
HAL Id: hal-03717753
https://hal.science/hal-03717753

Submitted on 28 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computing Outside the Box: Average Consensus over
Dynamic Networks

Bernadette Charron-Bost, Patrick Lambein-Monette

To cite this version:
Bernadette Charron-Bost, Patrick Lambein-Monette. Computing Outside the Box: Average Con-
sensus over Dynamic Networks. 1st Symposium on Algorithmic Foundations of Dynamic Networks,
SAND 2022, Mar 2022, Roma, Italy. �10.4230/LIPIcs.SAND.2022.10�. �hal-03717753�

https://hal.science/hal-03717753
https://hal.archives-ouvertes.fr

Computing Outside the Box: Average Consensus
over Dynamic Networks
Bernadette Charron-Bost #

Département d’informatique de l’ENS, ENS, CNRS, PSL University, Paris, France

Patrick Lambein-Monette1 #

Université Paris Cité, CNRS, IRIF, F-75013, Paris, France

Abstract
Networked systems of autonomous agents, and applications thereof, often rely on the control primitive
of average consensus, where the agents are to compute the average of private initial values. To
provide reliable services that are easy to deploy, average consensus should continue to operate when
the network is subject to frequent and unpredictable change, and should mobilize few computational
resources, so that deterministic, low powered, and anonymous agents can partake in the network.

In this stringent adversarial context, we investigate the implementation of average consensus by
distributed algorithms over networks with bidirectional, but potentially short-lived, communication
links. Inspired by convex recurrence rules for multi-agent systems, and the Metropolis average
consensus rule in particular, we design a deterministic distributed algorithm that achieves asymptotic
average consensus, which we show to operate in polynomial time in a synchronous temporal model.

The algorithm is easy to implement, has low space and computational complexity, and is fully
distributed, requiring neither symmetry-breaking devices like unique identifiers, nor global control
or knowledge of the network. In the fully decentralized model that we adopt, to our knowledge, no
other distributed average consensus algorithm has a better temporal complexity.

Our approach distinguishes itself from classical convex recurrence rules in that the agent’s values
may sometimes leave their previous convex hull. As a consequence, our convergence bound requires
a subtle analysis, despite the syntactic simplicity of our algorithm.

2012 ACM Subject Classification Theory of computation → Distributed algorithms; Computing
methodologies → Distributed artificial intelligence; Networks → Sensor networks; Networks →
Mobile networks; Networks → Network dynamics

Keywords and phrases average consensus, dynamic networks, distributed algorithms, iterated
averaging, Metropolis

Digital Object Identifier 10.4230/LIPIcs.SAND.2022.10

Related Version Extended Version: https://arxiv.org/abs/2010.05675

Acknowledgements Patrick Lambein-Monette would like to thank his doctoral jury for stimulating
discussions and remarks regarding previous versions of this material.

1 Introduction

1.1 Asymptotic average consensus
We consider a networked system of n agents – the generic term we use to denote the
autonomous nodes of the network – denoted by the integer labels 1, . . . , n. Agent i begins
with an input value µi ∈ R, and maintains an estimate xi(t) of an objective. The input
represents the agent’s private observation of some aspect of its environment, which we assume
to be taken arbitrarily from the domain of the problem; for example, the input may be a
temperature reading, or the agent’s initial position in space or velocity, if it is mobile. The

1 Correponding author

© Bernadette Charron-Bost and Patrick Lambein-Monette;
licensed under Creative Commons License CC-BY 4.0

1st Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022).
Editors: James Aspnes and Othon Michail; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Bernadette.Charron-Bost@ens.fr
mailto:lambein@irif.fr
https://orcid.org/0000-0002-9401-8564
https://doi.org/10.4230/LIPIcs.SAND.2022.10
https://arxiv.org/abs/2010.05675
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Computing Outside the Box

estimate represents some aspect of the environment affected by the agent; depending on the
system, it may simply be a local variable in the agent’s memory, or it may directly represent
some external parameter like the agent’s heading or altitude.

Here, we focus on (asymptotic) average consensus, a control primitive widely studied
by the distributed control community, where the estimates are made to achieve asymptotic
consensus on the average of the input values – that is, to jointly converge towards the same
limit µ := 1

n

∑
i µi. The problem of computing an average is central to many applications in

distributed control: let us cite sensor fusion and data aggregation [37, 27, 36], distributed
optimization and machine learning [24, 28, 26], collective motion [32, 30], and more [13, 8, 12].
More generally, an average consensus primitive can be used to compute the relative frequency
of the input values [16], and as such allows for the distributed computation of other statistical
measures, for example the mode – the value with the highest support.

We study the problem of designing distributed algorithms for average consensus in the
adversarial context of dynamic networks, where the communication links joining the agents
change over time. Indeed, average consensus primitives are often needed in inherently dynamic
settings, that static models fail to adequately describe. For a few examples, let us cite mobile
ad-hoc networks, where links change as external factors cause the agents to move in space;
autonomous vehicular networks, where agents are in control of their motion; or peer-to-peer
networks, where constant arrivals and departures cause the network to reconfigure.

Specifically, we study distributed algorithms in a fully decentralized context: all agents
start in the same state, run the same local algorithm, receive no global information about
the system, only manipulate local variables, and interact with the system exclusively by
exchanging messages with neighboring agents in the instantaneous communication graph.
These constraints preclude the use of many standard solutions where the agents receive
unique identifiers, where an agent is designated as a leader, or where tll agentshey initially
agree on a bound on the network’s degree or size. Moreover, we adopt a standard local
broadcast communication model, particularly suited to modeling wireless networks, in which
agents cast their messages without knowledge of their eventual recipients, and in particular
cannot individually address their neighbors.

These conditions make it extremely hard to compute functions of the input values
µ1, . . . , µn: on general fixed directed networks, deterministic distributed algorithms are only
capable of computing functions that depend on the set of the input values {µ1, . . . , µn}, but
not on their multi-set [17]. In particular, this precludes the distributed computation of the
average. Here, we only consider networks with bidirectional communication links. Under this
condition, the problem is rather simple if we assume a static communication graph [37, 5], in
which case we can even deploy efficient solutions [31, 28] relying on spectral properties of the
underlying graph. The problem is obviously much harder in a dynamic setting, which, for
example, forbids the use of such sophisticated spectral techniques.

1.2 Contribution

A standard approach to asymptotic consensus has agents regularly adjust their estimates as
a convex combination of those of their neighbors [10, 33], defined by a convex recurrence rule.
We adopt a standard model of synchronized rounds, where this is expressed as a recurrence
relation taking the generic form xi(t) =

∑
j∈Ni(t) aij(t)xj(t − 1), where the weights aij(t)

are taken to form a convex combination, and the sum is over an agent’s incoming neighbors
in the communication graph at round t.

