-
able part concerns the orientation of the text on the plot. Therefore,
such zones exhibited by VariMetrics actually spot improper variabil-
ity management.We reapplied VariMetrics on the new codebase [60]
and observed the differences shown in figs. 5b, 6b and 7b. We also
computed the test coverage, cognitive complexity, and number of
duplicated blocks for all the classes impacted by our maintenance
actions before and after their modification, and summarized these
results in table 3.

Regarding the classes suffering from code duplications, evolu-
tions can be observed in figs. 5 and 6. The disappearance of the
cracks on NumberAxis and DateAxis suggests that very little to
no duplication remains, while the reduced amount of cracks on

14https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/
DateAxis.java#L1558-L1609
15https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/
DateAxis.java#L1676-L1726

CategoryPlot denotes a decrease of duplications while some are
still present. Finally, XYPlot appears equally cracked, propound-
ing that duplications are still present. These observations are con-
firmed by the values from table 3: duplications in NumberAxis and
DateAxis have been reduced by 75% and 100%, leaving respec-
tively 4 and 0 duplications. Although the number of duplications
in CategoryPlot diminished by 29%, 16 duplicated blocks remain,
representing a non-negligible amount. Finally, 3 duplications have
been removed in XYPlot, representing 13% of reduction, that is not
significative enough to be shown on the visualization.

Similarly, improvements can also be seen in the classes that were
lacking tests (fig. 7b). The transition from 31% to 91% of coverage
for ChartEntity is translated on the visualization by a bright green
color for its building, where the more contained improvement on
ChartPanel’s coverage leads to its building color changing from
orange to yellow.

Another effect induced by these maintenance actions can be seen
in the visualization. The crack on ChartPanel’s building visible
in fig. 7a disappeared in fig. 7b, although removing duplications
was not a maintenance action for this class. This is because testing
some methods required splitting them, leading to smaller blocks
that could be reorganized. In this case, three duplicated blocks were
extracted in a single testable method.

Finally, it appears that the maintenance actions on these classes
improved their quality w.r.t. the considered metrics (i.e., coverage
and duplicated blocks). These changes however did not only impact
the six considered classes, but also three other existing classes hav-
ing duplications and led to the creation of three new classes to host
some duplications. It is therefore important to consider these classes
and ensure that they do not express the variability debt that has
been treated. Modifications applied to the already existing classes
solely concern the removal of duplications, therefore their quality
has also been improved. Regarding the newly created classes, they
are now visible (cf. figs. 5b and 6b). DatePeriodCommon’s yellow
color presents a relatively low test coverage of 46%, which can be
explained by the low initial test coverage of PeriodAxis of 29.3%.
Adding tests would help to solve the issue. The other two classes
have high coverages above 70%, and none of the three classes has a
cracked texture, showing that no variability debt related to these
metrics has been created.

By presenting the coverage and the number of duplicated blocks,
the visualizations exhibited in figs. 5 to 7 can only demonstrate
variability debt related to those two metrics. However, as explained
in section 4.2, cognitive complexity is also a factor of variability
debt. As this metric is significant for JFreeChart (cf. table 1), it is thus
important to evaluate its evolution. It appears in table 3 that the cog-
nitive complexity globally decreased for all relevant classes and the
other already present ones. This can be explained by the fact that
removing code duplications and adding tests often implies splitting
methods into smaller ones, thus reducing cognitive complexity. This
decrease can also be observed using VariMetrics, as its configuration
capabilities easily allow to adapt the view to display this metric
(cf. fig. 8 with an intensity decrease on DateAxis and NumberAxis).
Concerning the newly created classes, CategoryXYCommon’s im-
portant cognitive complexity of 97 is because CategoryPlot and
XYPlot have major cognitive complexities of 503 and 666 respec-
tively. Therefore, the factorized blocks are themselves complex,

https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1558-L1609
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1558-L1609
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1676-L1726
https://github.com/jfree/jfreechart/tree/v1.5.0/src/main/java/org/jfree/chart/axis/DateAxis.java#L1676-L1726

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

and would need further refactoring (e.g., splitting into separate
methods) to reduce this complexity and remove its 6 duplicated
blocks.

