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 Duca and Nersesyan proved a small-time controllability property of nonlinear Schr ödinger equations on a d-dimensional torus T d . In this paper we study a similar property, in the linear setting, starting from a closed Riemannian manifold. We then focus on the 2-dimensional sphere S 2 , which models the bilinear control of a rotating linear top: as a corollary, we obtain the approximate controllability in arbitrarily small times among particular eigenfunctions of the Laplacian of S 2 .

Introduction

The model

Let M be a smooth manifold equipped with a Riemannian metric g. In order to simplify the analysis, we require M to be closed (i.e., boundaryless and compact). In this paper we deal with the controllability properties of the following bilinear Schr ödinger equation i ∂ ∂t ψ(q, t) = -∆g + V (q) + m j=1 uj(t)Wj(q) ψ(q, t),

where we assume that the initial datum ψ(•, t = 0) = ψ0(•) belongs to the Hilbert space L 2 (M, C) of complex functions on M that are square integrable w.r.t. the Riemannian volume ωg: i.e., ψ ∈ L 2 (M, C) if

ψ L 2 (M,C) := M |ψ(q)| 2 ωg(q) 1/2 < ∞.
In [START_REF] Agrachev | Navier-Stokes equations: Controllability by means of low modes forcing[END_REF], ∆g = divω g • ∇g is the Laplace-Beltrami operator of (M, g) and represents the kinetic energy, where divω g and ∇g are respectively the divergence w.r.t. the Riemannian volume and the Riemannian gradient. Moreover, V ∈ L ∞ (M, R) and W1, . . . , Wm ∈ C ∞ (M, R) are functions on M (that we identify with multiplicative operators on L 2 (M, C)) representing respectively a free potential energy and potentials of interaction that can be tuned by means of a time-dependent control law (u1(t), . . . , um(t)). An example of system that we study in detail in this paper is given by the following Schr ödinger equation on the two-dimensional sphere M = S 2 := {(x, y, z) ∈ R 3 | x 2 + y 2 + z 2 = 1}: i ∂ ∂t ψ(x, y, z, t) = (-∆ S 2 + u1(t)x + u2(t)y + u3(t)z) ψ(x, y, z, t), 

ω S 2 = sin(β)dαdβ, x = cos(α) sin(β), y = sin(α) sin(β), z = cos(β), ∆ S 2 = 1 sin(β) ∂ ∂β sin(β) ∂ ∂β + 1 sin 2 (β) ∂ 2 ∂α 2 .
System (2) is used in molecular physics to model the bilinear control in dipolar approximation of a rotating rigid linear molecule in the space by means of three orthogonal electric fields [START_REF] Judson | Optimal design of external fields for controlling molecular motion: application to rotation[END_REF] (see Fig. 1). The capability of controlling molecular rotations has applications in physics ranging from chirality detection [START_REF] Patterson | Enantiomer-specific detection of chiral molecules via microwave spectroscopy[END_REF] to quantum error correction [START_REF] Albert | Robust encoding of a qubit in a molecule[END_REF].

System (2) is known to be globally approximately controllable in large times [START_REF] Boscain | Multi-input Schr ödinger equation: controllability, tracking, and application to the quantum angular momentum[END_REF] (i.e., it is possible to steer any initial state to any neighborhood of any final state having the same norm by choosing suitable controls). Extensions of global approximate controllability to rigid symmetric and asymmetric molecules described by bilinear Schr ödinger equations on the group of rotations M = SO(3) have been obtained in [START_REF] Boscain | Classical and quantum controllability of a rotating symmetric molecule[END_REF][START_REF] Pozzoli | Classical and quantum controllability of a rotating asymmetric molecule[END_REF].

