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Abstract

We develop a generic method for bounding the convergence rate of an averaging algorithm
running in a multi-agent system with a time-varying network, where the associated stochastic
matrices have a time-independent Perron vector. This method provides bounds on convergence
rates that unify and refine most of the previously known bounds. They depend on geometric
parameters of the dynamic communication graph such as the weighted diameter or the bottleneck
measure.

As corollaries of these geometric bounds, we show that the convergence rate of the Metropolis
algorithm in a system of n agents is less than 1−1/4n2 with any communication graph that may
vary in time, but is permanently connected and bidirectional. We prove a similar upper bound
for the EqualNeighbor algorithm under the additional assumptions that the number of neighbors
of each agent is constant and that the communication graph is not too irregular. Moreover our
bounds offer improved convergence rates for several averaging algorithms and specific families
of communication graphs.

Finally we extend our methodology to a time-varying Perron vector and show how conver-
gence times may dramatically degrade with even limited variations of Perron vectors.

1 Introduction

Motivated by the applications of the Internet and the development of mobile devices with com-
munication capabilities, the design of distributed algorithms for networks with a swarm of agents
and time-varying connectivity has been the subject of much recent work. The algorithms imple-
mented in such dynamic networks ought to be decentralized, using local information, and resilient
to mobility and link failures while remaining efficient.

One of the basic problems arising in multi-agent networked systems is an agreement problem,
called asymptotic consensus, or just consensus, in which agents are required to compute values that
become infinitely close to each other. For example, in clock synchronization, agents attempt to
maintain a common time scale; or sensors may try to agree on estimates of a certain variable; or
vehicles may attempt to align their direction of motions with their neighbors in coordination of
UAV’s and control formation.

1.1 Network model and averaging algorithms

Let us consider a fixed set of agents that operate synchronously and communicate by exchanging
values over an underlying time-varying communication network. In the consensus problem, the
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objective is to design distributed algorithms in which the agents start with different initial values
and reach agreement on one value that lies in the range of the initial values. The term of constrained
consensus is used when the goal is to compute a specific value in this range (e.g., the average of
the initial values).

Natural candidates for solving the consensus problem are the averaging algorithms in which
each agent maintains a scalar variable that it repeatedly updates to a convex combination of its
own value and of the values it has just received from its neighbors. The weights used by an agent
can only depend on local information available to this agent. The matrix formed with the weights I.t1
at each time step of an averaging algorithm is a stochastic matrix, and the graph associated to
the stochastic matrix coincides with the communication graph. Hence, in the discrete-time model,
every execution of an averaging algorithm determines a sequence of stochastic matrices.

Every averaging algorithm corresponds to a specific rule for computing the weights. Three
averaging algorithms are of particular interest, namely the EqualNeighbor algorithm with weights
equal to the inverse of the degrees in the communication graph, its space-symmetric version called
Metropolis, and the FixedWeight algorithm which is a time-uniformization of the EqualNeighbor
algorithm in the sense that each agent uses some bound on its degree instead of its (possibly
time-varying) degree. A specific feature of the Metropolis algorithm is to address the constrained
consensus problem with convergence on the average of the initial values.

The convergence of averaging algorithms has been proved under various assumptions on the
connectivity of the communication graph, in particular when it is time-varying but permanently
connected [15, 2]. The goal in this paper is to establish novel and tight bounds on the convergence
rates of averaging algorithms that depend on geometric parameters of the communication graph. As
demonstrated in the simple case of a fixed communication graph and fixed weights, the convergence
rate involves the second largest singular values of the corresponding stochastic matrices. Thus a
primary step is to develop geometric bounds of these singular values and to get some control on
the successive associated eigenspaces.

1.2 Contribution

In this paper, our first contribution concerns upper bounds on the second largest eigenvalue of a
reversible stochastic matrix. We start with a bound analytic in the sense that it only depends
on the entries of the matrices and of their Perron vectors, and then develop a geometric bound
expressed in terms of a new graph invariant, the weighted diameter, that takes into account some
path redundancy in a graph. This second bound is incomparable with previous geometric bounds
derived through Cheeger-like inequalities or Poincaré inequalities, and is often much easier to
compute.

These bounds on the spectral gap immediately lead to bound the second largest singular value
of reversible stochastic matrices. In the non-reversible case, we generalize the method developed by
Nedić et al. for doubly stochastic matrices [18], and give an analytic bound on the second largest I.1
singular value that is weaker than our geometric bound, but holds in the general case of possibly
non-reversible stochastic matrices.

Our second contribution is a generic method for bounding the convergence rate of an execution
of an averaging algorithm when the associated stochastic matrices have all the same Perron vec-
tor. Combined with the above bounds on the second largest singular value, this method provides
bounds on convergence rates that unify and refine most of the previously known bounds. Basically,
the approach consists in masking time fluctuations of the network topology by a constant Perron
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vector. Two typical examples implementing this strategy for coping with time-varying topologies
are the Metropolis algorithm and the FixedWeight algorithm. Using the geometric bounds devel-
oped herein, our method offers improved convergence rates of these algorithms for large classes of
communication graphs.

We show that for any time-varying topology that is permanently connected and bidirectional,
the convergence rate of the Metropolis algorithm is at most 1 − 1/4n2, where n is the number
of agents. As a byproduct, we obtain that the second largest eigenvalue of the random walk on a
connected regular bidirectional graph is in 1−O(n−2). A similar result holds for the EqualNeighbor
algorithm with limited degree fluctuations over both time and space: the convergence rate is less
than 1 − 1/ (3 + dmax − dmin)n2 if each agent has a constant number of neighbors in the range
[dmin , dmax ]. These two quadratic bounds exemplify the performance of the Poincaré inequality
developed by Diaconis and Stroock [7].

Finally, we extend our methodology to a time-varying Perron vector: we provide a heuristic
analysis of the convergence rates of averaging algorithms that demonstrates how time-fluctuations
of Perron vectors may lead to exponential degradation of convergence times. Our approach consists
in replacing the Euclidean norm associated to the Perron vector by the generic semi-norm N(x) =
max(xi)−min(xi) defined on Rn, which does not depend on Perron vectors anymore.

Related work. Several geometric bounds on the second largest eigenvalue and the second largest
singular value of a reversible stochastic matrix have been previously developed (e.g., see [24, 23, 7,
13]). Our geometric bound expressed in terms of the weighted diameter of the associated graph is
novel to the best of our knowledge. The analytic bound has been developed by Nedić et al. in the I.1
special case of doubly stochastic matrices [18].

Concerning the convergence rate of averaging algorithms, there is also considerable literature.
Let us cite the bounds established by Landau and Odlyzko [12] for the EqualNeighbor algorithm and
by Xiao and Boyd [25] for the Metropolis algorithm, both on a fixed topology, the one developed by
Cucker and Smale for modelling formation of flocks in a complete graph [5], the bound by Olshevsky
and Tsitsiklis which concerns the EqualNeighbor algorithm with constant degrees [21, 22], the
analytic bound developed by Nedić et al. [18] in the case of doubly stochastic matrices (and hence,
with the typical application to the Metropolis algorithm), and the one developed by Chazelle [4] for
the FixedWeight algorithm. All these bounds are encompassed by those presented in this paper. I.1

The last three references, namely [22, 18, 4], deal with time-varying topologies, and establish
bounds on convergence rates by arguments that crucially use the existence of a constant Perron I.1
vector. The case of time-varying Perron vectors is addressed by Nedić and Liu [16] with a different
method than ours: instead of dealing with the sequence of Perron vectors and using the non-
Euclidean norm N, they consider the absolute probability sequence associated with the sequence of
stochastic matrices [11] and the sequence of associated Euclidean norms.

The key point of geometric bounds is to provide better bounds for families of graphs sharing
some geometric invariants. This idea has been developed in several articles, providing different
bounds for specific averaging algorithms and specific bidirectional topologies: the EqualNeighbor
algorithm over bidirectional trees in [21], any symmetric algorithm – corresponding to stochastic
matrices that are all symmetric – over the complete graph in [5], and the Lazy Metropolis algorithm, I.1
a variant of Metropolis, over various bidirectional graphs in [17]. All these previous bounds may
be directly derived from our geometric bounds, or even may be improved (e.g., in the case of Lazy
Metropolis on a star graph).
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From the quadratic bound on the hitting time of Metropolis walks established by Nonaka et
al. [19], Olshevsky [20] deduced that the convergence rate of the Lazy Metropolis algorithm in any
system of n agents connected by a fixed bidirectional communication graph is less than 1−1/71n2,
leaving open the question of a quadratic bound for Metropolis over a dynamic topology. Our
general quadratic bound for the Metropolis algorithm is obtained with a different approach based
on the discrete analog of the Poincaré inequality developed by Diaconis and Strook [7]. Applied
to Lazy Metropolis, our approach gives the improved bound of 1 − 1/8n2. It also proves that the
quadratic time complexity result in [20] extends to the case of time-varying topologies.

2 Preliminaries on stochastic matrices

2.1 Notation

Let n be a positive integer and let [n] = {1, . . . , n}. For every positive probability vector π ∈ Rn,
we define

< x, y>π=
∑
i∈[n]

πi xi yi,

that is a positive definite inner product on Rn. The associated Euclidean norm is denoted by ‖.‖π.
For any n×n square matrix P , P †π denotes the adjoint1 of P with respect to the inner product I.u

< . , . >π. We easily check that

P
†π
ij =

πj
πi
Pji.