B. Charron-Bost and P. Lambein-Monette 10:3

While asymptotic consensus is guaranteed as long as the never permanently splits [22],
the estimates do not, in general, converge towards the average µ; reaching average consensus
usually requires additionally enforcing symmetric weights aij(t) = aji(t). Here, we study
distributed algorithms for average consensus, i.e., we are interested in devising an algorithm
that produces such weights through local computations only, in a fully decentralized manner.

For a simple example, average consensus comes easily by picking the weights aij(t) = 1
n

when agents i ̸= j are neighbors in round t, and aii(t) = 1− degi(t)−1
n . However, this scheme

might be simple to describe, but getting the agents to use these weights clearly requires
getting them to know n, which is itself a serious distributed computing problem.

We will argue that the Metropolis rule [37], defined by the weights aij(t) = 1
max(degi(t),degj (t))

for any two i ≠ j neighbors in round t, breaks down over dynamic networks because of similar,
albeit subtler, issues. We then propose a symmetric recurrence rule that is implementable
over dynamic bidirectional networks, that we show to produce average consensus over any
sufficiently connected network. The issues faced by the Metropolis rule are overcome by
making the rule sometimes break convexity, which allows for keeping the average of the
estimates constant even though the network changes unpredictably.

The temporal convexity of our distributed algorithm is polynomial, namely with a
bound in O(n4 log n), whereas the theoretical complexity bound of the Metropolis rule is
of O(n2 log n) [5]. To the best of our knowledge, this is the first deterministic algorithm
that achieves asymptotic average consensus over bidirectional dynamic networks without any
centralized input or symmetry-breaking assumptions. We note in passing that there exist
randomized algorithms that are efficient in bandwidth and memory and converge in O(n)
rounds to a good approximation of the average µ with high probability [6, 20, 23].

We dub our distributed algorithm MaxMetropolis. Compared to the Metropolis rule, the
change that we propose is deceptively simple: in the expression of the Metropolis weights,
we replace the degree degi(t) with the value degi(t − 1) = max{degi(1), . . . , degi(t − 1)}.
However, the resulting rule is no longer convex – the estimates xi(t) may sometimes leave
the convex hull of the set {x1(t− 1), . . . , xn(t− 1)} – which makes the analysis substantially
harder than in the purely convex case. Interestingly, although such “bad”, convexity-breaking
rounds, can happen at an arbitrarily late stage in the execution, we are able to bound the
convergence time independently of when bad rounds occur – that is, once our target error
threshold has been reached, disagreement in the system can still increase in later bad rounds,
but not enough to break the threshold again.

1.3 Related works
Average consensus itself is at the center of a large body of works: among many others, let
us cite [33, 34, 8, 19, 35, 37, 25, 3, 13, 28, 14], and see [26] for a recent overview of the
domain. The approach based on doubly stochastic matrices in particular has been studied
in depth, notably in [25, 29], with an analytical approach that focuses on aspects such
as the temporal complexity and tolerance to quantization, whereas we address issues of a
distributed nature, in particular the implementation of rules by distributed algorithms. We
also note earlier work on random walks by Avin et al., who showed that dynamic networks
can present considerable obstacles to mixing, in stark contrast with the well-behaved static
case. Although their proposed solution is not directly implementable in our model, as it
leverages global information (a bound over n), their study nonetheless deeply influenced the
current work.

Of interest to our argument, we note that [35] looks for the fixed affine weights that
optimize the speed of convergence towards average consensus over a given fixed graph, and
find that the weights can often be negative. Our algorithm is itself able to solve average

SAND 2022

10:4 Computing Outside the Box

consensus over dynamic networks precisely because it is sometimes allowed to use negative
weights. When compared with our approach, the important difference is that we consider
dynamic graphs and focus on distributed implementation of the recurrence rules, while the
weights obtained in [35] are given by a centralized optimization problem, and are incompatible
with a distributed approach.

A number of strategies aim at speeding up convex recurrence rules over static networks by
having the agents learn what amounts to spectral elements of the graph Laplacian [4], and can
result in linear-time convergence [31]. As is the case here, these represent distributed methods
by which the agents learn structural properties of the communication graph. However, these
methods rely on centralized symmetry-breaking crutches like unique identifiers, and their
memory and computation footprint is much greater than ours, with agents computing and
memorizing, in each round, the kernels of Hankel matrices of dimension Θ(n) ×Θ(n). In
contrast, our method can be used by anonymous agents, requires ⌈log n⌉ additional bits of
memory and bandwidth, and has a trivial computational overhead.

2 Preliminaries

2.1 Mathematical toolbox
Let us fix some notation. If k is a positive integer, we denote by [k] the set {1, . . . , k}. If any
set S ⊂ R is non-empty and bounded, we denote its diameter by diam S := max S −min S.

A directed graph (or simply graph) G = (V, E), with vertices in V and edges in E ⊆ V ×V ,
is called reflexive when (i, i) ∈ E for all i ∈ V ; G is bidirectional when (i, j) ∈ E ⇐⇒
(j, i) ∈ E for all i, j ∈ V ; and G is strongly connected when directed paths join any pair of
vertices – or simply connected when G is bidirectional.

All graphs that we consider here will be reflexive, bidirectional, and connected graphs
of the form G = ([n], E). In such a graph, the vertices linked to some vertex i form its
neighborhood Ni(G) := {j ∈ [n] | (j, i) ∈ E}, and the count of its neighbors is its degree
degi(G) := |Ni(G)|. By definition, the degree is at most n, and in a reflexive graph it is at
least 1.

We consistently denote matrices and vectors in bold italic style: upper case for matrices
(e.g., A) and lower case for vectors (e.g., u), with their individual entries in regular italic
style, (e.g., Aij , uk). The shorthand vN denotes the infinite vector sequence v(0), v(1),

The graph GA = ([n], E) associated to a matrix A ∈ Rn×n is defined by (j, i) ∈ E ⇐⇒
Aij ≠ 0 for all i, j ∈ [n]. The matrix A is said to be irreducible when GA is strongly
connected.

Given a vector v ∈ Rn, we write diam v to mean the diameter of the set {v1, . . . , vn} of
its entries. The diameter constitutes a seminorm over Rn; we call consensus vectors those of
null diameter.

A matrix or a vector with non-negative (resp. positive) entries is itself called non-negative
(resp. positive). A vector is called stochastic if its entries are non-negative sum to 1.