Small-time approximate controllability

The controllability properties of (1) have raised much interest across the mathematical community of partial differential equations in the last two decades (e.g., [START_REF] Mirrahimi | Controllability of quantum harmonic oscillators[END_REF][START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF][START_REF] Nersesyan | Growth of Sobolev norms and controllability of the Schr ödinger equation[END_REF][START_REF] Chambrion | Controllability of the discretespectrum Schr ödinger equation driven by an external field[END_REF][START_REF] Beauchard | Local controllability of 1D linear and nonlinear Schr ödinger equations with bilinear control[END_REF]), due to the relevance of such questions in physical applications such as spectroscopy and quantum information theory. System (1) is generically globally approximately controllable in large times [START_REF] Mason | Generic controllability properties for the bilinear Schr ödinger equation[END_REF]. Here we focus on controllability properties holding in arbitrarily small times. This is an important subject because quantum systems undergo decoherence and relaxation effects, and the Schr ödinger equation is an adequate physical model only for small times.

Being M compact, the previously stated hypothesis on the potentials V, W1, . . . , Wm guarantee that they are bounded self-adjoint multiplicative operators on L 2 (M, R). Being M boundaryless, the drift operator -∆g+V is self-adjoint on the domain

H 2 (M, C) = {ψ ∈ L 2 (M, C) | ∆gψ ∈ L 2 (M, C
) weakly}, and given any initial datum ψ0 ∈ L 2 (M, C) and any control u ∈ L 1 loc (R, R m ) one can then define the propagator Rt(ψ0, u) of (1) at any time t ∈ R, which is a solution of (1) in the weak sense [4, Proposition 2.1&Remark 2.7]. Moreover, the quantum evolution is unitary, that is, for any (ψ0, u)

∈ L 2 (M, C) × L 1 loc (R, R m ) one has Rt(ψ0, u) L 2 (M,C) = ψ0 L 2 (M,C) , ∀t ∈ R. Let S = {ψ ∈ L 2 (M, C) | ψ L 2 (M,C) = 1} be the unit sphere of L 2 (M, C).
Definition 1. We say that an element ψ1 ∈ S belongs to the small-time approximately reachable set from ψ0 ∈ S, and we write ψ1 ∈ Reachst(ψ0), if for every > 0 and τ > 0 there exist a time T ∈ (0, τ ) and a control u

∈ L 1 ([0, T ], R m ) such that RT (ψ0, u) -ψ1 L 2 (M,C) < .
The characterization of small-time approximately reachable sets for Schr ödinger partial differential equations is an open challenge. What is known is that for general initial data ψ0 and on a general manifold, Reachst(ψ0) = S [START_REF] Beauchard | Minimal time for the approximate bilinear control of Schr ödinger equations[END_REF][START_REF] Beschastnyi | An obstruction to small-time controllability of the bilinear Schr ödinger equation[END_REF]. Nevertheless, there are examples of conservative bilinear systems for which Reachst(ψ0) = S for all ψ0 ∈ S [START_REF] Boussaïd | Small time reachable set of bilinear quantum systems[END_REF].

It is well-known that one can follow arbitrarily fast the directions spanned by the potentials of interaction Wj, j = 1, . . . , m: this follows from the limit

lim δ→0 exp -iδ -∆g + V + m j=1 uj δ Wj ψ0 = exp -i m j=1 ujWj ψ0,
holding in L 2 (M, C) for any constant uj ∈ R and ψ0 ∈ L 2 (M, C). This shows that for ψ ∈ L 2 (M, C)

e iφ ψ0 | φ ∈ span{W1, . . . , Wm} ⊂ Reachst(ψ0).
In [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF], Duca and Nersesyan showed that additional directions can be followed arbitrarily fast in [START_REF] Agrachev | Navier-Stokes equations: Controllability by means of low modes forcing[END_REF]. They considered a d-dimensional torus, that is M = T d := R d /2πZ d , with Cartesian coordinates (x1, . . . , x d ), and proved the following limit

lim δ→0 e -iδ -1/2 ϕ R δ e iδ -1/2 ϕ ψ0, m j=1 uj δ Wj = exp -i d i=1 ∂ϕ ∂xi 2 -i m j=1 ujWj ψ0, (3) 
holding in H s (T d , C), for any ψ0 ∈ H s (T d , C), ϕ ∈ C ∞ (T d , R
) and uj ∈ R (here s > s d , being s d the least integer strictly greater than d/2). From (3), they developed a saturation technique for multiplicative controls with trigonometric potential of interactions, and found that for ψ0 ∈ H s (T d , C)