Summary. By implementing maintenance actions on the identi-
fied quality-critical variability intense classes, we improved their
quality regarding the considered metrics without introducing new
debt factors, leading to a positive impact at the project level. These
changes are also clearly observable in the visualization. Moreover,
part of the identified variability debt directly concerned roughly
managed variability that could be refactored.

6 THREATS TO VALIDITY AND LIMITATIONS
As we did not conduct an empirical evaluation, the major threat of
our work is related to the design and realization of the evaluations
done by ourselves, including the configuration of the views and
choice of the metrics. Nevertheless, the scenarios demonstrating
VariCity [59] gave us insights into the criteria to design views ex-
hibiting relevant variability implementations. The metrics choice
was driven by recentwork on the factors causing variability debt [95],
giving us confidence in their relevance in our context. Moreover,
as the views we obtained allowed us to obtain positive results, we
expect real experts to obtain good outcomes on their systems by
applying their settings.

We evaluated our approach on 7 systems. Although this dataset
is small, the studied systems have various sizes (40k → 2.5M LoC)
and architectures (API, standalone library. . .), and represent dif-
ferent domains (charting, programming language, geospatial data
management. . .). We are thus confident in the applicability of our
results to other Java-based systems.

Regarding the visualization, we chose to offer as many configu-
ration capabilities as possible to the expert so that they can tailor it
freely and reach the view that helps them most. Combining mul-
tiple metrics on different axes can yet induce cognitive load and
hamper the view’s understanding. While measuring this load is
of prime importance when designing visualizations [37] including
city-based ones [13, 21] to ensure readability and usability, it would
require in our case to empirically validate our approach with real
experts to exchange on their needs16. This is part of our future
work.

As for scalability, the analysis part is directly related to symfinder
capabilities, which can handle projects with several millions of LoC
but takes hours to do so (more than 120h for the JDK as shown
in table 4). As the analysis can be synchronized with main releases,
this is still reasonable for such very large projects. On the rendering
side, our extension of VariCity only configures coloring and adds
some textures, which are negligible for the rendering time. We are
thus dependent on themain bottleneck of VariCity rendering, which
lies in the computation of the city shape and streets (more than 5
five minutes for the JDK). For very large projects, this is hampering
the configuration of the view as recomputation must be done when
usage orientation and levels are changed. Nevertheless, from our
analysis of the algorithm used in VariCity, we believe that some
significant improvements could be made to make (re-)rendering
practicable.
16Such a validation would also exhibit potential accessibility issues that can be tackled
by extending the existing configuration capabilities.

Table 4: Subject systems and their execution times.

System symfinder execution VariMetrics city rendering

Azureus 1 h 25 min 4 s
GeoTools 24 h 1 min 10 s
JDK 123 h 22 min 5 min 40 s
JFreeChart 5 min 13s 1 s
JKube 2 min 8 s < 1 s
OpenAPI Generator 3 min 45 s < 1 s
Spring framework 1 h 5 min 6 s

System for symfinder: Ubuntu 18.04.2 LTS with Intel Xeon CPU E5-2637v2 @
3.5GHz and 128Go memory.
System for VariMetrics: Google Chrome 99.0.4844.84 on Arch Linux 5.16.16-arch1-
1 with Intel i7-9850H (12 cores) @ 4.6GHz and 32Go memory.

7 CONCLUSION
When object-oriented variability-rich software systems implement
variability in a single codebase, they rely on mechanisms from
the supporting language to realize it (i.e., inheritance, overloading,
design patterns), making them prone to induce variability debt.
Identifying its causes is essential for software maintenance and
quality. In this paper, we proposed VariMetrics, an extension of the
city-based VariCity visualization to support the organized display
of OO quality metrics as additional visual properties in a city in
which dense zones of highly visible buildings already show zones of
potential variability implementations. Multiple additional options
allow the user to configure the view by choosing and combining the
desired metrics to match their definition of quality. We conducted
a quantitative evaluation on several open-source systems and a
deeper qualitative evaluation on one of them, showing how Vari-
Metrics can help to distinguish quality-critical zones of variability
implementations.