A matrix A is stochastic if its rows are all stochastic – that is, if A1 = 1 – and any
matrix that satisfies the condition A1 = 1 will be said to be affine. We say that a matrix A

is doubly stochastic when both A and AT are stochastic.
We denote the mean value of a vector v ∈ Rn by ⟨v⟩ := 1

n

∑
i vi. Doubly stochastic

matrices play a central role in the study of average consensus, as multiplying any vector v

by a doubly stochastic matrix A preserves its average – that is, ⟨Av⟩ = ⟨v⟩.
For any matrix A ∈ Rn×n, we can arrange its n eigenvalues λ1, . . . , λn, counted with

their algebraic multiplicities, in decreasing order of magnitude: |λ1| ⩾ |λ2| ⩾ · · · ⩾ |λn|.

B. Charron-Bost and P. Lambein-Monette 10:5

Under this convention, the spectral radius of the matrix A is the quantity ρA := |λ1|, and
its spectral gap is the quantity γA := |λ1| − |λ2|. In particular, a stochastic matrix has a
spectral radius of 1, which is itself an eigenvalue for the eigenvector 1.

2.2 Computing model

We consider a networked system of n agents, denoted 1, 2, . . . , n. Computation proceeds
in synchronized rounds that are communication closed, in the sense that no agent receives
messages in round t that are sent in a different round. In each round t ∈ N>0, each agent i

successively

1. broadcasts a single message mi(t) determined by its state at the beginning of round t

2. receives some messages among m1(t), . . . , mn(t)

3. undergoes an internal transition to a new state

4. produces a round output xi(t) ∈ R and proceeds to round t + 1.
The agents receiving agent i’s message mi(t) are unknown to agent i at the time of emission,
in step 1. Communications that occur in round t are modeled by a directed graph G(t) :=
([n], E(t)), called the round t communication graph, which may change from one round to
the next. We assume each communication graph G(t) to be reflexive, as an agent always has
access to its own messages without delay or transmission loss.

Messages to be sent in step 1 and state transitions in step 3 are determined by a sending
and a transition functions, which together define the local algorithm for agent i. Collected
together, the local algorithms of all agents in the system constitute a distributed algorithm.
We posit no a priori global coordination or knowledge of the agents: in particular, we assume
no leader, no unique identifiers, and no initial agreement on global parameters such as n. An
agent’s computations only involve its own local variables in memory.

An execution of a distributed algorithm is a sequence of rounds, as defined above, with
each agent running the corresponding local algorithm. We assume that all agents start
simultaneously in round 1, since the algorithms under our consideration are robust to asyn-
chronous starts, retaining the same time complexity as when the agents start simultaneously.
Indeed, asynchronous starts only induce an initial transient period during which the network
is disconnected, which cannot affect the convergence and complexity results of algorithms
driven by convex recurrence rules.

In any execution of a distributed algorithm, the entire sequence xN is determined by
the input vector µ and the patterns of communications in each round t, i.e., the sequence
of communication graphs G := (G(t))t⩾1, called the dynamic communication graph of the
execution, and so we write xN = xN(G, µ). When the dynamic graph G is understood, we let
Ni(t) and degi(t) respectively stand for Ni(G(t)) and degi(G(t)). As no confusion can arise,
we will sometimes identify an agent with its corresponding vertex in the communication
graph, and speak of the degree or neighborhood of an agent in a round of an execution.

We call a network class a set of dynamic graphs; given a class C, we denote by C|n the
subclass {G ∈ C | |G| = n}. Here, our investigation will revolve around the class Bc of
dynamic graphs of the following sort.

▶ Assumption 1. In each round t ∈ N>0, the communication graph G(t) is reflexive,
bidirectional, and connected.

SAND 2022

10:6 Computing Outside the Box

3 Recurrence rules for consensus

We distinguish local algorithms, as defined above, from the recurrence rules that they
implement: the latter are recurrence relations that only describe how the estimates xi(t)
change over time, while the former specifies the distributed implementation of such rules
in the system, through local interactions. This discrepancy is apparent in the Metropolis
rule, whose distributed implementation over dynamic networks is problematic due to its
dependence on “knowledge at distance two”.

3.1 Affine recurrence rules
Definition

Here, we focus on algorithmic solutions to the average consensus problem whose executions
realize recurrence relations of the general form

xi(t) =
∑

j∈Ni(t)

aij(t)xj(t− 1), (1)

where the time-varying weights aij(t) satisfy the affine constraint
∑

j∈Ni(t) aij(t) = 1 and
may depend on the dynamic graph G and the input values µ1, . . . , µn. We refer to such
relations as affine recurrence rules, and we say that a distributed algorithm implements the
rule, insisting again that a distributed algorithm is distinct from the rule it implements.

Because of the constraint
∑

j∈Ni(t) aij(t) = 1, the self-weights satisfy aii(t) = 1 −∑
j∈Ni(t)\{i} aij(t). An affine recurrence rule is thus fully specified by the weights aij(t)

assigned to an agent’s proper neighbors j ̸= i.
The affine rule of Equation (1) is equivalent to the vector equation x(t) = A(t)x(t− 1),

where Aij(t) = aij(t) when i and j are neighbors in round t, and Aij(t) = 0 otherwise. The
affinity constraint then corresponds to the condition A(t)1 = 1.

Convexity and convergence

We call the rule convex when all weights are non-negative – equivalently, when all matrices A(t)
are stochastic. By and large, the study of affine recurrence rules focuses on that of convex
recurrence rules, which guarantee convergence under mild conditions. We recall a standard
convergence result, found under various forms in the literature, see for example [7, 33, 18, 22].

▶ Proposition 2. Assume that the weights of Equation (1) admit a uniform positive lower
bound α: aij(t) ⩾ α > 0 for all t, i, and j ∈ Ni(t). Under Assumption 1, the vectors x(t)
converge to a consensus vector.

We speak of uniform convexity when such a parameter α exists, and we note that in this
case asymptotic consensus is actually ensured by conditions much weaker than Assumption 1:
for bidirectional interactions, it is enough that the network never become permanently
split [22, Theorem 1].

Remark that Proposition 2 says nothing of the value of the consensus; affine recurrence
rules for average consensus are typically designed to produce matrices that are doubly
stochastic. By enforcing the invariant ⟨x(t)⟩ = ⟨x(t− 1)⟩, this makes the initial average µ

the only admissible consensus value.

B. Charron-Bost and P. Lambein-Monette 10:7

The convergence time of a single sequence zN, given by T(ε; zN) := inf{t ∈ N | ∀τ ⩾
t : diam z(τ) ⩽ ε}, measure its progress towards asymptotic consensus. For a rule or an
algorithm, we consider the more helpful worst-case relative convergence time over a class C:
for a system of n agents, it is defined by

T(ε; n,C) := sup
µ∈Rn

sup
G∈C|n

T
(
ε · diam µ; xN(G, µ)

)
, (2)

where we drop the class C if it is clear from the context.
We recall the following bounds for uniformly convex recurrence rules over the class Bc:

when all matrices are doubly stochastic, the convergence time is in O(α−1n2 log n/ε) [25,
Theorem 10]. In the common case that α = Θ(1/n), all rules are known to admit executions
that do not converge before Ω(n2 log 1/ε) rounds over the fixed line graph with n vertices [29,
Theorem 6.1].