{e iφ ψ0 | φ ∈ C ∞ (T d , R)} ⊂ Reachst(ψ0).
We remark that this small-time controllability property in [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF] is in fact proved for the harder problem of nonlinear Schr ödinger equations. As a corollary of this result, they obtained the small-time approximate controllability among eigenstates: denoting by

Φ := {φ k (x) = (2π) -d/2 exp(i k, x ), k ∈ Z d } the set of eigenfunctions of the Lapla- cian of T d , they found that Φ ⊂ Reachst(φ k ), ∀k ∈ Z d .
Saturation techniques have been introduced by Agrachev and Sarychev [START_REF] Agrachev | Navier-Stokes equations: Controllability by means of low modes forcing[END_REF][START_REF] Agrachev | Controllability of 2D Euler and Navier-Stokes equations by degenerate forcing[END_REF] to study the approximate controllability of 2D Navier-Stokes and Euler systems with additive controls, and extended to the 3D case in [START_REF] Shirikyan | Approximate controllability of three-dimensional Navier-Stokes equations[END_REF][START_REF] Shirikyan | Contr ôlabilité exacte en projections pour les équations de Navier-Stokes tridimensionnelles[END_REF]. Other recent developments of these techniques are given, e.g., in [START_REF] Coron | On the global approximate controllability in small time of semiclassical 1-d Schr ödinger equations between two states with positive quantum densities[END_REF] to study small-time controllability properties of semiclassical Schr ödinger equations, and in [START_REF] Duca | Local exact controllability of the 1D nonlinear Schr ödinger equation in the case of Dirichlet boundary conditions[END_REF] to study local exact controllability of 1D Schr ödinger equations with Dirichlet boundary conditions.

Main results

Here, we investigate properties similar to those studied in [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF], in the linear setting, starting from a general Riemannian manifold. Our first result is the following.

Theorem 2. Let M be a smooth closed manifold equipped with a Riemannian metric g.

Let V ∈ L ∞ (M, R), Wj ∈ C ∞ (M, R), j = 1, . . . , m. Then, for any (u1, . . . , um) ∈ R m , ψ0 ∈ L 2 (M, C) and ϕ ∈ C ∞ (M, R) the following limit holds in L 2 (M, C) lim δ→0 e -iδ -1/2 ϕ exp -iδ -∆g + V + m j=1 uj δ Wj e iδ -1/2 ϕ ψ0 = exp -ig(∇gϕ, ∇gϕ) -i m j=1 ujWj ψ0.
Exactly as it is done in [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF] in the case of T d , the limit given in Theorem 2 can be applied in an iterative way to describe a small-time controllability property on M (see Theorem 6).

In the case of the two-dimensional sphere S 2 with trigonometric potential of interactions, we obtain the following result.

Theorem 3. Let ψ0 ∈ L 2 (S 2 , C). Then, system (2) satisfies {e iφ ψ0 | φ ∈ L 2 (S 2 , R)} ⊂ Reachst(ψ0).
As a corollary of Theorem 3 we obtain the small-time approximate controllability among particular eigenstates of the Laplace-Beltrami operator of S 2 .

Corollary 4. Let Y j m , j ∈ N, m = -j, . . . , j, be the spherical harmonics, which are the eigenfunctions of ∆ S 2 . Then, system (2) satisfies

(-1) j Y j ±j ∈ Reachst Y j ∓j , ∀j ∈ N.

Structure of the paper

In Section 2 we give a proof of Theorem 2, which is then applied in Section 3 to describe a small-time approximate controllability property for general manifolds. In Section 4 we develop this property on the 2-dimensional sphere, proving Theorem 3 and Corollary 4.

We conclude with an Appendix where we give an algebraic interpretation of Theorem 2.