Equivalently,
P †π = δ−1

π PTδπ

where δπ = diag(π1, . . . , πn) and PT is P ’s transpose.
Let 0 denote the null vector in Rn. The real vector space generated by 1 = (1, . . . , 1)T is

denoted by ∆ = R.1, and ∆⊥π is the orthogonal complement of ∆ in Rn for the inner product
< ., . >π. Clearly, ‖1‖π= 1.

Another norm on ∆⊥π is provided by the restriction to ∆⊥π of the semi-norm N on Rn defined
by

N(x) = max
i∈[n]

(xi)−min
i∈[n]

(xi).

2.2 Reversible stochastic matrices

Let P be a stochastic matrix of size n, and let GP denote the directed graph associated to P .
We assume throughout that P is irreducible, i.e., GP is strongly connected. The Perron-Frobenius
theorem shows that the spectral radius of P , namely 1, is an eigenvalue of P of geometric multiplicity
one. Then P has a unique Perron vector, that is, there is a unique positive probability vector πP
such that PT πP = πP . The matrix P

†π
P , simply denoted P †, is stochastic. Indeed,(

δ−1
π
P
PTδπ

P

)
1 =

(
δ−1
π
P
PT
)
πP = δ−1

π
P
πP = 1.

1The adjoint of a linear operator P for an inner product 〈. , .〉 in Rn is the unique linear operator, denoted P †,
satisfying

∀x, y ∈ Rn, 〈Px, y〉 = 〈x, P †y〉.
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Since 〈Px,1〉π = 〈x, P †1〉π = 〈x,1〉π, the vector space ∆⊥πP , denoted ∆⊥P for short, is stable I.e + II.1
under the action of P , i.e., satisfies P

(
∆⊥P

)
⊆ ∆⊥P . Moreover the two matrices P and P † share

the same Perron vector.
The matrix P is said to be π-self-adjoint if P †π = P . A simple argument based on the unicity

of the Perron vector of an irreducible matrix shows that if P is π-self-adjoint, then π is P ’s Perron
vector, i.e., π = πP . In this case, the matrix P is said to be reversible.

2.3 A formula à la Green

We start with an equality that is a generalization of Green’s formula.

Proposition 1. Let π be any positive probability vector in Rn, and let L be a square matrix of
size n. If L is π-self-adjoint and L1 = 0, then for all vector x ∈ Rn, it holds that II.2

〈x, Lx〉π = −1

2

∑
i∈[n]

∑
j∈[n]

πi Li,j (xi − xj)2 .

I.t2

Proof. First we observe that∑
i , j πi Li j (xi − xj)2 =

∑
i 6=j πi Li j (xi − xj)2

=
∑

i 6=j πi Li j x
2
i +

∑
i 6=j πi Li j x

2
j − 2

∑
i 6=j πi Li j xi xj .

Moreover, ∑
i 6=j πi Li j x

2
j =

∑
i 6=j πj Lj i x

2
j

=
∑

j∈[n] πj

(∑
i∈[n]\{j} Lj i

)
x2
j

= −
∑

j∈[n] πj Lj j x
2
j .

The first equality holds because L is π-self-adjoint, and the third one is a consequence of L1 = 0. I.f
Hence, the first two terms are both equal to −

∑
i∈[n] πi Li i x

2
i , and

∑
i, j

πi Li j (xi − xj)2 = −2

∑
i

πi Li i x
2
i +

∑
i 6=j

πi Li j xi xj

 .

Besides, we have

〈x, Lx〉π =
∑
i, j

πi Li j xi xj =
∑
i

πi Li i x
2
i +

∑
i 6=j

πi Li j xi xj

and the lemma follows.

When L is only supposed to satisfy L1 = 0 and LTπ = 0, Proposition 1 applied to the π-self-
adjoint matrix L+L†π

2 shows that the Green’s formula still holds for any vector x ∈ Rn. II.2
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2.4 Norms on ∆⊥π

If P is a reversible stochastic matrix, then L = I −P is πP -self adjoint and L1 = 0. Proposition 1
shows that the quadratic form QP defined as

QP (x) = 〈x, x− Px〉π
P

satisfies the identity I.g

QP (x) =
1

2

∑
i 6=j

πi Pi,j (xi − xj)2 .

Hence, QP is non-negative and its restriction to ∆⊥P is positive definite since every non-null vector I.h
in ∆⊥P has two different entries.

Because P is reversible, it has n real eigenvalues λ1(P ), . . . , λn(P ) that satisfy I.i

−1 6 λn(P ) 6 . . . 6 λ2(P ) 6 λ1(P ) = 1.

The Perron-Frobenius theorem shows that if, in addition, P has a positive diagonal entry, then the
first and the last inequalities are strict.

Besides, we obtain the classical minmax characterization of the eigenvalues of reversible stochas-
tic matrices.

Lemma 2. Let P be any reversible stochastic matrix, and let π be its Perron vector. For any
positive real number γ, the two following assertions are equivalent

1. λ2(P ) 6 1− γ;

2. ∀x ∈ ∆⊥P , QP (x) > γ ‖x‖2π.

In other words, λ2(P ) = 1− infx∈∆⊥P \{0}
QP (x)
‖x‖2π

.

Proof. Let {ε1, . . . , εn} be an orthonormal basis for the inner product 〈., .〉π such that ε1 = 1 and
for each index i ∈ [n],

Pεi = λi(P ) εi.

Let z1, . . . , zn the components of x in this basis, namely,

x = z1ε1 + · · ·+ znεn .

Hence,

QP (x) =
∑
i∈[n]

(
1− λi(P )

)
z2
i

which shows the equivalence of the two assertions in the lemma.

Another corollary of Proposition 1 is the following inequality between the two norms ‖.‖π and N
on ∆⊥π , where π is any positive probability vector.
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Corollary 3. Let π be any probability vector in Rn. For every vector x in ∆⊥π , it holds that I.m1

‖x‖2π=
1

2

∑
i∈[n]

∑
j∈[n]

πi πj(xi − xj)2 . (1)

Moreover, the Euclidean norm ‖.‖π is bounded above on ∆⊥π by the semi-norm N/
√

2, i.e.,

∀x ∈ ∆⊥π , N(x) >
√

2 ‖x‖π.

Proof. Let us consider the orthogonal projector 1.πT on ∆. Thus, for any vector in x ∈ ∆⊥P , we I.a + I.m2
have

‖x‖2π= 〈x, x− 1.πT. x〉π.

Since 1.πT is stochastic and reversible, Proposition 1 gives

‖x‖2π=
1

2

∑
i∈[n]

∑
j∈[n]

(xi − xj)2πi πj .

The inequality N(x) >
√

2 ‖x‖π immediately follows.

2.5 Relation with electric networks
I.4

The theory of reversible random walks on graphs, and consequently of reversible stochastic
matrices, is known to be closely related to the theory of electric networks (e.g., see [8] or [14]
for self-contained presentations and references). It turns out that various quantities attached to
stochastic matrices that arise in this article admit physical interpretations in terms of electric
networks.

In this correspondance, the electric networks are resistor networks, i.e., a number n > 2 of resis-
tors configured into a given (undirected) graph G = ([n], E) without self-loops: each edge (i, j) ∈ E
corresponds to a resistance Rij(= Rji) ∈ R∗+. The conductance of the edge (i, j) is defined as

Cij = R−1
ij .

For every node i ∈ [n], we may then introduce the quantity

Ci =
∑
j∈Ni

Cij ,

where Ni denotes the set of i’s neighbors in G, and define the stochastic matrix P by

Pij =

{
Cij/Ci if j ∈ Ni
0 otherwise.

It is straightforward to see that the i-th entry of P ’s Perron vector is equal to

πi = CiC
−1 where C =

∑
i∈[n]

Ci
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and that P is reversible. In this setting, the value of the quadratic form QP on some vector x ∈ Rn
may be written

QP (x) =
1

2C

∑
i 6=j

(xi − xj)2

Rij
.

Consequently, CQP (x) represents the power dissipated by the resistors in the network when the
voltages of its nodes 1, 2, . . . , n are x1, x2, . . . , xn, respectively.

3 The spectral gap of a reversible stochastic matrix

3.1 An analytic bound

We start by introducing the following notation: given a stochastic matrix P and its Perron vector π,
we set

µ(P ) = min
∅(S([n]

∑
i∈S

∑
j /∈S

πi Pi j


where the minimum is over the non-empty and strict subsets of [n]. II.3

In terms of electric networks (cf. Section 2.5), the quantity

C
∑
i∈S

∑
j /∈S

πi Pi j =
∑
i∈S

∑
j /∈S

πiCi j

coincides with the conductance of the resistors linking S and its complement, all set in parallel. I.4
Consequently, Cµ(P ) may be seen as the “maximal resistance” of a circuit obtained by dividing it
into two parts and by “short-circuiting” the nodes in each of these two parts.

Lemma 4 (Lemma 8 in [18]). If P is a reversible stochastic matrix, then for every vector x ∈ Rn,

QP (x) >
µ(P )

n− 1

(
N(x)

)2
.