3.2 Consensus and average consensus rules
The EqualNeighbor rule

The prototypical example of a convex recurrence rule is the EqualNeighbor rule, where an
agent assigns the equal weights to all its neighbors, itself included:

xi(t) = 1
degi(t)

∑
j∈Ni(t)

xj(t). (3)

We can mechanically derive an algorithm implementing the EqualNeighbor rule: in
each round t, broadcast one’s latest estimate xi(t− 1), and pick as new estimate xi(t) the
arithmetic mean of the incoming values. Since degi(t) ⩽ n, this rule admits 1/n as a parameter
of uniform convexity, and for a dynamic graph of Bc, Proposition 2 shows that any solution
to Equation (3) converges to a consensus vector.

Clearly, the EqualNeighbor rule does not solve the average consensus problem on the
entire class Bc, as the weights are generally not symmetric, unless each communication
graph G(t) is regular – that is, if all its vertices have the same degree.

The Metropolis rule

In [37], Xiao et al. investigate the problem of distributed sensor fusion with the help
of an average consensus primitive. For that, they describe the “maximum-degree” rule,
parametrized with an integer N ⩾ 1, defined by the constant weights aij(t) = 1/N for any
agents i ̸= j neighbors in round t.

The authors note that this rule solves average consensus over the class ∪n⩽NBc|n, but
remark that implementing this rule hinges on the agents initially agreeing on the bound N ,
embedding an assumption of centralized control. This makes the “maximum-degree” rule
inapplicable over truly decentralized systems – indeed, our communication model does not
generally allow for the distributed computation of such a bound N [1]. Xiao et al. go on
suggesting the alternative rule:

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max(degi(t), degj(t)) , (4)

generally referred to as the Metropolis rule, as it is inspired from the Metropolis-Hastings
method [15, 21].

SAND 2022

10:8 Computing Outside the Box

Analytically, this rule is appealing, as it was recently shown [5] to display a worst-case
convergence time of O(n2 log n) over the entire class Bc – making it the fastest rule known
to us to solve either consensus or average consensus on that class. From a computational
perspective, it is argued in [37] that the Metropolis rule is better suited for decentralized
systems, as it only leverages “local” knowledge. Indeed, agents can implement this rule
knowing only, in each round, their own degrees in the current communication graph and
that of their neighbors – compared to the initial agreement over N ⩾ n required of the
“maximum-degree” rule.

Unfortunately, local algorithms cannot implement the Metropolis rule over dynamic
networks. The rule is only “local” in the weak sense that an agent’s next estimate xi(t)
depends on information present within distance 2 of agent i in the communication graph G(t),
which is not local enough when the network is subject to change.

Indeed, since agent j ∈ Ni(t) only learns its round t degree degj(t) at the end of round t

– by counting its incoming messages – it cannot share this information with other agents
before the following round. Any distributed implementation of the Metropolis rule would
therefore require communication links that evolve at a slow and regular pace; one can imagine
a network whose topology can only change once every k rounds, when t ≡ 0 mod k, e.g., at
even rounds.

When the network is subject to unpredictable changes, the situation is even worse: we
need to warn all agents, ahead of time, about any upcoming topology change. In effect, this
amounts to having a global synchronization signal precede every change in the communication
topology. For a topology change in round t0, this differs little from starting an entirely new
execution with new input values µ′

1 = x1(t0 − 1), . . . , µ′
n = xn(t0 − 1). To paraphrase, given

a sufficiently stable communication network, one “can” implement the Metropolis rule over
dynamic networks; however, the execution is fully decentralized only as long as no topology
change actually occurs.

We note that, although we have covered the Metropolis rule here, other average consensus
rules typically face similar problems, even when expressingly designed for dynamic networks.
As an example, while the Metropolis rule can be implemented with a two-message protocol –
e.g., on a communication graph that changes every other round, and with all agents agreeing
on the parity of the round number, see e.g., [9] for a discussion – the rules given in [29,
Algorithm 8.2] and [25, Section IV.A] involve a three-message protocol. Their implementation
thus requires more network stability, and a stronger agreement, than Metropolis.

4 The MaxMetropolis algorithm

4.1 A symmetric affine rule

Symmetrizing

Let us briefly recall the idea of the Metropolis-Hastings [15, 21] method: given a positive
stochastic vector π, the method turns a stochastic matrix A – usually viewed as the transition
matrix of a reversible Markov chain – into another stochastic matrix A′ with stationary
distribution π, by picking off-diagonal entries as A′

ij = min
(

Aij ,
πj

πi
Aji

)
. When π is the

constant vector
(1

n , 1
n , · · · , 1

n

)
, we get the simpler transform M(−), defined entry-wise by:

∀i, j ∈ [n] : [M(A)]ij =
{

min(Aij , Aji) j ̸= i

1−
∑

k ̸=i min(Aik, Aki) j = i.
(5)

B. Charron-Bost and P. Lambein-Monette 10:9

Let us call this transform the Metropolis-Hastings symmetrization; as an example, the
symmetrization of the EqualNeighbor matrix yields the Metropolis matrix. We can make a
few remarks: for any matrix A, the matrix M(A) is affine and symmetric by construction,
and for any j ≠ i we have [M(A)]ij ⩽ Aij and therefore [M(A)]ii ⩾ Aii. In particular, if
the matrix A is stochastic with positive diagonal entries, then so is M(A); if we can use
Proposition 2 to establish the convergence of the system x(t) = A(t)x(t−1), then necessarily
the system y(t) = M(A(t))y(t− 1) also converges, and achieves average consensus.

Bound learning

To apply the Metropolis-Hastings symmetrization while avoiding the aforementioned lim-
itations of the Metropolis rule, let us temporarily assume that each agent i ∈ [n] initially
knows an upper bound qi ⩾ 1 over its degree throughout the execution, i.e., qi ⩾ degi(t) for
all t ⩾ 1.

In this case, an agent may broadcast in each round the pair ⟨qi, xi(t− 1)⟩ to its neighbors,
and adjust its estimate as

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max(qj , qi)

; (6)

we easily see that this rule produces symmetric weights (aij(t) = aji(t)) and has a uniform
convexity parameter of 1/ maxi qi. For a dynamic graph of Bc, any solution zN of Equation (6)
converges to a consensus vector, by Proposition 2, and therefore achieves asymptotic average
consensus, since the weights are symmetric. Using e.g., the aforementioned result of [25,
Theorem 10], we can show that the convergence time behaves as O(maxi qi · n2 log n/ε), which
is polynomial in n when the bounds qi themselves are.