Proof of Theorem 2

We start by defining for δ > 0, t ∈ R

L δ = e -iδ -1/2 ϕ -∆g + V + m j=1 uj δ Wj e iδ -1/2 ϕ , L = g(∇gϕ, ∇gϕ) + m j=1 ujWj,
as self-adjoint operators on L 2 (M, C) with common domain H 2 (M, C) (where L is a multiplicative operator). We have the following.

Lemma 5. Let M be a smooth closed manifold equipped with a Riemannian metric g.

Let V ∈ L ∞ (M, R), Wj ∈ C ∞ (M, R), j = 1, . . . , m. Then, for any (u1, . . . , um) ∈ R m , ψ0 ∈ H 2 (M, C) and ϕ ∈ C ∞ (M, R) we have δL δ ψ0 → Lψ0 in L 2 (M, C) as δ → 0.
Proof. We compute

e -iδ -1/2 ϕ δ∆ge iδ -1/2 ϕ ψ0 =iδ 1/2 (∆gϕ)ψ0 -g(∇gϕ, ∇gϕ)ψ0 + δ∆gψ0 + 2iδ 1/2 g(∇gϕ, ∇gψ0),
where we used that

∆g(f h) = ∆gf + ∆gh + 2g(∇gf, ∇gh), ∆gf = (divω g • ∇g)f, ∇g(e f ) = e f ∇g(f ), divω g (f ∇gh) = f ∆gh + g(∇gh, ∇gf ),
for any functions f, h ∈ H 2 (M, C). The conclusion follows by letting δ → 0 thanks to the regularity of ϕ, ψ0 and the compactness of M .

The previous Lemma 5 proves that the family of self-adjoint operators {δL δ } δ>0 with common domain H 2 (M, C) converges to L strongly as δ → 0. Hence, from [22, Theorem VIII.25(a)], we also see that δL δ → L in the strong resolvent sense as δ → 0. Applying Trotter's Theorem [START_REF] Reed | Methods of Modern Mathematical Physics: I. Functional Analysis[END_REF]Theorem VIII.21], we conclude that e -iδL δ ψ0 → e -iL ψ0 in L 2 (M, C) as δ → 0 for any ψ0 ∈ L 2 (M, C). Let ψ0 ∈ L 2 (M, C), and define for δ > 0 and for any t ∈ R,

ψ(t) = e -itL δ ψ0, Ψ(t) = e iδ -1/2 ϕ ψ(t).
Then, ψ weakly solves

i d dt ψ(t) = L δ ψ(t), ψ(0) = ψ0, so, Ψ weakly solves i d dt Ψ(t) = -∆g + V + m j=1 uj δ Wj Ψ(t), Ψ(0) = e iδ -1/2 ϕ ψ0.
Then, necessarily

Ψ(t) = Rt e iδ -1/2 ϕ ψ0, m j=1 uj δ = exp -it -∆ + V + m j=1 uj δ Wj e iδ -1/2 ϕ ψ0, which implies ψ(t) = e -iδ -1/2 ϕ exp -it -∆g + V + m j=1 uj δ Wj e iδ -1/2 ϕ ψ0,
and concludes the proof of Theorem 2.

Small-time control in saturation spaces

Following [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF], we associate with (1) a non-decreasing sequence of vector spaces. Let H1 := span R {W1, . . . , Wm}, and for any n ∈ N, n > 1 define Hn as the largest real vector space whose elements can be written as

ϕ0 + N j=1 αjg(∇gϕj, ∇gϕj), ϕi ∈ Hn-1, αi ∈ R ∀i = 0, . . . , N, N ∈ N.
Consider the saturation space H∞ := ∞ n=1 Hn. We have the following. Theorem 6. Let ψ0 ∈ L 2 (M, C). Then, system (1) satisfies

{e iφ ψ0 | φ ∈ H∞} ⊂ Reachst(ψ0).
The proof of Theorem 6 is analogous to the proof of Theorem 2.2 in [START_REF] Duca | Bilinear control and growth of Sobolev norms for the nonlinear Schr ödinger equation[END_REF]. We sketch it here for completeness. 