We expect VariMetrics to be a first step towards a better under-
standing of variability debt in the context of variable OO systems.
As future work, we plan to first explore how some code smells such
as code duplication can be related to a form of badly implemented
variability implementations, to improve quality. We will also con-
duct an empirical evaluation with experts to better understand how
VariMetrics could be extended to match the industry’s needs and
expectations.

OPEN SCIENCE
A reproducible artifact is available online as an archive [60] con-
taining the source code of VariMetrics, the Excel file used to obtain
the data presented in table 2, additional views for all projects pre-
sented in table 2, the codebases of JFreeChart before and after the
refactor presented in section 5.2 (with the corresponding diff file,
excerpts of the SonarQube analysis of both codebases showing the
information presented in table 3. These information can also be
found on a companion webpage17.

ACKNOWLEDGMENTS
We thank Patrick Anagonou, Guillaume Savornin and Anton van
der Tuijn for their contribution in the development of VariMetrics.

17https://deathstar3.github.io/varimetrics-demo/

https://deathstar3.github.io/varimetrics-demo/

Customizable Visualization of Quality Metrics for Object-Oriented Variability Implementations SPLC ’22, September 12–16, 2022, Graz, Austria

REFERENCES
[1] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs

in the linux kernel: a qualitative analysis. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. 421–432.

[2] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2017. Quality requirements
in large-scale distributed agile projects–a systematic literature review. In Inter-
national working conference on requirements engineering: foundation for software
quality. Springer, 219–234.

[3] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chaudron. 2017.
Florida: Feature location dashboard for extracting and visualizing feature traces.
In Proceedings of the Eleventh International Workshop on Variability Modelling of
Software-intensive Systems. ACM, 100–107.

[4] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[5] Paris Avgeriou, Philippe Kruchten, Ipek Ozkaya, and Carolyn Seaman. 2016.
Managing technical debt in software engineering (dagstuhl seminar 16162). In
Dagstuhl Reports, Vol. 6. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[6] Paris C Avgeriou, Davide Taibi, Apostolos Ampatzoglou, Francesca Arcelli
Fontana, Terese Besker, Alexander Chatzigeorgiou, Valentina Lenarduzzi, An-
tonio Martini, Athanasia Moschou, Ilaria Pigazzini, et al. 2020. An overview
and comparison of technical debt measurement tools. IEEE Software 38, 3 (2020),
61–71.

[7] Felix Bachmann and Paul Clements. 2005. Variability in Software Product
Lines. Technical Report CMU/SEI-2005-TR-012. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA. http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=7675

[8] Maria Teresa Baldassarre, Valentina Lenarduzzi, Simone Romano, and Nyyti
Saarimäki. 2020. On the diffuseness of technical debt items and accuracy of
remediation time when using SonarQube. Information and Software Technology
128 (2020), 106377.

[9] Woubshet Behutiye, Pertti Karhapää, Lidia López, Xavier Burgués, Silverio
Martínez-Fernández, Anna Maria Vollmer, Pilar Rodríguez, Xavier Franch, and
Markku Oivo. 2020. Management of quality requirements in agile and rapid
software development: A systematic mapping study. Information and software
technology 123 (2020), 106225.

[10] Alexandre Bergel, Razan Ghzouli, Thorsten Berger, and Michel R. V. Chaudron.
2021. FeatureVista: Interactive Feature Visualization. In Proceedings of the 25th
ACM International Systems and Software Product Line Conference - Volume A.
Association for Computing Machinery, New York, NY, USA, 196–201. https:
//doi.org/10.1145/3461001.3471154

[11] G Ann Campbell. 2018. Cognitive complexity: An overview and evaluation. In
Proceedings of the 2018 international conference on technical debt. 57–58.

[12] Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and software
variability management. Concepts Tools and Experiences (2013).