Proof. Using index permutation, we assume that x1 6 . . . 6 xn. Since for any nonnegative numbers
v1, . . . , vk, we have

(v1 + · · ·+ vk)
2 > v2

1 + · · ·+ v2
k ,

it follows that ∑
i<j

πiPij(xi − xj)2 >
∑
i<j

(
πiPij

j−1∑
d=i

(xd+1 − xd)2

)
.

By reordering the terms in the last sum, we obtain

∑
i<j

πiPij(xi − xj)2 >
n−1∑
d=1

d∑
i=1

n∑
j=d+1

πiPij(xd+1 − xd)2 .

The definition of µ(P ) implies that I.j

µ(P ) 6
∑
i∈[d]

∑
j /∈[d]

πiPij
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for every positive integer d ∈ [n− 1]. Then Proposition 1 shows that

QP (x) > µ(P )
n−1∑
d=1

(xd+1 − xd)2 .

The Cauchy-Schwarz inequality in the Euclidean space Rn−1, applied to the vectors 1 and (x2− x1, I.h
x3 − x2, . . . , xn − xn−1)T, gives

n−1∑
d=1

(xd+1 − xd)2 >
1

n− 1
(xn − x1)2 ,

which completes the proof.

That leads us to introduce the quantity

η(P ) =
n− 1

2µ(P )
. (2)

Combining Corollary 3 with Lemmas 2 and 4, we obtain the following lower bound on the spectral
gap of a reversible stochastic matrix.

Proposition 5. If P is a reversible stochastic matrix, then

λ2(P ) 6 1− 1

η(P )

with η(P ) defined by (2).

Other inequalities on the second eigenvalue of a reversible stochastic matrix have been estab-
lished in terms of a geometric quantity, called the conductance or the Cheeger constant, defined as

I.v0

h(P ) = min
0<π(S)61/2

∑
i∈S
∑

j /∈S πi Pi j

π(S)
.

Each numerator is bounded from the below by µ(P ), and each denominator is at most equal to 1/2, I.v2
which implies that µ(P ) 6 h(P )/2. Cheeger’s inequalities

1− 2h(P ) 6 λ2(P ) 6 1− h(P )2

2
(3)

give an estimate of the second eigenvalue of P (e.g., see [7] for a short proof). The bound 1−1/η(P ) I.v1
in Proposition 5 is incomparable with 1 − h(P )2/2, but turns out to be worse in most cases2.
Moreover, computing µ(P ), or equivalently η(P ), is as difficult as computing h(P ) in general –
so why presenting the bound 1 − 1/η(P )? In fact, our primary motivation here is developed in
Section 4: the latter bound gives a simple estimate on the singular values of possibly non-reversible
stochastic matrices.

2If µ(P ) > 1/(n− 1), then 1− h(P )2/2 6 1− 1/η(P ). This inequality also holds in all the examples in Section 6.
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3.2 A geometric bound

Following [7], we define the P -length of a path γ = u1, . . . , u`+1 in the graph GP by

|γ|P =
∑
k∈[`]

(
πukPuk uk+1

)−1
.

The geometric bound that we develop depends on the choice of a collection of path sets in the
directed graph GP , one set per ordered pair of distinct nodes: for every pair (i, j) ∈ [n]2, i 6= j, let I.5
us fix a set Γi,j to be a non-empty set of edge-disjoint paths from i to j. Since P is irreducible, such
a set exists. Moreover, Menger’s theorem shows that Γi,j may be chosen with cardinality equal to
any integer in [τ ], where τ is the edge-connectivity of GP

3.
The geometric quantity that appears in our bound is

κ(P ) = max
i 6=j

 ∑
γ∈Γi,j

|γ| −1
P

−1

. (4)

This quantity – and as will become clear, the quality of our estimate – highly depends on the choice
of the collection of path sets (Γi,j)i6=j . When needed, to emphasize this dependency, we will write I.5
κ
(
P, (Γi,j)i6=j

)
instead of κ(P ).

Observe that, when the stochastic matrix P arises from an electric network as in Section 2.5,

C−1|γ|P =
∑
k∈[`]

Ruk uk+1

coincides with the resistance of the path γ, and I.4

C−1

 ∑
γ∈Γi,j

|γ| −1
P

−1

=

 ∑
γ∈Γi,j

R −1
γ

−1

is the resistance of the various paths in Γi,j set in parallel.

Proposition 6. For any reversible stochastic matrix P and any choice of a collection of path I.c
sets (Γi,j)i 6=j ,

λ2(P ) 6 1− 1

κ(P )

where κ(P ) is defined by (4).

Proof. Let i and j be any pair of distinct nodes. Proposition 1 shows that

QP (x) >
1

2

∑
γ∈Γi,j

∑
(u,v)∈γ

πu Puv(xu − xv)2,

where π denotes the Perron vector of P . By convexity of the square function, we have∑
k∈[m]

wk yk

2

6

∑
k∈[m]

wk

∑
k∈[m]

wk y
2
k

 ,
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for any family of pairs of real numbers (wk, yk)k∈[m]. Therefore, we have4 I.l + II.4 ∑
(u,v)∈γ

(xu − xv)

2

=

 ∑
(u,v)∈γ

1

πu Puv
πu Puv(xu − xv)

2

6

 ∑
(u,v)∈γ

1

πu Puv

 ∑
(u,v)∈γ

πu Puv(xu − xv)2

 ,

which implies

QP (x) >

 ∑
γ∈Γi,j

1

|γ|P

 (xi − xj)2

2
>

(xi − xj)2

2κ(P )
.

I.m
Hence, for any vector x ∈ ∆⊥P ,

QP (x) =
∑
i∈[n]

∑
j∈[n]

QP (x)πiπj >
1

κ(P )

1

2

∑
i∈[n]

∑
j∈[n]

(xi − xj)2πi πj

=
1

κ(P )
‖x‖2π,

and the result follows from Lemma 2. The first equality holds because the sum of π’s entries is
equal to 1 and the second one is the formula (1) in Corollary 3 for the vectors in ∆⊥P .

Let us now recall some notions from graph theory (see, e.g., [9]). First, define the depth of a
set of paths in a directed graph G as the maximum topological length of all its paths. For every I.w
positive integer k and every pair of nodes (i, j), the k-distance from i to j, denoted dk(i, j), is the
minimum depth of the sets of pairwise disjoint-edge paths from i to j of cardinality k, if there is
any; otherwise, the k-distance from i to j is infinite. Then the k-diameter of G, denoted δk(G), is
the maximum k-distance between any pair of nodes. The 1-diameter of G thus coincides with its
diameter.

The parameter that naturally emerges when one looks for estimates of κ(P ) is the weighted
diameter of G, denoted δ∗(G), defined by

δ∗(G) = min
k>1

δk(G)

k
. (5)

This invariant of the directed graph G clearly satisfies

δ∗(G) 6 δ(G).

It is small, not only when the diameter is small, but also when there are many redundancies among I.n
the paths relating far away nodes. The name “weighted” refers to this feature.

Moreover, Menger’s theorem shows that δk(G) is finite if and only if k is less or equal to the
edge-connectivity of G, denoted τe(G), thus providing the upper bound

δ∗(G) 6
n− 1

τe(G)
.

Let us fix any integer k ∈ [τe(GP )], and let Γ
(k)

i,j
be a set of k edge-disjoint paths from i to j that I.5

3The edge-connectivity of a directed graph G is defined to be the minimum number of edges in G whose removal
results in a directed graph that is not strongly connected.

4In the setting of electric networks, if γ is a path linking the nodes i and j, this inequality asserts that the power
dissipated by the resistors along this path, for the voltage vector x, is at least Rγ(xi − xj)2. This is an instance of
Thomson’s principle; cf. Section 1.3.5 in [8] or Section 2.4 in [14].
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is a realizer of dk(i, j), i.e., with a depth equal to dk(i, j). Then we have∑
γ∈Γ

(k)

i,j

1

|γ|
>

k

dk(i, j)
>

k

δk(GP )
.

The first inequality holds because of the definition of the depth of a path set and the assumption I.5
that Γ

(k)

i,j
’s depth is precisely equal to dk(i, j), and the second one comes from dk(i, j) 6 δk(GP ). It

follows that if the integer k0 ∈ [τe(GP )] realizes the minimum in (5), namely, δ∗(GP ) = δk0(GP )/k0,
then ∑

γ∈Γ
(k0)

i,j

1

|γ|
>

1

δ∗(GP )
.

By setting
α(P ) = min

(i,j)∈E(G
P

)
πiPij , (6)

we obtain |γ|P 6 |γ|/α(P ), and for the above choice of the collection of path sets, I.5

κ
(
P, (Γ

(k0)

i,j
)
i 6=j

)
6
δ∗(GP )

α(P )
. (7)

This yields the following corollary to Proposition 6.

Corollary 7. The eigenvalues of a reversible stochastic matrix smaller than 1 are bounded above by

β
b
(P ) = 1− α(P )

δ∗(GP )
,

where α(P ) is defined by (6) and δ∗(GP ) is the weighted diameter of the graph associated to P .