Sketch of the proof of

One does it by iteratively applying the limit of conjugated trajectories given in Theorem 2. As basis of induction we compute the limit of Theorem 2 with ϕ = 0: this proves that a control law (u1, . . . , um)/δ steers the system (1) from ψ0 arbitrarily close to exp -i m j=1 ujWj ψ0 if the time t = δ is small enough; this means that for any ψ0 ∈ L 2 (M, C)

e iφ ψ0 | φ ∈ H1 ⊂ Reachst(ψ0).
The idea is that we can now apply the limit of Theorem 2 with ϕ ∈ H1: the limit is a composition of three exponentials that approximates a trajectory of (1) and at the same time approximates the state exp (-ig(∇gϕ, ∇gϕ)) ψ0 if the time t = δ is small enough, where now g(∇gϕ, ∇gϕ) belongs to the larger vector space of directions H2. Notice that we are allowed to iterate this procedure because the potentials Wj are smooth.

More precisely, assume that (4) holds for n < n and let ϕ0+ N j=1 αjg(∇gϕj, ∇gϕj) ∈ Hn where ϕi ∈ Hn-1 for all i = 0, . . . , N and αj ∈ R. If α1 ≥ 0, consider the limit of Theorem 2 with ϕ = -α 1/2 ϕ1, u = 0, and initial condition exp(iϕ0)ψ0 (notice that it is possible to consider such an initial condition because of the inductive hypothesis). The application of the limit, together with the fact that by inductive hypothesis there exists a trajectory of (1) arbitrarily close (as the time t = δ gets smaller) to the composition of the three exponentials given in the limit, one has that for any ψ0 ∈ L 2 (M, C) exp (iϕ0 + i|α1|g(∇gϕ1, ∇gϕ1)) ψ0 ∈ Reachst(ψ0).

(

) 5 
If α1 < 0, one only needs to replace δ with δ = -δ in the limit of Theorem 2, obtaining -|α1| instead of |α1| in [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF]. By iterating this argument (that is, by considering the limit of Theorem 2 with initial condition the LHS of ( 5), ϕ = -α 1/2 2 ϕ2, and u = 0 and so on) one obtains

exp iϕ0 + i N j=1 αjg(∇gϕj, ∇gϕj) ψ0 ∈ Reachst(ψ0).

Example: the 2-dimensional sphere

In this section we show how to obtain Theorem 3 and Corollary 4. In particular, we prove that the saturation space H∞ associated with the potentials of interaction W1 = x, W2 = y, W3 = z, seen as polynomials on S 2 = {(x, y, z) ∈ R 3 , x 2 + y 2 + z 2 = 1}, is dense in L 2 (S 2 , R). For any n ∈ N, let Pn be the vector space of real polynomials p : S 2 ⊂ R 3 → R of degree less or equal than n. We have the following. Lemma 7. For any n ≥ 2, Pn ⊂ Hn.

By density of polynomials in L 2 (S 2 , R), Theorem 6 and Lemma 7 imply Theorem 3. Moreover, by noticing that

Y j ±j (α, β) = (∓1) j 2 j j! (2j + 1)! 4π sin j (β)e ±ijα ,
Corollary 4 is then a straightforward consequence of Theorem 3: it suffices to approximate the (discontinuous) functions ±2jα in L 2 (S 2 , R) with polynomials. We are thus left to prove Lemma 7.

Proof of Lemma 7. We prove the statement by induction. By definition, we have

H1 := span{x, y, z}.
To prove the basis of induction, it suffices to prove that the monomials 1, x 2 , y 2 , z 2 , xy, xz, yz belong to H2. We recall that, since the Riemannian metric g on S 2 is the pull-back metric induced by the inclusion S 2 → R 3 , for any smooth function on the sphere ϕ = ϕ(x, y, z)

the Riemannian gradient ∇gϕ is equal to the vector field ∇ S 2 ϕ in R 3 tangent to the sphere given by