[13] Pierre Caserta, Olivier Zendra, and Damien Bodénes. 2011. 3D hierarchical edge
bundles to visualize relations in a software city metaphor. In 2011 6th International
Workshop on Visualizing Software for Understanding and Analysis (VISSOFT). IEEE,
1–8.

[14] Noptanit Chotisarn, Leonel Merino, Xu Zheng, Supaporn Lonapalawong, Tianye
Zhang, Mingliang Xu, and Wei Chen. 2020. A systematic literature review of
modern software visualization. Journal of Visualization 23, 4 (2020), 539–558.

[15] Fatima Nur Colakoglu, Ali Yazici, and Alok Mishra. 2021. Software product
quality metrics: A systematic mapping study. IEEE Access (2021).

[16] James Coplien, Daniel Hoffman, and David Weiss. 1998. Commonality and
Variability in Software Engineering. IEEE Software 15, 6 (1998), 37–45. https:
//doi.org/10.1109/52.730836

[17] James O. Coplien. 1999. Multi-Paradigm Design for C++. Addison-Wesley Long-
man Publishing Co., Inc.

[18] James O. Coplien and Liping Zhao. 2000. Symmetry Breaking in Software Pat-
terns. In International Symposium on Generative and Component-Based Software
Engineering (GCSE 2000). Springer, Springer, 37–54.

[19] James O Coplien and Liping Zhao. 2005. Toward a General Formal Foundation
of Design-Symmetry and Broken Symmetry.

[20] Krzysztof Czarnecki, Paul Grünbacher, Rick Rabiser, Klaus Schmid, and An-
drzej Wasowski. 2012. Cool features and tough decisions: a comparison of
variability modeling approaches. In Proceedings of the sixth international work-
shop on variability modeling of software-intensive systems (VaMoS’12). 173–182.
https://doi.org/10.1145/2110147.2110167

[21] Veronika Dashuber, Michael Philippsen, and Johannes Weigend. 2021. A Layered
Software City for Dependency Visualization.. In VISIGRAPP (3: IVAPP). 15–26.

[22] Christof Ebert and Michel Smouts. 2003. Tricks and traps of initiating a product
line concept in existing products. In 25th International Conference on Software
Engineering, 2003. Proceedings. IEEE, 520–525.

[23] Jorge Echeverría, Francisca Pérez, José Ignacio Panach, and Carlos Cetina. 2021.
An empirical study of performance using Clone & Own and Software Product
Lines in an industrial context. Information and Software Technology 130 (2021),
106444.

[24] Wolfram Fenske and Sandro Schulze. 2015. Code smells revisited: A variability
perspective. In Proceedings of the Ninth International Workshop on Variability
Modelling of Software-intensive Systems. 3–10.

[25] Florian Fittkau, Alexander Krause, andWilhelm Hasselbring. 2017. Software land-
scape and application visualization for system comprehension with ExplorViz.
Information and software technology 87 (2017), 259–277.

[26] Martin Fowler. 2018. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[27] Critina Gacek and Michalis Anastasopoules. 2001. Implementing Product Line
Variabilities. In Proceedings of the 2001 Symposium on Software Reusability: Putting
Software Reuse in Context (SSR ’01). ACM, 109–117. https://doi.org/10.1145/
375212.375269

[28] Matthias Galster. 2019. Variability-Intensive Software Systems: Product Lines and
Beyond. In Proceedings of the 13th International Workshop on Variability Modelling
of Software-Intensive Systems (VaMoS ’19). ACM, 1–1. https://doi.org/10.1145/
3302333.3302336

[29] Matthias Galster, DannyWeyns, Dan Tofan, Bartosz Michalik, and Paris Avgeriou.
2013. Variability in Software Systems — A Systematic Literature Review. IEEE
Transactions on Software Engineering 40, 3 (2013), 282–306. https://doi.org/10.
1109/TSE.2013.56

[30] Matthias Galster, Uwe Zdun, Danny Weyns, Rick Rabiser, Bo Zhang, Michael
Goedicke, and Gilles Perrouin. 2017. Variability and complexity in software
design: Towards a research agenda. ACM SIGSOFT Software Engineering Notes
41, 6 (2017), 27–30.