Obviously, assuming such bounds qi supposes that the agents dispose of information about
the dynamic structure of the network ahead of the execution, which our model explicitly
disallows. Instead of assuming such bounds, we next show that we can solve the average
consensus problem for the class Bc by making agents learn good bounds over time in a
manner consistent with our symmetric and local model.

To this effect, for each agent i we let degi(t) := max{degi(1), . . . , degi(t)} for any round t.
For a dynamic graph in Bc|n, the value degi(t) ∈ [2, n] is weakly increasing with t, and
therefore stabilizing: we have degi(t) = degi := maxτ⩾1 degi τ for all rounds t beyond some
round t∗

i , Thus, by keeping track of degi(t), agent i will eventually hold a bound on its future
degrees for the rest of the execution, which may be used to implement Equation (6), not for
the whole interval [1,∞[, but on all but finitely many rounds.

Moreover, we have by definition degi(t) ⩾ degi(t), so that using degi(t) in place of qi in
Equation (6) produces a convex rule – even though degi(t) may be inferior to agent i’s future
degree. Unfortunately, the weights 1

max(degi(t),degj(t)) cannot be computed in a local manner:

since degi(t) depends on degi(t), the issues of the Metropolis rule apply here as well, as an
agent cannot communicate its degree to its neighbors at the time they need the information.

We overcome this obstacle with a small, but crucial adjustment: building the round t

weights using the latest known bound degi(t − 1) in place of degi(t) allows us to conform
to the stringent locality constraints by sacrificing the convexity of the rule. Specifically, we
propose the MaxMetropolis algorithm – given in Algorithm 1, – a deterministic distributed
algorithm which solves the average consensus problem over the class Bc in polynomial time,
by implementing the rule

xi(t) = xi(t− 1) +
∑

j∈Ni(t)

xj(t− 1)− xi(t− 1)
max

(
degj(t− 1), degi(t− 1)

) . (7)

SAND 2022

10:10 Computing Outside the Box

Algorithm 1 The MaxMetropolis algorithm, code for agent i.
Input: µi ∈ R

1 Initially:
2 xi ← µi ;
3 qi ← 2 ;
4 In each round do:
5 send mi = ⟨xi, qi⟩ ;
6 receive mj1 , . . . , mjd

; ▷ d neighbors

7 xi ← xi +
d∑

k=1

xjk
−xi

max(qi,qjk
) ;

8 qi ← max(qi, d) ;
9 output xi ;

The weights are clearly symmetric, and so any solution to Equation (7) satisfies the
invariant ⟨x(t + 1)⟩ = ⟨x(t)⟩. Moreover, by construction, there exists a round t∗ after which
we have degi(t − 1) = degi ⩾ degi(t); the assumptions of Proposition 2 are then satisfied
over the infinite interval [t∗,∞[. Taken together, these observations immediately give us that
MaxMetropolis is an average consensus distributed algorithm for the class Bc.

On the other hand, in contrast with the Metropolis rule, the MaxMetropolis rule offers
no guarantee of convexity: we easily see that if, for example, degi(t) is much larger than
degi(t− 1), xi(t) may leave the convex hull of {xj(t− 1) | j ∈ Ni(t)}, and in fact may even
leave the convex hull of {xj(t− 1) | j ∈ [n]}. Such convexity-breaking rounds can occur late
in the execution, and our main analytical difficulty will be to show that these “late bad
rounds” cannot introduce too much noise in the system once a given degree of agreement
has been reached.

▶ Theorem 3. The MaxMetropolis algorithm solves the average consensus problem in all of
its executions over the class Bc. For a system of n agents and an error threshold of ε > 0,
the convergence time is bounded by T(ε; n) = O(n4 log n/ε).

4.2 Temporal complexity of the MaxMetropolis algorithm
To prove Theorem 3, we need to introduce a few technical results borrowed from [5], where
they are given a more general and detailed exposition. In the following, we denote by
σ(−) the sample standard deviation: σ(x) :=

√∑
i(xi − ⟨x⟩)2. The crux of the proof is

to dominate σ(x(t)) with a geometrically decreasing sequence, taking care when handling
matrices with possibly negative entries.

▶ Lemma 4. For any vector v ∈ Rn, we have√
2/n σ(v) ⩽ diam v ⩽ 2 σ(v). (8)

The inequalities are strict if, and only if, the vectors v and 1 are independent.

Proof. Developing the definition of the standard deviation, we have σ(v) =
√

1
2
∑

i ̸=j
(vi − vj)2,

which yields the left-hand side inequality. Moreover, without loss of generality we can assume
⟨v⟩ = 0, in which case σ(v) = ∥v∥; the right-hand side inequality then follows from the
classic bounds diam− ⩽ 2 ∥−∥∞ and ∥−∥∞ ⩽ ∥−∥. ◀

B. Charron-Bost and P. Lambein-Monette 10:11

The following lemma is a restatement of a standard variational characterization of the
eigenvalues of the matrix I−ATA; see e.g., [11] for an in-depth treatment of the question.

▶ Lemma 5. Let A denote a doubly stochastic matrix, irreducible and with positive diagonal
entries. For any vector v, we have

σ(Av) ⩽
√

1− γATA σ(v); (9)

in the particular case where A is symmetric, we have σ(Av) ⩽ (1− γA) σ(v).

Finally, we will rely on the following spectral bound, given in [25, Lemma 9].

▶ Lemma 6. Let A be a stochastic matrix, with smallest positive entry α. If A is symmetric,
irreducible, and has positive diagonal entries, then we have

γA ⩾
α

n(n− 1) . (10)

With Lemmas 4–6, we can turn to the proof of Theorem 3.

Proof of Theorem 3. Let us fix a dynamic graph G ∈ Bc with n ⩾ 2 vertices, and define

degi(t) := max
τ⩽t

degi τ, degi := sup
t⩾1

degi(t), degG := max
i∈[n]

degi, and

K := {t ⩾ 1 | ∃i : degi(t− 1) < degi(t)},
(11)

where by convention we set degi(0) = 2 so that the set K is properly defined. By definition,
each sequence degi(t) is weakly increasing with t, and has degi for limit. Since degi(t) ⩽ n,
there are at most degi rounds with degi(t− 1) < degi(t). The set K is therefore finite, with
cardinal δ := |K| ⩽

∑
i degi. We let t∗ := maxK + 1; by construction, in all rounds t ⩾ t∗

we have degi(t) = degi.
By an immediate induction, we see that, in any execution of the MaxMetropolis algorithm

over the dynamic communication graph G, the sequence of estimate vectors satisfies the
recurrence relation x(t) = A(t) x(t − 1), where the affine MaxMetropolis matrix A(t) is
given for off-diagonal entries i ̸= j by

Aij(t) =

1

max
(
degi(t− 1), degj(t− 1)

) j ∈ Ni(t)

0 j /∈ Ni(t),
(12)

and x(0) = (µ1, . . . , µn) is given by the input values of the execution.
Equation (12), shows that the affine matrix A(t) is symmetric, and thus for any vector v

we have ⟨A(t)v⟩ = ⟨v⟩. This is true for all t ⩾ 1, and so ⟨x(t)⟩ = µ is an invariant of the
execution. If we show asymptotic consensus, then the consensus value is necessarily the
initial average µ.