∇ S 2 ϕ = 3 i=1 (∇ S 2 ϕ) i ∂ ∂xi , (∇ S 2 ϕ) i = 3 j=1 ∂ϕ ∂xj (δij -xixj),
where x1 = x, x2 = y, x3 = z, and the Riemannian norm of ∇ S 2 ϕ can thus be computed as a scalar product in R 3 , i.e.,

g(∇gϕ, ∇gϕ) = ∇ S 2 ϕ, ∇ S 2 ϕ = 3 i=1 (∇ S 2 ϕ) 2 i .
Hence, we compute for i, j ∈ {1, 2, 3}

(∇ S 2 xj) i = -xixj, i = j 1 -x 2 j , i = j
For j = 3 we get

∇ S 2 z, ∇ S 2 z = z 2 (x 2 + y 2 ) + (1 -z 2 ) 2 = z 2 (1 -z 2 ) + (1 -z 2 ) 2 = 1 -z 2 ,
where we used that x 2 + y 2 = 1 -z 2 on the sphere. Analogously we obtain

∇ S 2 xj, ∇ S 2 xj = 1 -x 2 j , j = 1, 2, 3.
We take the sum and use that x 2 + y 2 + z 2 = 1 on the sphere, obtaining

3 j=1 ∇ S 2 xj, ∇ S 2 xj = 2,
from which we see that 1, x 2 , y 2 , z 2 are in H2. Then, we also compute

(∇ S 2 (x ± z)) i =      1 -x 2 ∓ xz, i = 1 -xy ∓ yz, i = 2 -xz ± (1 -z 2 ), i = 3 from which we get ∇ S 2 (x -z), ∇ S 2 (x -z) -∇ S 2 (x + z), ∇ S 2 (x + z) =(1 -x 2 + xz) 2 + (-xy + yz) 2 + (-xz -1 + z 2 ) 2 -(1 -x 2 -xz) 2 -(-xy -yz) 2 -(-xz + 1 -z 2 ) 2 =8xz -4x 3 z -4xy 2 z -4xz 3 = 4xz,
where we used that y 2 = 1 -x 2 -z 2 on the sphere. This implies that xz ∈ H2. Since everything is symmetric in (x, y, z), the same argument can of course be repeated with y instead of z, obtaining that xy ∈ H2, and y instead of x, obtaining that yz ∈ H2. This proves the basis of induction.

We now show that if the statement holds for all n < n, then it holds for n. Notice that thanks to the inductive hypothesis, in order to prove the statement it suffices to show that the monomials

x k y l z m , (k, l, m) ∈ N 3 , k + l + m = n,
are in Hn. We thus compute for k, m = 0

∇ S 2 (z k ± z m ) i =      -kz k x ∓ mz m x, i = 1 -kz k y ∓ mz m y, i = 2 kz k-1 (1 -z 2 ) ± mz m-1 (1 -z 2 ), i = 3 which gives ∇ S 2 (z k -z m ), ∇ S 2 (z k -z m ) -∇ S 2 (z k +z m ), ∇ S 2 (z k +z m ) = 4kmz k+m -4kmz k+m-2 .
By choosing k+m = n, since z k , z m , z k+m-2 ∈ Hn-1 by inductive hypothesis, we obtain that z n ∈ Hn. The same argument can of course be repeated with x or y instead of z, obtaining that x n , y n ∈ Hn. We then compute

∇ S 2 (x k ± y l z m ) i =      kx k-1 (1 -x 2 ) ∓ mxy l z m ∓ lxy l z m , i = 1 -kx k y ∓ my l+1 z m ± ly l-1 (1 -y 2 )z m , i = 2 -kx k z ± my l z m-1 (1 -z 2 ) ∓ ly l z m+1 , i = 3 which gives ∇ S 2 (x k -y l z m ), ∇ S 2 (x k -y l z m ) -∇ S 2 (x k +y l z m ), ∇ S 2 (x k +y l z m ) = 4k(l+m)x k y l z m .
By choosing m = 0, k = 0, k+l = n, or l = 0, k = 0, k+m = n, since x k , y l z m ∈ Hn-1 by inductive hypothesis, we obtain that x k y l ∈ Hn or that x k z m ∈ Hn. By exchanging the roles of x and y, the same argument can of course be repeated, obtaining that y k z m ∈ Hn. Finally, by choosing k, m, n = 0, k + m + l = n, we obtain that x k y l z m ∈ Hn, which concludes the proof.