[31] Eddy Ghabach. 2018. Supporting Clone-and-Own in software product line. Ph. D.
Dissertation. COMUE Université Côte d’Azur (2015-2019).

[32] Eddy Ghabach, Mireille Blay-Fornarino, Franjieh El Khoury, and Badih Baz. 2018.
Guiding Clone-and-Own When Creating Unplanned Products from a Software
Product Line. In International Conference on Software Reuse. Springer, 139–147.

[33] Orla Greevy, Michele Lanza, and Christoph Wysseier. 2005. Visualizing feature
interaction in 3-D. In 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis. IEEE, 1–6.

[34] Geoffrey Hecht, Omar Benomar, Romain Rouvoy, Naouel Moha, and Laurence
Duchien. 2015. Tracking the software quality of android applications along
their evolution (t). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 236–247.

[35] Rich Hilliard. 2010. On Representing Variation. In Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume (ECSA ’10).
ACM, 312–315. https://doi.org/10.1145/1842752.1842810

[36] Danny Holten, Roel Vliegen, and Jarke J Van Wijk. 2005. Visual realism for
the visualization of software metrics. In 3rd IEEE International Workshop on
Visualizing Software for Understanding and Analysis. IEEE, 1–6.

[37] Weidong Huang, Peter Eades, and Seok-Hee Hong. 2009. Measuring effectiveness
of graph visualizations: A cognitive load perspective. Information Visualization
8, 3 (2009), 139–152.

[38] Emanuel Irrazábal, Juan Andrés Carruthers, and Juan Alberto Pinto Oppido. 2021.
Modelo para curaduría de proyectos software de fuente abierta para estudios
empíricos en ingeniería de software. In XXIII Workshop de Investigadores en
Ciencias de la Computación (WICC 2021, Chilecito, La Rioja).

[39] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architecture
process and organization for business success. Vol. 285. acm Press New York.

[40] Isabel John, Jaejoon Lee, and Dirk Muthig. 2007. Separation of Variability Di-
mension and Development Dimension. In Proocedings of the 1st International
Workshop on Variability Modelling of Software-Intensive Systems (VaMoS ’07).
45–49.

[41] Dennis Kafura and Sallie Henry. 1981. Software quality metrics based on inter-
connectivity. Journal of Systems and Software 2, 2 (1981), 121–131.

[42] Christian Kästner, Salvador Trujillo, and Sven Apel. 2008. Visualizing Software
Product Line Variabilities in Source Code. In SPLC (2). 303–312.

[43] Raees Ahmad Khan, Khurram Mustafa, and Syed I Ahson. 2007. An empiri-
cal validation of object oriented design quality metrics. Journal of King Saud
University-Computer and Information Sciences 19 (2007), 1–16.

[44] Barbara Kitchenham and Shari Lawrence Pfleeger. 1996. Software quality: the
elusive target [special issues section]. IEEE software 13, 1 (1996), 12–21.

[45] Claire Knight andMalcolmMunro. 2000. Virtual but visible software. In 2000 IEEE
Conference on Information Visualization. An International Conference on Computer
Visualization and Graphics. IEEE, 198–205.

[46] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. Ieee software 29, 6 (2012), 18–21.

[47] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. # ifdef confirmed harmful:
Promoting understandable software variation. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 143–150.

[48] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide Taibi. 2020.
Are sonarqube rules inducing bugs?. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 501–511.

[49] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. 2018. A survey on code
analysis tools for software maintenance prediction. In International Conference
in Software Engineering for Defence Applications. Springer, 165–175.

http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7675
https://doi.org/10.1145/3461001.3471154
https://doi.org/10.1145/3461001.3471154
https://doi.org/10.1109/52.730836
https://doi.org/10.1109/52.730836
https://doi.org/10.1145/2110147.2110167
https://doi.org/10.1145/375212.375269
https://doi.org/10.1145/375212.375269
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1145/3302333.3302336
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1145/1842752.1842810

SPLC ’22, September 12–16, 2022, Graz, Austria Johann Mortara, Philippe Collet, and Anne-Marie Pinna-Dery

[50] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study
on technical debt and its management. Journal of Systems and Software 101 (2015),
193–220.