3.3 Diaconis and Stroock’s geometric bound

We now present another geometric bound on the spectral gap of a reversible stochastic matrix,
which has been developed by Diaconis and Stroock [7]. While our bound κ(P ) depends on the I.1 + 3
choice of a collection of path sets (Γi,j)i 6=j , Diaconis’ and Stroock’s bound depends on the choice of
a collection of paths (γi,j)i 6=j : for each ordered pair (i, j) of distinct nodes, let us choose a path γi,j
from i to j in the directed graph GP .

Let us fix a collection (γi,j)i 6=j of paths in GP ; the geometric quantity that appears in their bound
is

κ̃(P ) = max
e

∑
e∈γi,j

|γi j |P πi πj , (8)

where the maximum is over edges in the directed graph GP and the sum is over all the paths γi,j that
traverse e. As for κ, we will write κ̃

(
P, (γi,j)i 6=j

)
instead of just κ̃(P ) to emphasize the dependency

of this quantity with respect to the choice of the collection (γi,j)i6=j when needed.
Diaconis and Stroock [7] developed a discrete analog of the Poincaré’s inequality for estimating

the spectral gap of the Laplacian on a domain:

12



Proposition 8 (Proposition 1 in [7]). For any reversible stochastic matrix P and any choice of a
collection of paths (γi,j)i 6=j , I.c

λ2(P ) 6 1− 1

κ̃(P )

where κ̃(P ) is defined by (8).

The quality of this bound depends on the choices for the paths γi,j : the lower bound κ̃(P ) is
all the better if selected paths do not traverse any one edge too often. Following [7], every path γi,j
is chosen to be a geodesic. The geometric quantity that arises there is a measure of “bottlenecks”
in GP defined as

b(GP ) = min
(γi,j)i 6=j

max
e

∣∣{(i, j) ∈ [n]2 : e ∈ γi,j}
∣∣ , (9)

where the minimum is over the collections of paths (γi,j)i6=j as described above and containing only
geodesics, and the maximum is over all the edges of GP . Indeed, for any given choice of a collection
of geodesics (γi,j)i6=j in a directed graph G, the number maxe

∣∣{(i, j) ∈ [n]2 : e ∈ γi,j}
∣∣ represents the I.o

maximum number of these geodesics that are “forced to go through” some given edge. Hence, there
are many bottlenecks in G when this maximum number is large for every choice of a collection of
geodesics (cf. the values of b for the various directed graphs examined in Section 7).

The following lemma clarifies the relation between the weighted diameter defined in (5) and the
bottleneck measure of Diaconis and Stroock.

Lemma 9. The bottleneck measure of any strongly connected directed graph G with n nodes satisfies

δ∗(G) 6 b(G) 6 n2.

I.x
Proof. The upper bound on b(G) is obvious.

For the first inequality, let τ > 1 denote the edge-connectivity of G = (V,E), and let us fix
e1 = (i1, j1), . . . , eτ = (iτ , jτ ) to be an edge cut of minimal size. We set Gτ = (V,E \ {e1, . . . , eτ}).

Let W be the set of nodes v such that there exists a path from v to jτ in Gτ , and let W ′ = V \W .
First we show that each path in G linking a node in W ′ to a node in W contains at least one edge
ek, 1 6 k 6 τ . For the sake of a contradiction, suppose that there exists a path γ from u ∈ W ′ to
v ∈ W in the directed graph Gτ . Since v ∈ W , there exists a path γ′ from v to jτ in Gτ , and the
concatenation γ . γ′ is a path from u to jτ in Gτ , a contradiction with u ∈W ′.

Let (γ
i,j

)
i6=j be a collection of geodesics that realizes the minimum in (9), i.e., such that

b(G) = max
e

∣∣∣{(i, j) ∈ [n]2 : e ∈ γ
i,j
}
∣∣∣ .

There are exactly |W |.|W ′| paths in the collection (γ
i,j

)
i 6=j from W ′ to W . The pigeonhole principle

shows that at least |W |.|W ′|/τ of them traverse the same edge ek, which gives that b(G) > n−1
τ .

The result follows from δ∗(G) 6 n−1
τ .

Like the first geometric bound 1− 1/κ(P ), the bound 1− 1/κ̃(P ) can be usefully approximated
as follows.
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Corollary 10. The eigenvalues of a reversible stochastic matrix P other than 1 are upper-bounded by

βDS (P ) = 1− α(P )

(πmax)2 δ(GP ) b(GP )

where α(P ) is defined by (6), πmax is the largest entry of the Perron vector of P , δ(GP ) and b(GP )
are the diameter and the bottleneck measure of the graph associated to P , respectively.

Proof. The P -length of any geodesic γ in GP satisfies I.y

|γ|P 6
δ(GP )

α(P )
.

Hence, for any collection (γi,j)i 6=j of geodesics, the quantity κ̃(P ) satisfies

κ̃(P ) 6
(πmax)2 δ(GP )

α(P )

(
max
e

∣∣{(i, j) ∈ [n]2 : e ∈ γi,j }
∣∣) .

For the choice of a collection (γ
i,j

)
i 6=j that realizes the minimum in (9), the last factor in the above

product is equal to b(GP ), which implies

κ̃
(
P, (γ

i,j
)
i6=j

)
6

(πmax)2 δ(GP ) b(GP )

α(P )
.

The result then follows from Proposition 8.

4 Upper bounds on the second singular value of a stochastic ma-
trix

Let A be any irreducible stochastic matrix of size n with positive diagonal entries. If π is the
Perron vector of A, then the matrix A†A is also stochastic, and the three stochastic matrices A,
A†, and A†A share the same Perron vector π. Moreover, A†A is reversible and has n non negative
eigenvalues.

Propositions 5, 6, and 8 provide lower bounds on the spectral gap of A†A, which involve
the positive coefficients πi(A

†A)ij when positive. Clearly, these coefficients are bounded below I.z
by α(A)2/πmax with πmax = maxi∈[n] πi and α(A) defined by (6).

Interestingly, a generalization of a result in [18] combined with Proposition 5 gives an analytic
bound on the spectral gap that is linear in the coefficient α(A) and that holds even when A is non
reversible. In the case the matrix A is reversible, a lower bound on the spectral gap of A easily
provides a lower bound on the spectral gap of A†A.

4.1 Analytic bound

We start with a lemma that has been established in [18] under the assumption of doubly stochastic
matrices.

Lemma 11 (Lemma 5 in [18]). If A is an irreducible stochastic matrix, then I.1

µ(A†A) > α(A)/2 .
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Proof. Let S be any non empty subset of [n]. Since A is a stochastic matrix, for every index k ∈ [n],
either

∑
i∈S Aki > 1/2 or

∑
j /∈S Akj > 1/2, and the two cases are exclusive, that is, the two subsets

of [n] defined by

S+ = {k ∈ [n] :
∑
i∈S

Aki > 1/2} and S− = {k ∈ [n] :
∑
j /∈S

Akj > 1/2}

satisfy S− = [n] \ S+. Hence,

∑
i∈S

∑
j /∈S

πi
(
A†A

)
i j

=
∑
k∈[n]

∑
i∈S

∑
j /∈S

πkAkiAkj >
1

2

∑
k∈S+

∑
j /∈S

πkAkj +
∑
k∈S−

∑
i∈S

πkAki

 .

Then we consider the two following cases:

1. Either S− ∩ S 6= ∅ or S+ ∩ ([n] \ S) 6= ∅. If ` is in one of these two sets, then we obtain that∑
i∈S

∑
j /∈S

πi
(
A†A

)
i j

>
π`A``

2
.

2. Otherwise, S+ = S. Since A is irreducible, the non-empty set S has an outgoing edge (k1, j)
and an incoming edge (k2, i) in GA . It follows that∑

i∈S

∑
j /∈S

πi
(
A†A

)
i j

>
1

2
(πk1Ak1j + πk2Ak2i) .

In both cases, we arrive at
∑

i∈S
∑

j /∈S πi
(
A†A

)
ij
> α(A)/2.

Applied to the stochastic matrix A†A, Proposition 5 takes the form:

Proposition 12. Let A be an irreducible stochastic matrix with a positive diagonal. The matrix
A†A has n real eigenvalues that satisfy

0 6 λn(A†A) 6 . . . 6 λ2(A†A) 6 1− α(A)

n− 1
< λ1(A†A) = 1.

4.2 The reversible case

If the stochastic matrix A with positive diagonal is reversible, then the n eigenvalues of A are all
real and the Perron-Frobenius theorem implies that

−1 < λn(A) 6 . . . 6 λ2(A) < λ1(A) = 1.

Similarly, the stochastic matrix A†A = A2 has n real eigenvalues which, written in decreasing
order, satisfy

0 6 λn(A†A) 6 . . . 6 λ2(A†A) < λ1(A†A) = 1.

Hence λ2(A†A) = max(|λn(A)|2, |λ2(A)|2).
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Propositions 5, 6, and 8 show that

λ2(A) 6 1− 1

min(η(A), κ(A), κ̃(A))
.

Computing η(A) is difficult in general and thus we keep on just with the two geometric bounds
κ(A) and κ̃(A).

Every eigenvalue of A lies within at least one Gershgorin disc D(Aii, 1−Aii), and thus

−1 + 2 a(A) 6 λn(A) (10)

where a(A) = mini∈[n]Ai i.