We conclude this section by noticing that, since

-∆ S 2 Y j m = j(j + 1)Y j m , ∀j ∈ N, m = -j, . . . , j,
the small-time transfer between (-1) j Y j ±j and Y j ∓j obtained in Corollary 4 happens between two eigenfunctions that correspond to the same degenerate eigenvalue j(j + 1).

Conclusion

We proved that it is in principle possible to obtain a transfer of population in arbitrarily small times among particular eigenstates of the physically relevant system of a rotating rigid molecule. Extensions of small-time controllability among more general states in such systems is an open challenge. The modelling of controlled quantum systems via perturbation of a stationary Schr ödinger equation is valid as long as the external field varies sufficiently slowly and its amplitude is small enough. The results of this paper should thus be interpreted as the fact that, for these particular eigenstates transfers, there is no theoretical lower bound on the time. The actual limitation on the minimal time needed to obtain the transfer is then due to the validity of the model w.r.t. the size of the control. Theorem 8. Let H0 be an unbounded self-adjoint operator with domain D(H0), and H1, . . . , Hm be bounded self-adjoint operators. Let S be a bounded self-adjoint operator satisfying [S, Hj] = 0, j = 1, . . . , m,

SD(H0) ⊂ D(H0), ad 3 S (H0)D(H0) = 0.

Then, for any ψ0 ∈ H the following limit holds in H When the Hilbert space H is finite-dimensional, it is easy to check that the bracket relation ad 3 S (H0) = 0 implies ad 2 S (H0) = 0 and [S, H0] = 0 on D(H0) (so the limit (9) does not furnish any additional direction). Interestingly, as we have just noticed, this is not the case when H is infinite-dimensional. This is related to the fact that ϕ ∈ C ∞ (M, R) (seen as a multiplication operator in L 2 (M, C)) has continuous spectrum (if it is not a constant).

Proof of Theorem 8. In order to prove [START_REF] Boscain | Multi-input Schr ödinger equation: controllability, tracking, and application to the quantum angular momentum[END_REF], it suffices to prove the analogous of the limit given in Lemma 5, i.e., where we used the commutator relations ( 7) and ( 8) (and the fact that (8) implies ad k S (H0)D(H0) = 0 for all k ≥ 3) in the second equality. The proof of ( 10) is concluded, and the proof of Theorem 8 follows.
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 1 Figure 1: Three orthogonal electric fields to control the rotation of a rigid linear molecule in R 3 .

Theorem 6 .

 6 It suffices to prove by induction on n ∈ N that for any ψ ∈ L 2 (M, C) one has e iφ ψ0 | φ ∈ Hn ⊂ Reachst(ψ0).

lim δ→0 e

 δ→0 -iδ -1/2 S exp -iδ H0 + where ad 0 A B = B, adAB = [A, B] = AB -BA and ad n+1 A B = [A, ad n A B]. In the case of a quantum particle on a Riemannian manifold (see Theorem 2), where H0 = -∆g + V and S = ϕ ∈ C ∞ (M, R), we have that ad 3 S (H0)ψ0 = 0 for any ψ0 ∈ H 2 (M, C) and 1 2 ad 2 S (H0)ψ0 = -g(∇gϕ, ∇gϕ)ψ0, ∀ψ0 ∈ H 2 (M, C).

  ψ0 ∈ D(H0), and then repeat the same steps as we did in Section 2 (using the self-adjointness of H0, Hj and S). Since S is bounded, we can use the Baker-Campbell-Hausdorff formula and write e -iδ -1/2 S δ H0 +
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A An heuristic in terms of Lie brackets

Here we interpret Theorem 2 in an algebraic way. Let us rewrite (1) in abstract terms as

where ψ belongs to some infinite-dimensional Hilbert space H.