[51] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 105–114.

[52] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of software: evolution and process 30, 2 (2018), e1912.

[53] Antonio Martini and Jan Bosch. 2015. The danger of architectural technical debt:
Contagious debt and vicious circles. In 2015 12th Working IEEE/IFIP Conference
on Software Architecture. IEEE, 1–10.

[54] Thomas J McCabe. 1976. A complexity measure. IEEE Transactions on software
Engineering 4 (1976), 308–320.

[55] Flávio Medeiros, Márcio Ribeiro, Rohit Gheyi, Sven Apel, Christian Kästner,
Bruno Ferreira, Luiz Carvalho, and Baldoino Fonseca. 2017. Discipline matters:
Refactoring of preprocessor directives in the# ifdef hell. IEEE Transactions on
Software Engineering 44, 5 (2017), 453–469.

[56] Mira Mezini and Klaus Ostermann. 2004. Variability management with feature-
oriented programming and aspects. ACM SIGSOFT Software Engineering Notes
29, 6 (2004), 127–136.

[57] Sanjay Misra, Adewole Adewumi, Luis Fernandez-Sanz, and Robertas Damasevi-
cius. 2018. A suite of object oriented cognitive complexity metrics. IEEE Access 6
(2018), 8782–8796.

[58] Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo. 2019. An
empirical study of real-world variability bugs detected by variability-oblivious
tools. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
50–61.

[59] JohannMortara, Philippe Collet, and Anne-Marie Dery-Pinna. 2021. Visualization
of Object-Oriented Variability Implementations as Cities. In 2021 Working Con-
ference on Software Visualization (VISSOFT). Luxembourg (virtual), Luxembourg,
76–87. https://doi.org/10.1109/VISSOFT52517.2021.00017

[60] Johann Mortara, Philippe Collet, Anne-Marie Pinna-Dery, Patrick Anagonou,
Guillaume Savornin, and Anton van der Tuijn. 2022. Customizable Visualization
of Quality Metrics for Object-Oriented Variability Implementations - Artifact. https:
//doi.org/10.5281/zenodo.6644634

[61] Johann Mortara, Philippe Collet, and Xhevahire Tërnava. 2020. Identifying and
Mapping Implemented Variabilities in Java and C++ Systems using symfinder.
In 24th ACM International Systems and Software Product Line Conference (SPLC
’20), ACM, New York, NY, and USA (Eds.). MONTREAL, QC, Canada, 9–12.
https://doi.org/10.1145/3382025.3414987 Virtual Conference.

[62] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2019. symfinder: A
Toolchain for the Identification and Visualization of Object-Oriented Variability
Implementations. In the 23rd International Systems and Software Product Line
Conference, Vol. B. ACM Press, Paris, France, 5–8. https://doi.org/10.1145/3307630.
3342394

[63] Johann Mortara, Xhevahire Tërnava, and Philippe Collet. 2020. Mapping Features
to Automatically Identified Object-Oriented Variability Implementations - The
case of ArgoUML-SPL. In Proceedings of the 14th International Working Conference
on Variability Modelling of Software-Intensive Systems. Magdeburg, Germany, 1–9.
https://doi.org/10.1145/3377024.3377037

[64] Johann Mortara, Xhevahire Tërnava, Philippe Collet, and Anne-Marie Dery-
Pinna. 2021. Extending the Identification of Object-Oriented Variability Imple-
mentations using Usage Relationships. In SPLC 2021 - 25th ACM International
Systems and Software Product Line Conference, Vol. Volume B. ACM, Leicester,
United Kingdom, 1–8. https://doi.org/10.1145/3461002.3473943

[65] Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez, Francisco E Martínez-Perez,
and Carlos Soubervielle-Montalvo. 2017. Source code metrics: A systematic
mapping study. Journal of Systems and Software 128 (2017), 164–197.