As a result of the Metropolis-Hastings symmetrization, the diagonal entries of the matrix
A(t) satisfy

Aii(t) ⩾ 1− degi(t)− 1
degi(t− 1)

, (13)

which gives in particular Aii(t) ⩾ 1/n when t /∈ K. The vector sequence (x(t))t⩾t∗ thus
satisfies the assumptions of Proposition 2 for the uniform convexity parameter α = 1/n, and
so x(t) converges to a consensus vector. As already discussed, the limit value is necessarily

SAND 2022

10:12 Computing Outside the Box

the initial average µ, and the system achieves asymptotic average consensus. This holds for
any dynamic graph G ∈ Bc and arbitrary input values µ1, . . . , µn, and thus MaxMetropolis
is an average consensus algorithm for the class Bc.

It remains to show the polynomial convergence bound T(ε; n) = O(n4 log n/ε). We start
with the remark that the diagonal entry Aii(t) can be negative in a round t during which
degi(t) > degi(t− 1). Because of this, the estimate xi(t) might end up outside the range of
the previous estimates {x1(t), . . . , xn(t)}. As a consequence, rounds t ∈ K are “bad” rounds,
where the system may move away from consensus, delaying the eventual convergence. In the
class Bc, there is no uniform upper bound on the value of t∗, and such convexity-breaking
rounds may occur arbitrarily late in the execution. Our challenge is therefore to show that,
in finite time, the system reaches a given degree of agreement which cannot be undone in
later “bad” rounds. We do this by accounting, from the start, the total delay that can be
accrued in rounds t ∈ K.

We follow the variations of the sample standard deviation S(t) := σ(x(t)) from one round
to the next, distinguishing on whether t ∈ K or not.

Case t /∈ K. By Equation (13), the irreducible matrix A(t) has positive diagonal entries,
and thus has a positive spectral gap. By Lemma 5, we have

∀t /∈ K : S(t) ⩽ (1− γA(t)) · S(t− 1). (14)

Case t ∈ K. Here, the matrix A(t) may have negative diagonal entries. It need not be
a stochastic matrix, and indeed its spectral radius ρA(t) is possibly greater than 1.
However, as a symmetric matrix, the matrix A(t) is diagonalizable, and thus we have
∥A(t)v∥ ⩽ ρA(t) · ∥v∥ for any vector v. For the particular case v = x(t− 1)− µ1, this
results in

∀t ∈ K : S(t) ⩽ ρA(t) · S(t− 1). (15)

Equation (15) actually holds for all t ⩾ 1, but it is strictly worse than Equation (14) for
rounds t /∈ K.

Thus we let

κ(t) :=
{

ρA(t) t ∈ K,

1− γA(t) t /∈ K,
(16)

and we can summarize Equations (14) and (15) by ∀t ⩾ 1: S(t) ⩽ κ(t) ·S(t−1). By induction,
we then have S(t) ⩽

∏
τ⩽t κ(τ) · S(0), and, applying Lemma 4 twice, we get

∀t ⩾ 1: diam x(t) ⩽ 2
√

n
∏
τ⩽t

κ(τ) · diam µ. (17)

We are interested in the asymptotic behavior of 2
√

n
∏

τ⩽t κ(τ).
In order to bound the spectral radius ρA(t), we let νt,i := 1 −min(0, Aii(t)), and νt :=

maxi νt,i. Let us show that ρA(t) ⩽ ν2
t : pick any eigenvalue λ ∈ Sp A(t). By construction,

the quantity
(

1 + λ−1
νt

)
is an eigenvalue of the stochastic matrix 1

νt
(A(t) + (νt − 1)I), and

so is less than 1 in absolute value. We have 1− 2 νt ⩽ λ ⩽ 1, and so |λ| ⩽ 2νt − 1. Using the
basic inequality x2 − 2 x + 1 ⩾ 0, we have |λ| ⩽ ν2

t , and therefore ρA(t) ⩽ ν2
t since this holds

for any λ ∈ Sp A(t).

B. Charron-Bost and P. Lambein-Monette 10:13

For any t ∈ K and i ∈ [n], we have
∑

j ̸=i Aij(t) ⩽ degi(t)−1
degi(t−1)

⩽ degi(t)
degi(t−1)

. Since degi(t) is

weakly increasing with t, we have in turn νt,i ⩽
degi(t)

degi(t−1)
, from here we have

∏
t∈K ρA(t) ⩽

(∏
t∈K maxi∈[n] νt,i

)2

⩽
(∏

t∈K
∏

i∈[n] νt,i

)2

⩽
(∏

i∈[n]
∏

t∈K
degi(t)

degi(t−1)

)2

⩽
(∏

i∈[n]
∏

t⩾1
degi(t)

degi(t−1)

)2

=
(∏

i∈[n]
degi

2

)2
= 2−2nϖ2,

νt,i ⩾ 1

νt,i ⩽
degi(t)

degi(t−1)

degi(t) = degi(t − 1) when t /∈ K

where ϖ :=
∏

i∈[n] degi.
From here, we let γ := inft/∈K γA(t), and we have

∏
τ⩽t κ(τ) =

(∏
τ∈[1,t]∩K κ(τ)

)(∏
τ∈[1,t]\K κ(τ)

)
⩽
(∏

τ∈K ρA(t)
)(∏

τ∈[1,t]\K(1− γA(t))
)

⩽ 2−2nϖ2(1− γ)t−δ.

κ(τ ∈ K) ⩾ 1

As a consequence, given any error threshold ε > 0, the estimates are contained in a ball of
diameter (ε ·diam µ) at the latest in round tε ⩽ δ +γ−1 log(2−2n+1ϖ2√n/ε). From Lemma 6,
we have γ−1 ⩽ n(n− 1)degG, and using ϖ :=

∏
i∈[n] degi and δ := |K| ⩽

∑
i∈[n] degi − 2n,

we get:

tε ⩽
∑

i

degi − 2n + n(n− 1)degG

(
2
∑

i

log degi − (2 n− 1) log 2− log ε

)
, (18)

which, using the fact that degi ⩽ n, finally gives us tε = O(n4 log n/ε). ◀

Compared to the O(n2 log n/ε) convergence time of the Metropolis rule, the latter asymp-
totic bound is worse by a factor n degG. From the proof, we can give a rough analysis of this
factors: the factor n represents the delay due to broken convexity, as each agent individually
induces a delay of log degi. The factor degG comes from the fact that, whereas the Metropolis
rule always selects the best possible off-diagonal weights – that is, the largest ones, – the
MaxMetropolis rule makes conservative choices so as to allow for a decentralized algorithmic
implementation that only breaks convexity finitely many times.