Proposition 13. Any reversible stochastic matrix A with a positive diagonal has n real eigenvalues
that satisfy

0 6 λn(A†A) 6 . . . 6 λ2(A†A) 6

(
1−min

(
2 a(A) ,

1

min(κ(A), κ̃(A))

))2

< λ1(A†A) = 1

where a(A) = mini∈[n]Ai i, and the quantities κ(A), and κ̃(A) are defined by (4) and (8) for any
choice of a collection of path sets (Γi,j)i 6=j and any choice of a collection of paths (γi,j)i 6=j in the I.c
directed graph GA, respectively.

Every path γ in GA satisfies

|γ|A 6
|γ|
α(A)

where |γ| denotes γ’s length and α(A) is defined by (6). For the specific choice of the path sets I.p

Γ
(1)
ij = {γi,j}, where γi,j is any geodesic from i to j, the inequality (7) holds, and the corresponding

quantity κ(A) satisfies

κ(A) 6
δ1(GA)

α(A)
6
n− 1

α(A)
.

Then, we obtain(
1−min

(
2 a(A) , 1

min(κ(A),κ̃(A))

))2
6

(
1−min

(
2 a(A) , α(A)

n−1

))2

6
(

1− α(A)
n−1

)2

6 1− α(A)
n−1 .

The second inequality holds because α(A) 6 a(A) and 2 6 n, and the third inequality is due
to 0 6 α(A)/(n − 1) 6 1. This demonstrates that in the case of reversible matrices, the bound
in Proposition 13 for an appropriate choice of path sets (Γi,j)i6=j improves the general bound in
Proposition 12.

5 Averaging algorithms and convergence rates

5.1 Averaging algorithms, stochastic matrices and asymptotic consensus

We consider a discrete time system of n autonomous agents, denoted 1, . . . , n, connected via
a network that may change over time. Communications at time t are modelled by a directed
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graph G(t) = ([n], E(t)). Since an agent can communicate with itself instantaneously, there is a
self-loop at each node in every graph G(t). The sets of incoming and outgoing neighbors of the
agent i in G(t) are denoted by Ini(t) and Outi(t), respectively. The sequence G =

(
G(t)

)
t>1

is
called the dynamic communication graph, or just the communication graph.

In an averaging algorithm A, each agent i maintains a local variable xi, initialized to some
scalar value xi(0), and applies an update rule of the form

xi(t) =
∑

k∈Ini(t)

Aik(t)xk(t− 1) (11)

with Aik(t) which are all positive and
∑

k∈Ini(t)Aik(t) = 1. The algorithm A precisely consists
in the choice of the weights Aik(t); typical averaging algorithms are examined in Section 6. The
update rule (11) corresponds to the equation

x(t) = A(t)x(t− 1)

where A(t) is the n× n stochastic matrix whose (i, k)-entry is the weight Aik(t) if (k, i) is an edge
in G(t), and 0 otherwise. Hence, the directed graph associated to the matrix A(t) is the reverse
graph of G(t).

An execution of A is totally determined by the initial state x(0) ∈ Rn and the communication
graph G. We say that A achieves asymptotic consensus in an execution if the sequence x(t)
converges to a vector x∗ that is colinear to 1 = (1, . . . , 1)T. The convergence rate in this execution
is defined as

% = lim sup
t→∞

‖x(t)− x∗‖1/t

where ‖.‖ is any norm on Rn.
The classes of averaging algorithms under consideration and their executions are restricted by

the following assumptions.

A1: All the directed graphs G(t) have a self-loop at each node and are strongly connected.

A2: There exists some positive lower bound on the positive entries of the matrices A(t).

Observe that A1 is equivalent to the fact that every matrix A(t) has a positive diagonal and is
ergodic. As an immediate consequence of the fundamental convergence results in [15, 2], we have
that asymptotic consensus is achieved in every run of an averaging algorithm satisfying A1-2.

5.2 Case of a constant Perron vector

Our first results concern executions that satisfy the following assumption in addition to A1-2.

A3: All the matrices A(t) share the same Perron vector π.

The various averaging algorithms and time-varying communication graphs considered in Sec-
tion 6 exemplify typical situations where A3 is fulfilled. I.cc

From a technical viewpoint, assumption A3 will ensure that the orthogonal complement of ∆
under consideration is constant, and that the variances of the time-varying vectors x(t) are relative
to a fixed inner product, namely 〈., .〉π. Furthermore, assumption A3 implies that the limit x∗ of
the sequence (x(t)), if exists, is equal to

∑
i∈[n] πixi(0)1.
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Besides, the validity of A2 and A3 allows us to introduce the two positive infima

a = inf
i∈[n]

Ai i(t) and α = inf
(i,j)∈E(t)

πiAi j(t). (12)

The inequality (10) shows that all the eigenvalues of the matrices A(t) are uniformly bounded below
by −1 + 2a > −1.

Theorem 14. In any of its executions satisfying the assumptions A1-3, an averaging algorithm
achieves asymptotic consensus with a convergence rate

% 6 sup
t>1

√
λ2

(
A(t)†A(t)

)
.

Proof. Let y(t) denote the π-orthogonal of x(t) on ∆⊥π . Since A(t)† is stochastic, then

〈x(t),1〉π = 〈A(t)x(t− 1),1〉π = 〈x(t− 1),1〉π.

Therefore, the orthogonal projection of x(t) on ∆ is constant and y(t) = A(t)y(t− 1). Let V(t) be
the variance of x(t), that is

V(t) = ‖x(t)− x1‖2π= ‖y(t)‖2π
with x = 〈x(0),1〉π. Then

V(t− 1)− V(t) = 〈y(t− 1), y(t− 1)〉π − 〈A(t)y(t− 1), A(t)y(t− 1)〉π = QA(t)†A(t) (y(t− 1)) .

By Proposition 1, it follows that V is non-increasing. Moreover, the variational characterization
in Lemma 2 shows that

V(t) 6 βt V(0) ,

where β is any uniform upper bound on the second largest eigenvalues of the matrices A(t)†A(t).

Corollary 15. In any of its executions satisfying the assumptions A1-3, an averaging algorithm
achieves asymptotic consensus with a convergence rate

% 6 1− α

2 (n− 1)

where α is defined by (12).

In the particular case of doubly stochastic matrices, the above bound is exactly the one of Nedić
et al. [18, Theorem 10]. Actually, the method that we have developed for an arbitrary constant I.1
Perron vector is a generalization of the proof techniques in this seminal reference on convergence
rates of averaging algorithms.

As suggested by Proposition 13, we now consider the case of permanent reversibility:

A4: All the matrices A(t) are reversible.
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For every positive integer t and every ordered pair of distinct nodes (i, j), let us fix Γi,j (t) to be
any non-empty set of edge-disjoint paths from i to j in the directed graph G(t). Let κ(A(t)) denote I.c
the quantity defined by (4) for the collection of path sets (Γi,j (t))i 6=j . From A2-3, it follows that

κ = sup
t>1

κ(A(t)) (13)

is finite. Similarly, the quantity κ̃(A(t)) is defined by (8) with respect to a collection of paths
(γi,j (t))i 6=j in G(t), and the supremum

κ̃ = sup
t>1

κ̃(A(t)) (14)

is finite. Note that κ as well as κ̃ are not intrinsic quantities as they depend on the collections
(Γi,j (t))i6=j and (γi,j (t))i 6=j that have been chosen.

Corollary 16. In any of its executions satisfying the assumptions A1-4, an averaging algorithm
achieves asymptotic consensus with a convergence rate

% 6 1−min

(
2 a ,

1

min(κ, κ̃)

)
,

where a, κ, and κ̃ are defined by (12), (13), and (14), respectively.

Proof. Proposition 13 shows that for any positive integer t,

λ2

(
A(t)†A(t)

)
6

(
1−min

(
2 a ,

1

min(κ, κ̃)

))2

.

The result immediately follows from Theorem 14.

If at every time t, the matrix A(t) is symmetric andG(t) is the complete graph, then Corollary 16
gives the bound

% 6 1−
infi,j∈[n]2, t>1Aij(t)

n
.

This is the bound developed by Cucker and Smale [5] to analyze the formation of flocks in a
population of autonomous agents which move together.

5.3 Small variations of the Perron vector

Theorem 14 shows that in any execution of the EqualNeighbor algorithm – where the weights and
the entries of Perron vectors are bounded below by 1/n and 1/n2, respectively (cf. Section 6) – the
convergence rate is in 1−O(n−3) if the Perron vector is constant. With time-varying Perron vectors,
no polynomial bound holds. Indeed, Olshevsky and Tsitsiklis [21] proved that the convergence
time of this averaging algorithm is exponentially large in an execution where the support of the
communication graph is fixed but agents move from one node to another node: in the n/2-periodic
communication graph formed with bidirectional 2-stars of size n, the convergence rate is larger than
1 − 23−n/2 while entries of each Perron vector is greater than 1/6 for the two centers and greater
than 2/3n for the other agents.
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Our next result, which consists in an extension of Theorem 14 to the case of a time-varying
Perron vector, sheds some light on these examples of “large time of convergence”: it demonstrates I.dd
that an exponential convergence time as in the above example may occur only if the Perron vectors
of the matrices A(t) vary significantly over time.

We start by weakening the assumption A3.