[66] Jevgenija Pantiuchina, Michele Lanza, and Gabriele Bavota. 2018. Improving code:
The (mis) perception of quality metrics. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 80–91.

[67] Norman Peitek, Sven Apel, Chris Parnin, André Brechmann, and Janet Siegmund.
2021. Program Comprehension and Code Complexity Metrics: An fMRI Study.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 524–536.

[68] Luca Pellegrini, Andrea Alexander Janes, and Davide Taibi. 2018. On the Fault
Proneness of SonarQube Technical Debt Violations. An empirical study. Ph. D.
dissertation (2018).

[69] Federico Pfahler, Roberto Minelli, Csaba Nagy, and Michele Lanza. 2020. Visualiz-
ing Evolving Software Cities. In 2020Working Conference on Software Visualization
(VISSOFT). IEEE, 22–26.

[70] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. 2005. Software Product
Line Engineering: Foundations, Principles and Techniques. Springer Science &
Business Media.

[71] Rick Rabiser. 2019. Feature Modeling vs. Decision Modeling: History, Comparison
and Perspectives. In Proceedings of the 23rd International Systems and Software
Product Line Conference-Volume B (SPLC ’19). ACM, 134–136. https://doi.org/10.
1145/3307630.3342399

[72] Ghulam Rasool and Zeeshan Arshad. 2015. A review of code smell mining
techniques. Journal of Software: Evolution and Process 27, 11 (2015), 867–895.

[73] Linda H Rosenberg and Lawrence E Hyatt. 1997. Software quality metrics for
object-oriented environments. Crosstalk journal 10, 4 (1997), 1–6.

[74] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. 2013. Managing cloned
variants: a framework and experience. In Proceedings of the 17th International
Software Product Line Conference. 101–110.

[75] Danilo Sato, Alfredo Goldman, and Fabio Kon. 2007. Tracking the evolution
of object-oriented quality metrics on agile projects. In International Conference
on Extreme Programming and Agile Processes in Software Engineering. Springer,
84–92.

[76] Syed Muhammad Ali Shah, Marco Torchiano, VETRO’ ANTONIO, and Maurizio
Morisio. 2013. Exploratory testing as a source of testing technical debt. IT
Professional IEEE Computer Society Digital Library (2013), 25.

[77] Sandra A Slaughter, Donald E Harter, and Mayuram S Krishnan. 1998. Evaluating
the cost of software quality. Commun. ACM 41, 8 (1998), 67–73.

[78] Iuri Santos Souza, Ivan Machado, Carolyn Seaman, Gecynalda Gomes, Christina
Chavez, Eduardo Santana de Almeida, and Paulo Masiero. 2019. Investigating
Variability-aware Smells in SPLs: An Exploratory Study. In Proceedings of the
XXXIII Brazilian Symposium on Software Engineering. 367–376.

[79] Frank Steinbrückner and Claus Lewerentz. 2010. Representing development
history in software cities. In Proceedings of the 5th international symposium on
Software visualization. 193–202.

[80] Frank Steinbrückner and Claus Lewerentz. 2013. Understanding software evolu-
tion with software cities. Information Visualization 12, 2 (2013), 200–216.

[81] Srdjan Stevanetic and Uwe Zdun. 2015. Software metrics for measuring the
understandability of architectural structures: a systematic mapping study. In
Proceedings of the 19th International Conference on Evaluation and Assessment in
Software Engineering. 1–14.

[82] Mikael Svahnberg, Jilles Van Gurp, and Jan Bosch. 2005. A taxonomy of variability
realization techniques. Software: Practice and experience 35, 8 (2005), 705–754.