Improvements to the MaxMetropolis approach, based for example on adjusting the
parameters qi downwards in pursuit of faster mixing, must therefore be considered with
extreme care, as gains due to larger weights might result in greater delays due to broken
convergence.

5 Conclusion

In this paper, we have presented the MaxMetropolis algorithm, a parsimonious distributed
algorithm for average consensus that operates in polynomial time over connected bidirectional
dynamic networks, without resorting to any centralized crutch like unique identifiers, a
designated leader, or global information on the network.

SAND 2022

10:14 Computing Outside the Box

Our solution has many potential uses, given that average consensus primitives underpin
many applications studied in distributed control. In contrast with the classic approaches
used in this domain, we take an algorithmic stance, grounded in the theory of anonymous
computation [1, 2, 17] and of the algorithmic study of dynamic networks [20]. We argue
that the fundamental convex recurrence rule for average consensus, namely, the Metropolis
rule, cannot be implemented in a fully distributed and decentralized setting when the
network is subject to unpredictable change. Our solution consists in relaxing the convexity
constraint, resulting in an affine recurrence rule for average consensus that is algorithmically
implementable in any networked multi-agent system with a time-varying communication
graph, under the sole constraint of bidirectional links and permanent connectivity.

In the long version of our paper, we will relax the latter assumption and show that
(B ⩾ 1)-bounded connectivity – where it is only each matrix product A(t + B − 1) · · ·A(t)
that is assumed irreducible – only delays our convergence bound by a factor B. An open
question is whether one can design a fully decentralized average consensus algorithm that
doesn’t break the convex hull of the estimates, or whether that is impossible.

References
1 Dana Angluin. Local and global properties in networks of processors (extended abstract). In

R. E. Miller, S Ginsburg, W. A. Burkhard, and R. J. Lipton, editors, Proceedings of the twelfth
annual ACM symposium on Theory of computing - STOC ’80, pages 82–93. ACM Press, 1980.
doi:10.1145/800141.804655.

2 Paolo Boldi and Sebastiano Vigna. An effective characterization of computability in anonymous
networks. In Jennifer Welch, editor, DISC 2001: Distributed Computing, volume 2180 of
Lecture Notes in Computer Science, pages 33–47. Springer Berlin Heidelberg, 2001. doi:
10.1007/3-540-45414-4_3.

3 Florence Bénézit, Vincent D. Blondel, Patrick Thiran, John N. Tsitsiklis, and Martin Vetterli.
Weighted gossip: Distributed averaging using non-doubly stochastic matrices. In 2010 IEEE
International Symposium on Information Theory, pages 1753–1757, June 2010. doi:10.1109/
ISIT.2010.5513273.

4 Themistoklis Charalambous, Michael G. Rabbat, Mikael Johansson, and Christoforos N.
Hadjicostis. Distributed Finite-Time Computation of Digraph Parameters: Left-Eigenvector,
Out-Degree and Spectrum. IEEE Transactions on Control of Network Systems, 3(2):137–148,
2016. doi:10.1109/TCNS.2015.2428411.

5 Bernadette Charron-Bost. Geometric Bounds for Convergence Rates of Averaging Algorithms.
Information and Computation, 2022. (To appear). arXiv:2007.04837.

6 Bernadette Charron-Bost and Patrick Lambein-Monette. Randomization and quantization
for average consensus. In 2018 IEEE Conference on Decision and Control (CDC), pages
3716–3721. IEEE, December 2018. doi:10.1109/CDC.2018.8619817.

7 Samprit Chatterjee and Eugene Seneta. Towards Consensus: Some Convergence Theorems on
Repeated Averaging. Journal of Applied Probability, 14(1):89–97, 1977. doi:10.2307/3213262.

8 George Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal
of Parallel and Distributed Computing, 7(2):279–301, 1989. doi:10.1016/0743-7315(89)
90021-X.

9 Louis Penet de Monterno, Bernadette Charron-Bost, and Stephan Merz. Synchronization
modulo k in dynamic networks. In Stabilization, Safety, and Security of Distributed Systems -
23rd International Symposium, SSS 2021, Virtual Event, November 17-20, 2021, Proceedings,
volume 13046 of Lecture Notes in Computer Science, pages 425–439. Springer, 2021. doi:
10.1007/978-3-030-91081-5_28.

10 Morris H. DeGroot. Reaching a Consensus. Journal of the American Statistical Association,
69(345):118–121, 1974. doi:10.2307/2285509.

https://doi.org/10.1145/800141.804655
https://doi.org/10.1007/3-540-45414-4_3
https://doi.org/10.1007/3-540-45414-4_3
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1109/ISIT.2010.5513273
https://doi.org/10.1109/TCNS.2015.2428411
http://arxiv.org/abs/2007.04837
https://doi.org/10.1109/CDC.2018.8619817
https://doi.org/10.2307/3213262
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1016/0743-7315(89)90021-X
https://doi.org/10.1007/978-3-030-91081-5_28
https://doi.org/10.1007/978-3-030-91081-5_28
https://doi.org/10.2307/2285509

B. Charron-Bost and P. Lambein-Monette 10:15

11 Persi Diaconis and Daniel Stroock. Geometric bounds for eigenvalues of markov chains. The
Annals of Applied Probability, 1(1):36–61, February 1991. doi:10.1214/aoap/1177005980.

12 Michael Dinitz, Jeremy Fineman, Seth Gilbert, and Calvin Newport. Load balancing with
bounded convergence in dynamic networks. In IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pages 1–9, Atlanta, GA, USA, 2017. IEEE. doi:10.1109/
INFOCOM.2017.8057000.

13 Alejandro D. Dominguez-Garcia, Stanton T. Cady, and Christoforos N. Hadjicostis. Decentral-
ized optimal dispatch of distributed energy resources. In 2012 IEEE 51st IEEE Conference
on Decision and Control (CDC), pages 3688–3693. IEEE, December 2012. ZSCC: 0000166.
doi:10/ggd8nx.

14 Balazs Gerencser and Julien M. Hendrickx. Push-sum with transmission failures. IEEE
Transactions on Automatic Control, 64(3):1019–1033, March 2019. doi:10.1109/TAC.2018.
2836861.

15 Wilfred Keith Hastings. Monte carlo sampling methods using markov chains and their
applications. Biometrika, 57(1):97–109, April 1970. doi:10.1093/biomet/57.1.97.