A3b: Entries of the Perron vectors are uniformly lower bounded by some positive real number.

Under the assumption A3b, the infima a and α defined by (12) are still positive. Moreover, the
quantity

ν = sup
i∈[n], t>0

√
πi(t+ 1)

πi(t)
(15)

is finite.

Theorem 17. In any of its executions satisfying the assumptions A1-2 and A3b, an averaging
algorithm achieves asymptotic consensus with a convergence rate

% 6 ν sup
t>1

√
λ2

(
A(t)†A(t)

)
.

Proof. For any norm ‖.‖ on Rn, let ‖.‖Rn/∆ denote the quotient norm on the quotient vector
space Rn/∆, given by

‖ [x] ‖Rn/∆ = inf
v∈∆
‖x+ v‖

where [x] = x + ∆. In other words, the quotient norm ‖ [x] ‖Rn/∆ is the infimum (actually the I.q
minimum) of the norms of the representatives x+ v, v ∈ ∆, of the class [x] of x. It will be simply
denoted ‖ [x] ‖, as no confusion can arise. In the case of the Euclidean norm ‖.‖π, we have

‖ [x] ‖π = ‖y‖π,

where y is the orthogonal projection of x onto ∆⊥π .
If ∆ is an invariant subspace of the linear operator A : Rn → Rn, then let [A] : Rn/∆→ Rn/∆

denote the corresponding quotient operator. The operator norm of [A] associated to quotient norm
‖.‖π is defined as ‖ [A] ‖π = sup[x] 6=0 (‖ [A] [x] ‖π/‖ [x] ‖π). One can easily check that

‖ [A] ‖π = sup
y∈∆⊥π\{0}

‖Ay‖π
‖y‖π

,

i.e., ‖ [A] ‖π = ‖A/∆⊥π‖π. Hence ‖ [A] ‖π =
√
λ2(A†A).

Let x ∈ Rn, and let π and π′ be two positive probability vector. We easily get that

‖x‖2π′ 6 ‖x‖2π max
i∈[n]

π′i
πi
,

which implies that

‖ [x] ‖2π′ 6 ‖ [x] ‖2π max
i∈[n]

π′i
πi
.
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Let us now introduce the quotient form of V(t) defined as

W(t) = ‖ [x(t)] ‖2π(t).

Then we have
W(t) = ‖ [A(t)] [x(t− 1)] ‖2π(t) 6 ‖ [A(t)] ‖2π(t) ‖ [x(t− 1)] ‖2π(t) (16)

and thus

W(t) 6 ‖ [A(t)] ‖2π(t) max
i∈[n]

πi(t)

πi(t− 1)
W(t− 1),

which completes the proof.

The bound in Theorem 17 is quite loose in general. However, with the above recurring inequal-
ity (16), it is sufficiently effective for controlling convergence times in some specific situations: for I.dd
instance, when the topology is slowly varying [22], or when the Perron vector eventually stabi-
lizes [3].

6 Metropolis, EqualNeighbor, and FixedWeight algorithms

We now examine three fundamental averaging algorithms, classically called Metropolis, Equal-
Neighbor, and FixedWeight, which all achieve asymptotic consensus if the (time-varying) topology
is permanently strongly connected. For each of these algorithms, the Perron vectors are constant I.ee
in large classes of time-varying topologies: when the communication graph is permanently bidirec-
tional this holds for the Metropolis algorithm, when it is permanently Eulerian5 for the FixedWeight I.ff
algorithm, and when it is permanently Eulerian with constant (in time or in space) in-degrees, for
EqualNeighbor. In each of these cases, the corresponding stochastic matrices are all reversible and
thus Corollary 16 applies.

6.1 Algorithms and simplified bounds

First, let us fix some notation. If p(G) denotes any parameter of a directed graph G, let p(G)
denote the associated parameter for the dynamic graph G defined as

p(G) = sup
t>1

p(G(t)).

For instance, if di(t) denotes the in-degree of i in G(t) and dmax(t) the maximum in-degree in this
directed graph (i.e., dmax(t) = maxi∈[n] di(t)), then I.r

dmax(G) = max
i∈[n], t>1

di(t).

Metropolis algorithm with a time-varying bidirectional topology. Weights in the Metropo-
lis algorithm are given by

Mij(t) =


1

max(di(t),dj(t))
if j ∈ Ini(t) \ {i}

1−
∑

j∈Ni(t)\{i}
1

max(di(t),dj(t))
if j = i

0 otherwise.

5A directed graph is Eulerian if it is strongly connected and each node has an in-degree equal to its out-degree.

21



If G(t) is bidirectional, then the matrix M(t) is symmetric, and so doubly stochastic. Its
Perron vector is ( 1

n , . . . ,
1
n)T. In any execution of Metropolis with a communication graph that is

permanently bidirectional, the Perron vector is therefore constant. Furthermore, the quantities a
and α in (12) satisfy a > 1/dmax and α > 1/(ndmax). Therefore Corollary 16 takes the form:

Corollary 18. In any execution of the Metropolis algorithm with a communication graph G that
is permanently bidirectional, the convergence rate % satisfies

% 6 1−min

(
2

dmax

,max

(
1

n δ∗ dmax

,
n

δ b dmax

))
where b = b(G), δ = δ(G), δ∗ = δ∗(G), and dmax = dmax(G).

Nedić, Olshevsky, and Rabbat [17, Proposition 5] give several bounds on the convergence rate
of the Lazy Metropolis algorithm6 on some families of bidirectional graphs, which may be easily
extended to the Metropolis algorithm: their bounds are in 1 − O(1/n2) for a ring, a star, and
a 2-star, and in 1 − O(1/n log n) for a grid. As we will show in Section 7 (cf. Figure 3), the I.1
corresponding bounds obtained by applying Corollary 16 are of the same order of magnitude (or
are even better) than those in [17].

EqualNeighbor algorithm with an Eulerian topology and constant in-degrees. Weights
in the EqualNeighbor algorithm are given by

Nij(t) =

{ 1
di(t)

if j ∈ Ini(t)
0 otherwise.

If G(t) is Eulerian, then the i-th entry of the Perron vector of the matrix N(t) is equal to

πi(t) =
di(t)

|E(t)|
,

where |E(t)| =
∑n

i=1 di(t) is the number of edges in G(t). Hence in every execution of the Equal-
Neighbor algorithm with a communication graph G that is permanently Eulerian, the matrices N(t)
share the same Perron vector if (a) every directed graph G(t) is regular or (b) each node i has a
constant in-degree di. In case (a), the EqualNeighbor and Metropolis algorithms coincide and I.d
Corollary 18 applies. Thus we focus on case (b).

The coefficient a defined in (12) is equal to

a =
1

dmax

.

With Corollaries 7 and 10, the bound in Corollary 16 simplifies into:

Corollary 19. Let G be a dynamic graph that is permanently Eulerian and such that each node i has
a constant in-degree di. In any execution of the EqualNeighbor algorithm with the communication
graph G , the convergence rate % satisfies

% 6 1−min

(
2

dmax

,max

(
1

δ∗ |E|
,
|E|

δ d 2
max

b

))
where b = b(G), δ = δ(G), δ∗ = δ∗(G), dmax = dmax(G), and |E| =

∑
i∈[n] di.

6Lazy Metropolis is a variant of Metropolis with diagonal weights at least equal to 1/2, which confer some “vis-
cosity” to the diffusion of information in the network.
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As an immediate consequence, we obtain the general bound of 1 − 1
n δ dmax

on the convergence
rate of the EqualNeighbor algorithm under the assumption of constant degrees at each node. This
is exactly the bound established by Landau and Odlyzko [12] in the case of a fixed graph, and I.1
then extended to the dynamic setting in [21]. We can refine this result in the case of bidirectional
trees, and derive the bound of 1− 1

3n2 proved by Olshevsky and Tsitsiklis [21, Theorem 6.2] from
Corollary 16. Observe that this corollary also leads to the improved bound of 1 − 1

4n logn in the
specific case of binary trees (cf. Figure 3).

FixedWeight algorithm with an Eulerian topology. For each agent i, let qi denote an upper
bound on the number of in-neighbors of i in a given dynamic graph G. Weights in the FixedWeight
algorithm are given by

Wij(t) =


1/qi if j ∈ Ini(t) \ {i}
1− (di(t)− 1) /qi if j = i
0 otherwise.

We easily check that if G(t) is Eulerian, then the i-th entry of the W (t)’s Perron vector is equal to

πi
(
W (t)

)
=
qi
Q
,

where Q =
∑

i∈[n] qi. It follows that with a communication graph that is permanently Eulerian,
the Perron vector is constant and each matrix W (t) is reversible. Furthermore, the quantities a
and α in (12) satisfy a > 1/q and α = 1/Q. Using Corollaries 7 and 10, Corollary 16 specializes to
the following corollary.

Corollary 20. In any execution of the FixedWeight algorithm with a communication graph G that
is permanently Eulerian, the convergence rate % satisfies

% 6 1−min

(
2

q
,max

(
1

δ∗Q
,
Q

δ q2 b

))
where b = b(G), δ = δ(G), δ∗ = δ∗(G), q = maxi∈[n] qi and Q =

∑
i∈[n] qi.

