A crisis of the reproducibility of studies reported in leading science journals emerged a few years ago [START_REF] Peng | The reproducibility crisis in science: A statistical counterattack[END_REF][START_REF] Barba | The hard road to reproducibility[END_REF][START_REF] Munafo | A manifesto for reproducible science[END_REF][START_REF] Baker | 1,500 scientists lift the lid on reproducibility[END_REF][START_REF] Collins | Policy: NIH plans to enhance reproducibility[END_REF][START_REF] Begley | Six red flags for suspect work[END_REF] . One of the multiple origins of this crisis is that many statistically significant results obtained in some studies were not replicated or supported by other ones [START_REF] Perrin | Preclinical research: Make mouse studies work[END_REF][START_REF] Begley | Drug development: Raise standards for preclinical cancer research[END_REF][START_REF] Begley | Reproducibility in science: improving the standard for basic and preclinical research[END_REF] . One of the reasons given is that many published results are false positives: authors wrongly generalize (i.e., infer) their results to the target population after obtaining a statistically significant result in their study sample [START_REF] Ioannidis | Why most published research findings are false[END_REF][START_REF] Nuzzo | Scientific method: statistical errors[END_REF] . P-hacking and HARKing are ones of the inappropriate methods of analyzing and interpreting study results, leading to false positive results. P-hacking (or "p-fishing") occurs when researchers collect data without a predetermined sample size, select data without a priori identification of inclusion and exclusion criteria, or select statistical analyses until nonsignificant results become significant [START_REF] Greenland | Multiple comparisons and association selection in general epidemiology[END_REF][START_REF] Guller | Interpreting statistics in medical literature: a vade mecum for surgeons[END_REF][START_REF] Head | The extent and consequences of p-hacking in science[END_REF][START_REF] Bender | Adjusting for multiple testing--when and how?[END_REF] . HARKing occurs when researchers present a post hoc hypothesis based on their results as if it were an a priori hypothesis [START_REF] Kerr | HARKing: hypothesizing after the results are known. Personality and social psychology review : an official[END_REF] . However, even in the absence of p-hacking, HARKing, association biases [START_REF] Delgado-Rodriguez | Bias[END_REF] , or any other errors in scientific reporting, the probability to wrongly infer statistically significant results to the target population is very high is some situations. The purpose of the paper is to help researchers in veterinary science who do clinical research as well as clinicians interpreting those research findings appreciate the degree of (un)certainty when generalizing the study results to the target population of studied animals, according to the characteristics of the clinical study. This appreciation is also necessary to practice evidence-based veterinary medicine [START_REF] Lanyon | Evidence-based veterinary medicine: a clear and present challenge[END_REF] , especially when critically appraising evidence within the more general framework of the clinical decisionmaking process [START_REF] Vandeweerd | Is evidence-based medicine so evident in veterinary research and practice? History, obstacles and perspectives[END_REF][START_REF] White | Systematic evaluation of scientific research for clinical relevance and control of bias to improve clinical decision making[END_REF] .

I. GENERAL CONCEPTS

Throughout this paper, the context will always be the following: researchers seek to provide evidence that there is a true association between one exposure (e.g., neutering status, being treated with a treatment versus placebo, surgical versus medical intervention) and one outcome (e.g., disease occurrence, tumor remission, all-cause death). The statistical tests mentioned in this paper will therefore test such associations. The conclusions drawn from other statistical tests (e.g., those testing the normality of one distribution) will not be addressed. Furthermore, to facilitate the reading of the paper, the expression "significant association" will be used for "association classified as being statistically significant based on the p-value (p ≤ α)"; such expression does therefore not refer to the clinical significance of the association [START_REF] Kelsey | A contrary view on statistical significance[END_REF][START_REF] West | 5 ways statistics can fool you-Tips for practicing clinicians[END_REF] .

II. HYPOTHETICAL STUDIES

Two hypothetical studies will illustrate the concepts presented in the paper. For simplification purpose, these studies will be considered as feasible and ethical.

The context of the first study (study #1) is the following: Mullin et al. conducted a nonrandomized study to assess the association between doxorubicin chemotherapy use (versus no therapy use) and death occurrence in dogs with presumptive cardiac hemangiosarcoma [START_REF] Mullin | Doxorubicin chemotherapy for presumptive cardiac hemangiosarcoma in dogs[END_REF] . The statistically significant difference in death occurrence between the two groups suggested a potential effect of doxorubicin chemotherapy on time to death. In this context, the investigators of study #1 designed a randomized clinical trial to confirm the beneficial effect of doxorubicin chemotherapy within the first four months of use. To do so, they use the figures provided by the Kaplan-Meier curves in the paper of Mullin et al. [START_REF] Mullin | Doxorubicin chemotherapy for presumptive cardiac hemangiosarcoma in dogs[END_REF] (45% and 5% of alive dogs at four months, respectively) in order to calculate the sample size with 80% of statistical power (n=79 dogs in each group). Then they followed the dogs during four months and compared the two groups of dogs on death occurrence by using the Kaplan-Meier method and the log-rank test.