16 Julien M. Hendrickx, Alex Olshevsky, and John N. Tsitsiklis. Distributed anonymous discrete
function computation. IEEE Transactions on Automatic Control, 56(10):2276–2289, October
2011. doi:10.1109/TAC.2011.2163874.

17 Julien M. Hendrickx and John N. Tsitsiklis. Fundamental limitations for anonymous distributed
systems with broadcast communications. In 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pages 9–16. IEEE, September 2015.
doi:10.1109/ALLERTON.2015.7446980.

18 Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups of mobile autonomous
agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001,
2003. doi:10.1109/TAC.2003.812781.

19 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003.
Proceedings., pages 482–491, October 2003. doi:10/fcmmkg.

20 Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed computation in dynamic
networks. In Proceedings of the 42nd ACM symposium on Theory of computing - STOC ’10,
page 513. ACM Press, 2010. doi:10.1145/1806689.1806760.

21 Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, March 1953. doi:10.2172/4390578.

22 Luc Moreau. Stability of multiagent systems with time-dependent communication links. IEEE
Transactions on Automatic Control, 50(2):169–182, 2005. doi:10.1109/TAC.2004.841888.

23 Damon Mosk-Aoyama and Devavrat Shah. Computing separable functions via gossip. In
Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing,
PODC ’06, pages 113–122. ACM Press, July 2006. doi:10.1145/1146381.1146401.

24 Angelia Nedić and Alex Olshevsky. Distributed optimization over time-varying directed graphs.
IEEE Transactions on Automatic Control, 60(3):601–615, 2014. doi:10/f63582.

25 Angelia Nedić, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsiklis. On Distributed
Averaging Algorithms and Quantization Effects. IEEE Transactions on Automatic Control,
54(11):2506–2517, 2009. doi:10.1109/TAC.2009.2031203.

26 Angelia Nedić, Alex Olshevsky, and Michael G. Rabbat. Network Topology and Communication-
Computation Tradeoffs in Decentralized Optimization. Proceedings of the IEEE, 106(5):953–976,
2018. doi:10.1109/JPROC.2018.2817461.

27 Reza Olfati-Saber and Jeff S. Shamma. Consensus filters for sensor networks and distributed
sensor fusion. In Proceedings of the 44th IEEE Conference on Decision and Control, pages
6698–6703, December 2005. doi:10/c338d4.

SAND 2022

https://doi.org/10.1214/aoap/1177005980
https://doi.org/10.1109/INFOCOM.2017.8057000
https://doi.org/10.1109/INFOCOM.2017.8057000
https://doi.org/10/ggd8nx
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1109/TAC.2018.2836861
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1109/TAC.2011.2163874
https://doi.org/10.1109/ALLERTON.2015.7446980
https://doi.org/10.1109/TAC.2003.812781
https://doi.org/10/fcmmkg
https://doi.org/10.1145/1806689.1806760
https://doi.org/10.2172/4390578
https://doi.org/10.1109/TAC.2004.841888
https://doi.org/10.1145/1146381.1146401
https://doi.org/10/f63582
https://doi.org/10.1109/TAC.2009.2031203
https://doi.org/10.1109/JPROC.2018.2817461
https://doi.org/10/c338d4

10:16 Computing Outside the Box

28 Alex Olshevsky. Linear Time Average Consensus and Distributed Optimization on Fixed
Graphs. SIAM Journal on Control and Optimization, 55(6):3990–4014, 2017. doi:10.1137/
16M1076629.

29 Alex Olshevsky and John N. Tsitsiklis. Convergence Speed in Distributed Consensus and
Averaging. SIAM Review, 53(4):747–772, 2011. doi:10.1137/110837462.

30 W. Ren. Consensus strategies for cooperative control of vehicle formations. IET Control
Theory & Applications, 1(2):505–512, 2007. doi:10.1049/iet-cta:20050401.

31 Shreyas Sundaram and Christoforos N. Hadjicostis. Finite-Time Distributed Consensus in
Graphs with Time-Invariant Topologies. In 2007 American Control Conference, pages 711–716,
2007. doi:10.1109/ACC.2007.4282726.

32 Ichiro Suzuki and Masafumi Yamashita. Distributed Anonymous Mobile Robots: Formation
of Geometric Patterns. SIAM Journal on Computing, 28(4):1347–1363, 1999. doi:10.1137/
S009753979628292X.

33 John N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD
thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, 1984. URL:
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf.

34 John N. Tsitsiklis, Dimitri P. Bertsekas, and Michael Athans. Distributed Asynchronous
Deterministic and Stochastic Gradient Optimization Algorithms. IEEE Transactions on
Automatic Control, 31(9):803–812, 1986. doi:10.1109/TAC.1986.1104412.

35 Lin Xiao and Stephen Boyd. Fast linear iterations for distributed averaging. Systems &
Control Letters, 53(1):65–78, 2004. doi:10.1016/j.sysconle.2004.02.022.

36 Lin Xiao, Stephen Boyd, and Seung-Jean Kim. Distributed average consensus with least-
mean-square deviation. Journal of Parallel and Distributed Computing, 67(1):33–46, 2007.
doi:10/bmq2t4.

37 Lin Xiao, Stephen Boyd, and Sanjay Lall. A Scheme for Robust Distributed Sensor Fusion
Based on Average Consensus. In Fourth International Symposium on Information Processing
in Sensor Networks, 2005., pages 63–70, Los Angeles, CA, USA, 2005. IEEE. doi:10.1109/
IPSN.2005.1440896.

https://doi.org/10.1137/16M1076629
https://doi.org/10.1137/16M1076629
https://doi.org/10.1137/110837462
https://doi.org/10.1049/iet-cta:20050401
https://doi.org/10.1109/ACC.2007.4282726
https://doi.org/10.1137/S009753979628292X
https://doi.org/10.1137/S009753979628292X
https://www.mit.edu/~jnt/Papers/PhD-84-jnt.pdf
https://doi.org/10.1109/TAC.1986.1104412
https://doi.org/10.1016/j.sysconle.2004.02.022
https://doi.org/10/bmq2t4
https://doi.org/10.1109/IPSN.2005.1440896
https://doi.org/10.1109/IPSN.2005.1440896

	1 Introduction
	1.1 Asymptotic average consensus
	1.2 Contribution
	1.3 Related works

	2 Preliminaries
	2.1 Mathematical toolbox
	2.2 Computing model

	3 Recurrence rules for consensus
	3.1 Affine recurrence rules
	3.2 Consensus and average consensus rules

	4 The MaxMetropolis algorithm
	4.1 A symmetric affine rule
	4.2 Temporal complexity of the MaxMetropolis algorithm

	5 Conclusion