The quantities 1/δ∗Q and Q/δ q2 b in the above bound depend not only on the geometric pa-
rameters of G, but also on the parameters q and Q of the FixedWeight algorithm, and hence cannot
be compared in general.

This corollary immediately gives the general bound 1 − α/n on the convergence rate of the
FixedWeight algorithm, which slightly improves the bound 1 − α/2n obtained by Chazelle [4, I.1
Theorem 1.2].

6.2 Quadratic bounds on convergence rates

Under the conditions specified in Corollaries 18 and 19, the convergence rate is bounded above by
1 − 1/n3 for both the EqualNeighbor and the Metropolis algorithms. We show that the original
Poincaré’s inequality in Proposition 8 yields a convergence rate in 1 − O(1/n2) for Metropolis,
and prove that this bound also holds for EqualNeighbor when the communication graph is not too
irregular.
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First observe that the Metropolis-length of any path γ = (i1, . . . , i`+1) in G(t) of length |γ| = `
is given by

|γ|
M(t)

= n
∑
k∈[`]

max(dik(t), dik+1
(t)),

while the EqualNeighbor-length for a communication graph with constant in-degrees is

|γ|
N(t)

= |E| |γ| .

Our general quadratic bound for Metropolis is based on a simple combinatorial lemma inspired by
a nice idea in [10].

Lemma 21. Let G be any bidirectional graph with n nodes, and let i1, . . . , i`+1 be any geodesic
in G. Then

max(di1 , di2) + · · ·+ max(di` , di`+1
) 6 4n.

Proof. Let Nk denote the set of (incoming or outgoing) neighbors of ik, and for each k 6 `, let

N ∗k =

{
Nk. if dk > dk+1

Nk+1 otherwise.

Since i1, . . . , i`+1 is a geodesic, Nk and Nk′ are disjoint if k′ > k+3. Hence, N ∗k and N ∗k′ are disjoint
if k′ > k + 4. The lemma follows from the pigeonhole principle applied to four copies of [n], the
first one containing the disjoint sets N ∗1 , N ∗5 , . . . , the second one N ∗2 , N ∗6 , . . . , etc. I.s

Proposition 22. The Metropolis algorithm with dynamic communication graphs that are perma-
nently bidirectional and connected achieves asymptotic consensus with a convergence rate

% 6 1− 1

4n2
.

Proof. Since ( 1
n , . . . ,

1
n)T, Lemma 21 gives that the M(t)-length of every geodesic γ in G(t) satisfies

|γ|
M(t)

6 4n2.

Hence, if the collection of paths (γi,j(t))i 6=j is formed only with geodesics in G(t), the corresponding I.t
bound κ̃(M(t)) defined by (8) thus satisfies

κ̃(M(t)) 6 4 max
e

∣∣{(i, j) ∈ [n]2 : e ∈ γi,j(t)}
∣∣ , (17)

where the maximum is over all the edges in G(t). The collection (γi,j(t))i 6=j contains less than n2

paths, and so
κ̃(M(t)) 6 4n2.

The result follows from Corollary 16 and a > 1/n.

The same approach applies to the Lazy Metropolis algorithm where weights are defined by

Lij(t) =


1

2 max(di(t)−1, dj(t)−1) if j ∈ Ini(t) \ {i}
1−

∑
j∈Ni(t)\{i}

1
2 max(di(t)−1, dj(t)−1) if j = i

0 otherwise .
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Therefore,

∀i ∈ [n], ∀t > 1, Lii(t) >
1

2
and

|γ|
L(t)

= 2n
∑
k∈[`]

max(dik(t), dik+1
(t)).

Corollary 16 and Lemma 21 give the following result for the Lazy Metropolis algorithm.

Proposition 23. The Lazy Metropolis algorithm with dynamic communication graphs that are
permanently bidirectional and connected achieves asymptotic consensus with a convergence rate

% 6 1− 1

8n2
.

From the quadratic bound on the hitting times of Metropolis walks proved by Nonaka et al. [19],
Olshevsky [20] showed that the convergence rate of the Lazy Metropolis algorithm on any fixed
graph that is connected and bidirectional is bounded from the above by 1−1/71n2. Proposition 23
improves this result and, more significantly, extends it to the case of a time-varying topology.

The Metropolis and EqualNeighbor algorithms coincide in the case of communication graphs
that are permanently regular. Proposition 22 shows that the convergence rate is bounded above by
1−1/4n2 for such topologies, thus extending the quadratic upper bound in [7] for distance transitive
graphs to any regular graphs. With moderate irregularity [1], a close method for bounding κ̃ in the
EqualNeighbor algorithm gives the following quadratic bound.

Proposition 24. In any execution of the EqualNeighbor algorithm with a communication graph G
that is permanently Eulerian and with a constant in-degree di at each node i, asymptotic consensus
is achieved with a convergence rate

% 6 1− 1

(3 + dmax − dmin)n2

where dmin and dmax denote the minimum and maximum in-degree in each graph G(t).

Proof. The EqualNeighbor-length of any path in the directed graph G(t) gives

κ̃(A(t)) =
1

|E|
max
e

∑
e∈γi j

|γi j |di dj .

Hence

κ̃(A(t)) 6
1

|E|
∑
i 6=j
|γi j |di dj 6 max

j∈[n]

∑
i∈[n]\j

|γi j |di.

The second inequality is due to the fact that |E| =
∑

k∈[n] dk. An argument analog to Lemma 21
shows that the sum of the in-degrees along any geodesic is less than 3n, and thus each term in the
above sum is bounded above by

|γi j |di(t) 6 3n+ (di − dmin)|γi j | .

The result immediately follows from Corollary 16 and a > 1/dmax .

The example of the barbell graph developed by Landau and Odlyzko [12] shows that the con-
vergence rate of the EqualNeighbor algorithm is greater than 1− 32/n3 with a specific set of initial
values (see also below). Thus the general quadratic bound for Metropolis in Proposition 22 does
not hold for EqualNeighbor because of degree fluctuations in space. I.gg
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7 Bounds for specific communication graphs

We now examine some typical examples where the bounds presented above are easy to compute.
For the FixedWeight algorithm, we just give the bound derived from the simple geometric bound β

b
,

while we present detailed comparisons of the various bounds for the EqualNeighbor and Metropolis
algorithms (cf. Figure 3). For Metropolis and FixedWeight, the communication graph is time-
varying, but it is supposed to belong to one of the listed classes of directed graphs. In other words,
the support is fixed but node labelling may change over time. For the EqualNeighbor algorithm, the
communication graph is supposed to be fixed if the directed graphs in the class under consideration
are not regular. This section is completed with the case of the EqualNeighbor algorithm and the
fixed Butterfly graph, which allows us to compare the various methods for bounding convergence
rate in the case of non-reversible stochastic matrices.

Ring. Let G = (V,E) be a bidirectional ring7 with an odd number n = 2m + 1 of nodes. Here
|E| = 3n, dmax(G) = 3, and δ(G) = m. We easily check that δ∗(G) = m and b(G) = m(m+ 1)/2.

Since G is regular, the EqualNeighbor and Metropolis algorithms coincide, and we obtain

β
b

= 1− 2

3n2
+O

(
1

n3

)
, βDS = 1− 16

3n2
+O

(
1

n3

)
.

The two bounds are of the same order of magnitude with βDS < β
b
. Corollary 19 gives a

convergence rate

% 6 1− 16

3n2
,

which is the right order of magnitude. I.hh

Hypercube. Let G = (V,E) be the p-dimensional cube with n = 2p nodes. Here |E| = (p+1)2p,
d(G) = p + 1, δ(G) = p, and δ∗(G) = 1. Diaconis and Stroock [7] showed that b(G) = 2p−1. The
EqualNeighbor and Metropolis algorithms coincide, and we obtain

β
b

= 1− 1

(p+ 1)2p
and βDS = 1− 2

p (p+ 1)
.

The bound βDS is far better than β
b
. Corollary 19 gives a convergence rate

% 6 1− 2

p (p+ 1)
6 1− 1

(log2 n)2
,

which is the right order of magnitude (e.g., see [6]).

Star. The star graph with n nodes has 3n− 2 edges. The maximum in-degree is n, its diameter
is 2, its edge-connectivity is 1, and so its weighted diameter is 2. The bottleneck measure is equal
to the weighted diameter, namely n− 1.

For the EqualNeighbor algorithm, we obtain

β
b

= 1− 1

6n
+O

(
1

n2

)
and βDS = 1− 3

2n2
+O

(
1

n3

)
.

7For a chain, graph parameters are of the same order and so leads to bounds of the same order of magnitude.
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The bound β
b

is far better then βDS , and Corollary 19 gives a convergence rate

% 6 1− 1

6n
.

As for Metropolis, we have

β
b

= 1− 1

2n2
and βDS = 1− 1

3(n− 1)
.

The bound βDS is asymptotically better than β
b

and improves the bound given in [17]. Observe
that the inequality (17) in the proof of Proposition 22 directly gives % 6 1− 1/4n.

Two-star. A two-star graph G is composed of two identical stars with an edge connecting their
centers. It has an even number n of nodes and 3n − 2 edges. Here, dmax(G) = 1 + n/2, δ(G) =
δ∗(G) = 3, and b(G) = n2/4.