Study #1 can be considered as "confirmatory" since it is conducted to confirm the result of the previous study of Mullin et al.

The context of the second study (study #2) is the following: it has been suggested that masitinib monotherapy use has promising potential in treating canine epitheliotropic T-cell lymphoma [START_REF] Holtermann | Masitinib monotherapy in canine epitheliotropic lymphoma[END_REF] .

In this context and based on these premises, the investigators of study #2 conducted a randomized clinical trial to assess the effect of masitinib in dogs diagnosed with multicentric lymphoma on (partial or complete) remission of their lymphoma. To do so, they randomly allocate 80 dogs with multicentric lymphoma in one out of two groups: one group receiving masitinib plus prednisone (n=40), the other one receiving prednisone only (n=40). This number of 80 dogs was not based on an a priori sample size calculation, but based on the available time to recruit dogs within in a predefined period. Then they followed the dogs during three months and compared the two groups on the presence of partial/complete lymphoma remission at three months. Study #2 can be considered as "exploratory" since it is the first one studying such association between masitinib plus prednisone use (versus prednisone use only) and lymphoma remission in such population of dogs with multicentric lymphoma.

III. REVIEW OF STATISTICAL CONCEPTS

Some statistical reminders about the null hypothesis, type-I and type-II errors, and statistical power are briefly provided below. These points are covered in more detail elsewhere [START_REF] Shott | Detecting statistical errors in veterinary research[END_REF] .

A. The null-hypothesis and its acceptance or rejection A statistical test testing the association between one exposure and one outcome is based on a "null-hypothesis" which is the absence of such association in a predefined (target) population [START_REF] Lehmann | The Fisher, Neyman-Pearson Theories of Testing Hypotheses: One Theory or Two?[END_REF] .

For instance, the null-hypothesis of the log-rank test performed in study #1 is: "there is no association between doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac hemangiosarcoma.". If the null-hypothesis is rejected, one concludes that the study provides evidence supporting that there is a true association in the population between the exposure and the outcome. Most of the time, the rejection or acceptance of the null-hypothesis is based on the p-value provided by the statistical test: if the p-value is less than or equal to a threshold value (α), the association is classified as "significant" in the study sample, and it is concluded that the null-hypothesis is false (rejection of the nullhypothesis). (Such use of the p-value and the "significant" / "non significant" approach has however contributed to the reproducibility crisis and is questioned by many scientists [START_REF] Sterne | Sifting the evidence-what's wrong with significance tests?[END_REF][START_REF] Jeffery | Liberating the (data) population from subjugation to the 5% (P-value)[END_REF][START_REF] Mcshane | Abandon Statistical Significance[END_REF][START_REF] Amrhein | Scientists rise up against statistical significance[END_REF] .)

B. Type-I and type-II errors and statistical power When there is no true association between the exposure and the outcome in the population (or "when the null-hypothesis is true"), the probability of obtaining a significant association (p ≤ α) in the study sample is α (also known as the probability of type-I error).

When there is a true association between the exposure and the outcome in the population (or "when the null-hypothesis is false"), the probability of not obtaining a significant association (p > α) in the study sample is equal to β (also known as the probability of type-II error).

Therefore, is such situation, the probability of obtaining a significant association is (1-β), which is the value of the statistical power of the study.

IV. REVIEW OF DIAGNOSTIC TEST CONCEPTS

The sensitivity (Se) of a diagnostic test is the probability of a positive test result when the disease (or any health-related condition) is present, and the specificity (Sp) is the probability of a negative test result when the disease is not present. The positive predictive value (PPV) of a diagnostic test is the probability that an animal with a positive test result would have the disease.

In a sample of N animals, Se, Sp, and PPV can be estimated by calculating the proportion of true-positive animals among diseased animals (Se), the proportion of true-negative animals among disease-free animals (Sp), and the proportion of true positive animals among testpositive animals (PPV).

From the frequencies of Table 1, Se, Sp and PPV can be expressed as:

𝑆𝑒 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁 𝑆𝑝 = 𝑇𝑁 𝐹𝑃 + 𝑇𝑁 𝑃𝑃𝑉 = 𝑇𝑃 𝐹𝑃 + 𝑇𝑃 (1)
Table 1 can be re-expressed by using proportions instead of frequencies. To do so, let  be the prevalence rate of the disease in the population; it is therefore the probability of having the disease for an animal randomly drawn from this population before the result of the diagnostic test was known. If one randomly draws a sample of N animals from the population in which the prevalence rate is , there will be N. diseased animals and N.(1-) disease-free animals.

Among the N. diseased animals, there will be N..Se true-positive animals; among the N.(1-) disease-free animals, there will be N.(1-).Sp true-negative animals. Table 2 presents the frequencies of Table 1 by using Se, Sp, and  in a sample of N animals.