[83] Xhevahire Tërnava, Johann Mortara, Philippe Collet, and Daniel Le Berre. 2022.
Identification and visualization of variability implementations in object-oriented
variability-rich systems: a symmetry-based approach. Journal of Automated
Software Engineering (Feb. 2022), 1–52. https://doi.org/10.1007/s10515-022-00329-
x

[84] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing
Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference - Volume B (SPLC ’17). ACM, 81–88.
https://doi.org/10.1145/3109729.3109733

[85] Xhevahire Tërnava and Philippe Collet. 2017. Tracing Imperfectly Modular
Variability in Software Product Line Implementation. In International Conference
on Software Reuse (ICSR ’17). Springer, 112–120. https://doi.org/10.1007/978-3-
319-56856-0_8

[86] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
visualizing variability in object-oriented variability-rich systems. In the 23rd
International Systems and Software Product Line Conference. ACM Press, Paris,
France, 231–243. https://doi.org/10.1145/3336294.3336311

[87] C. Reid Turner, Alfonso Fuggetta, Luigi Lavazza, and Alexander L. Wolf. 1999. A
Conceptual Basis for Feature Engineering. Journal of Systems and Software 49, 1
(1999), 3–15. https://doi.org/10.1016/S0164-1212(99)00062-X

[88] Howard Wainer and Carl M Francolini. 1980. An empirical inquiry concerning
human understanding of two-variable color maps. The American Statistician 34,
2 (1980), 81–93.

[89] Richard Wettel and Michele Lanza. 2007. Visualizing software systems as cities.
In 2007 4th IEEE International Workshop on Visualizing Software for Understanding
and Analysis. IEEE, 92–99.

[90] Richard Wettel and Michele Lanza. 2008. CodeCity: 3D visualization of large-
scale software. In Companion of the 30th international conference on Software
engineering. 921–922.

[91] Richard Wettel and Michele Lanza. 2008. Visual exploration of large-scale system
evolution. In 2008 15thWorking Conference on Reverse Engineering. IEEE, 219–228.

[92] Richard Wettel and Michele Lanza. 2008. Visually localizing design problems
with disharmony maps. In Proceedings of the 4th ACM Symposium on Software
Visualization. 155–164.

[93] Richard Wettel, Michele Lanza, and Romain Robbes. 2011. Software systems as
cities: A controlled experiment. In Proceedings of the 33rd International Conference
on Software Engineering. 551–560.

[94] Karl Wiegers and Joy Beatty. 2013. Software requirements. Pearson Education.
[95] Daniele Wolfart, Wesley Klewerton Guez Assunção, and Jabier Martinez. 2021.

Variability Debt: Characterization, Causes and Consequences. In XX Brazilian
Symposium on Software Quality. 1–10.

[96] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-
oriented languages. Journal of Object Technology 2, 5 (2003), 123–134.

https://doi.org/10.1109/VISSOFT52517.2021.00017
https://doi.org/10.5281/zenodo.6644634
https://doi.org/10.5281/zenodo.6644634
https://doi.org/10.1145/3382025.3414987
https://doi.org/10.1145/3307630.3342394
https://doi.org/10.1145/3307630.3342394
https://doi.org/10.1145/3377024.3377037
https://doi.org/10.1145/3461002.3473943
https://doi.org/10.1145/3307630.3342399
https://doi.org/10.1145/3307630.3342399
https://doi.org/10.1007/s10515-022-00329-x
https://doi.org/10.1007/s10515-022-00329-x
https://doi.org/10.1145/3109729.3109733
https://doi.org/10.1007/978-3-319-56856-0_8
https://doi.org/10.1007/978-3-319-56856-0_8
https://doi.org/10.1145/3336294.3336311
https://doi.org/10.1016/S0164-1212(99)00062-X

	Abstract
	1 Introduction
	2 Motivations
	2.1 Problem statement
	2.2 Related Work

	3 Background
	3.1 Identification of OO variability implementations
	3.2 Visualization support in VariCity

	4 VariMetrics: exploring the quality of variability implementations
	4.1 Main principles
	4.2 Determining relevant quality metrics for OO variability debt
	4.3 Implementation

	5 Evaluation
	5.1 Quantitative evaluation
	5.2 Qualitative evaluation

	6 Threats to validity and limitations
	7 Conclusion
	Acknowledgments
	References