For the Metropolis algorithm, we obtain

β
b

= 1− 2

3n2
+O

(
1

n3

)
and βDS = 1− 8

3n2
+O

(
1

n3

)
.

The bounds β
b

and βDS are of the same order with βDS < β
b
. Corollary 18 gives a convergence rate

% 6 1− 8

3n2
.

As for EqualNeighbor, we have

β
b

= 1− 1

9n
+O

(
1

n2

)
and βDS = 1− 16

n3
+O

(
1

n4

)
.

The bound β
b

is far better than βDS , and Corollary 19 gives a convergence rate

% 6 1− 1

9n
.

Binary tree. Consider the full binary tree of depth p > 1. It has n = 2p+1−1 nodes, 3n−2 edges,
and the maximum in-degree is 4. The results for the EqualNeighbor and Metropolis algorithms are
thus of the same order. The diameter is 2 p and the weighted diameter is 2 p. We easily check that
the bottleneck measure is 2p(2p − 1).

For Metropolis, we have

β
b

= 1− 1

8 p(2p+1 − 1)
and βDS = 1− 2p+1 − 1

p 2p+3(2p − 1)
.

The bounds β
b

and βDS are of the same order with βDS < β
b
. Corollary 18 gives a convergence rate

% 6 1− 1

2n log2 n
.

The results for EqualNeighbor are similar with a convergence rate

% 6 1− 1

4n log2 n
.
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C̄ . . . . . . C

−p 1− p −2 −1 0 1 2 p− 1 p

Figure 1: The barbell graph

Observe that, in the case of a general bidirectional tree, the number of edges remains equal
to 3n− 2 while the diameter may be n− 1, which leads to

β
b
6 1− 1

3n2

for the EqualNeighbor algorithm. Proposition 22 shows that a quadratic bound also holds for
Metropolis.

Two-dimensional grid. Let p be an even positive integer, and let G = (V,E) be the two-
dimensional grid with n = p2 nodes. Here |E| = p(5p − 4), d(G) = 5, δ(G) = 2(p − 1), and
δ∗(G) = p−1. The results for EqualNeighbor and Metropolis are thus of the same order. Choosing
paths γi,j first with vertical edges and then with horizontal edges yields b(G) 6 p3(p+ 1)/8.

For the Metropolis algorithm, we obtain

β
b

= 1− 1

5n3/2
and βDS 6 1− 4

5p(p− 1)(p+ 1)
6 1− 2

5n3/2
.

The bounds β
b

and βDS are of the same order of magnitude. Corollary 18 gives a convergence rate

% 6 1− 2

5n3/2
.

Similarly, Corollary 19 implies that the convergence rate of the EqualNeighbor algorithm satisfies

% 6 1− 4

5n3/2
.

Barbell. The barbell graph G = (V,E) of size |V | = n = 4p− 1 is composed of two cliques C and
C̄ with p nodes each, that are connected by a line of length 2p− 1; see Figure 1. The barbell graph
is bidirectional with |E| = 2p2 + 6p− 1 edges. The maximum in-degree is p+ 1. The diameter and
the weighted diameter are equal to 2(p+ 1). Any geodesic connecting i to j with i 6 0 and j > 1
crosses over the edge (0, 1), which is thus traversed by 2p(2p− 1) geodesics. Clearly (0, 1) realizes
the maximum in (9), and hence b(G) = 2p(2p− 1)).

For the Metropolis algorithm, the bounds β
b

and βDS are of the order of magnitude with
βDS < β

b
, and βDS is of the order of 1 − 32/p3. A better estimate on the convergence rate is

obtained with (17) and gives

% 6 1− 1

16p2
= 1− 1

(n+ 1)2
.

The barbell graph thus exemplifies that the bound in Corollary 18 can be far from the original
bound 1− 1/κ̃.
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As for EqualNeighbor, the expression of κ̃ in (8) makes the barbell graph as a good candidate
for a spectral gap that is cubic in 1/n. Indeed, Landau and Odlyzko [12] consider the vector v ∈ Rn
defined by

vi =


−p if i ∈ C̄
i if 1− p 6 i 6 p− 1
p if i ∈ C.

Let N denote the stochastic matrix associated to the EqualNeighbor algorithm running on the
barbell graph. Proposition 1 shows that

QN (v) =
1

2|E|
∑

(i,j)∈E

(vi − vj)2 and ‖v‖2π=
1

|E|
∑
i∈[n]

div
2
i .

Hence

QN (v) =
p

|E|
and ‖v‖2π=

2

|E|

(
p4 +

4p3

3
+
p2

2
+
p

6

)
.

Therefore

λ2(N) > 1− 3

6p3 + 8p2 + 3p+ 6
> 1− 32

n3
.

The first inequality is Lemma 2 and the second one is because n = 4p−1. In the execution with the
initial values corresponding to one eigenvector associated to λ2(N), the convergence rate satisfies

% = λ2(N) > 1− 32

n3
.

Hence, as opposed to the Metropolis algorithm, no general quadratic bound holds for the conver-
gence rate of EqualNeighbor on a fixed connected bidirectional graph.

Butterfly (and EqualNeighbor). The Butterfly graph has n = 2m nodes and consists of
two isomorphic parts that are connected by a bidirectional edge. We list the edges between the
nodes 1, 2, . . . ,m which also determine the edges between the nodes m + 1,m + 2, . . . , 2m via the
isomorphism i = n − i + 1. The edges between the nodes 1, 2, . . . ,m are: (a) the edges (i + 1, i)
for every i ∈ [m− 1], and (b) the edges (1, i) for every i ∈ [m]. In addition, it contains a self-loop
at each node and the two edges (m,m) and (m,m). Hence, the butterfly graph is not bidirectional
but it is strongly connected; see Figure 2.

We now consider the EqualNeighbor algorithm running on this fixed graph, yielding a fixed
stochastic matrix B that is not reversible. Corollary 16 is not applicable, but the results in Section 4
give a convergence rate

% 6 1−max

(
α(B)

n− 1
,

1

κ(B†B)
,

1

κ̃(B†B)

)
,

where α(B), κ(B†B), and κ(B†B) are defined by (6), (4), and (8), respectively.
We easily verify that the Perron vector of B, and thus of B†B, is given by

π1 =
1

5
, πi =

3

5 . 2i
for i ∈ {2, . . . ,m− 1} and

1

5
.
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Figure 2: The butterfly graph

By symmetry, this also defines the Perron vector for the remaining indices between m+ 1 and 2m
since πi = πn−i+1. Then we easily arrive at

α(B) = πmBm 1 =
1

5 . 2m−1
,

which directly gives the following analytic bound in Proposition 12

βa = 1− 1

5(2m− 1) 2m−1
.

For κ(B†B) and κ(B†B), we compute the estimates β
b
(B†B) and βDS (B†B) given by

κ(B†B) 6
α(B†B)

δ∗(H)
and κ(B†B) 6

α(B†B)

δ(H)(πmax)2b(H)
,

where H = GB†B. The directed graph H consists in two cliques with the sets of nodes 1, 2, . . . ,m
and 1, 2, . . . ,m , connected by the edges (m− 1,m), (m,m− 1), (m,m) and the three edges in the
reverse direction. Thus H has 2(m2 + 3) edges, dmax(H) = m+ 2, δ(H) = 3, and δ∗(H) = 1. The
bottleneck measure is b(H) = m/3. A rather tedious computation gives

α(B†B) = πm−1B
†B(m−1)m =

1

3 . 5 . 2m−1
.

Since πmax = 1/5, we arrive at the two following geometric bounds

β
b

= 1− 1

3 . 5 . 2m−1
and βDS = 1− 5

3m 2m−1
.

The bound β
b

is better than both βa and βDS . Thus we arrive at

% 6 1− 1

3 . 5 . 2m−1
.

The subset S = {1, 2, . . . ,m} satisfies π(S) = 1/2 and∑
i∈S,j /∈S

πiB
†Bi j =

1

5.2m−2
.
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EqualNeighbor FixedWeight Metropolis

ring 1− 16
3n2 1− 2

Qn 1− 16
3n2

hypercube 1− 1
(log2 n)2 [DS]

1− 1
Q 1− 1

(log2 n)2 [DS]

star 1− 1
6n [b]

1− 1
2qmax

1− 1
3n [DS]

two-star 1− 1
9n [b]

1− 1
3Q 1− 8

3n2

binary tree 1− 1
4n log2 n

1− 2
Qn 1− 1

2n log2 n

grid 1− 2
5n
√
n

1− 1
Q
√
n

1− 2
5n
√
n

barbell 1− 8
(n+1)3

1− 2
Qn 1− 1

(n+1)2

Figure 3: Bounds for networked systems with n agents and bidirectional links.

The lower bound in Cheeger’s inequalities gives

λ2(B†B) > 1− 1

5.2m−4
.

This lower bound is of the same order as β
b
, which shows that the convergence rate of the Equal-

Neighbor algorithm is 1− θ
(
2−m

)
.

Acknowledgements. The author is grateful to Eric Fuzy and Patrick Lambein-Monette for
useful discussions, and to the anonymous referees for their careful reading of a first version of this
article, and their very valuable suggestions. The physical interpretation in terms of electric networks
has been kindly suggested by one of them. Special thanks to Jean-Benôıt Bost and Raphaël Bost
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