Using Formula (1) of the PPV by replacing TP with N..Se and by replacing FP with N.(1-).(1-Sp), one obtains:

𝑃𝑃𝑉 = 𝜋. 𝑆𝑒 (1 -𝜋). (1 -𝑆𝑝) + 𝜋. 𝑆𝑒 (2) 
The Appendix illustrates the equivalence between Formula (1) and Formula (2) by using data from a hypothetical study. Therefore, in a situation where the prevalence rate of the disease () is low (for instance, 1%), a diagnostic test which has a very good Se (for instance, 80%) and an excellent Sp (for instance, 95%) will have a poor PPV (e.g., 14% provided by Formula (2) by using the previous values of , Se, and Sp; see Appendix for illustrative data). A PPV of 14% would be interpreted as: only 14% of animals with a positive test for the studied disease actually have the disease, while 86% of animals with a positive test are actually disease-free.

V. APPLICATION OF DIAGNOSTIC TEST CONCEPTS TO STATISTICAL TESTS

Although the interpretation of diagnostic tests and the interpretation of statistical tests have some important divergent concepts, some aspects of diagnostic test interpretation can serve as a reasonable metaphor for interpreting statistical tests [START_REF] White | Interpreting statistics from published research to answer clinical and management questions[END_REF] . To apply the concept of sensitivity, specificity, and positive predictive value of a diagnostic test to a statistical test testing the association between one exposure and one outcome, one must define what are the analogous terms for having the disease, for being disease-free, and for having positive and negative test results. With a statistical test, researchers seek for evidence that there is a true association in the population (i.e., evidence supporting that the null-hypothesis is false). A significant association in the study sample is in favor of the evidence they are seeking. In the situation of diagnostic tests, clinicians seek for evidence that the animal has the studied disease. A positive test for this disease is in favor of the evidence they are seeking. Therefore, the analogies described in Table 3 can be made [START_REF] Browner | Are all significant P values created equal? The analogy between diagnostic tests and clinical research[END_REF] .

The sensitivity of a diagnostic test is the probability of obtaining a positive test result when the disease is present. By analogy (see Table 3), the sensitivity of a statistical test is therefore the probability of obtaining a significant association when the null-hypothesis is false. This is analogous to the statistical power of a study (1-β). The specificity of a diagnostic test is the probability of obtaining a negative test result when the disease is absent. By analogy (see Table 3), the specificity of a statistical test is the probability of obtaining a non-significant association when the null-hypothesis is true. Since α is the probability of obtaining a significant association when the null-hypothesis is true, by analogy, the specificity of a statistical test is therefore (1α).

VI. RELEVANCE OF CALCULATING THE PPV OF A STATISTICAL TEST

In practice, a clinician is much more interested in the PPV of diagnostic tests than the sensitivity and specificity of such tests. When a positive test result is obtained for an animal, one would like to know the probability that the animal has the studied disease (i.e., the PPV for having the disease). By analogy with statistical tests (see Table 3), when a significant association is obtained, one would like to know the probability that there is a true association in the population (i.e., the PPV for the null-hypothesis being false). For instance, the PPV of the log-rank statistical test performed in study #1 is the probability that there is a true association between doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac hemangiosarcoma, if the investigators obtained a significant association in their study sample.

The analogy for a low PPV of a statistical test indicates that the probability that there is a true association in the population is low even when the association is significant. In such situations of low PPV, it would not be surprising that a significant result in one study is difficult to replicate as being significant in another study of the same association targeting the same population [START_REF] Ioannidis | Why most published research findings are false[END_REF] .

To calculate the PPV of a statistical test, Formula (2) will be used by replacing the sensitivity, specificity, and  for diagnostic tests by their analogous values for statistical tests. For a statistical test, we previously determined that Se=(1-β) and Sp=(1-α). We must now interpret the value of  for statistical tests.

When researchers plan to design a study to test an association between one exposure and one outcome, they have some level of uncertainty that this association actually exists in the population. They must have such level of uncertainty because, if they knew with 100% certainty that the null-hypothesis is false, a study would not be necessary. Before conducting a study, researchers therefore have in mind an a priori probability that the null-hypothesis is false in the studied population, which lies between 0 excluded and 1 excluded. For instance, because the association between doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac hemangiosarcoma has been previously suggested, the investigators of study #1 should have a higher level of certainty that this association truly exists, compared to the level of certainty of the investigators of study #2, where the association tested in study #2 has never been studied before.

In the context of diagnostic tests,  was the probability of having the disease for an animal randomly drawn from a population before the result of the test was known. By using the analogies presented in Table 3, for a statistical test,  would be the a priori probability that the null-hypothesis is false (i.e., the a priori probability that the association truly exists in the population). The "a priori" expression means "before the result of the statistical test is obtained from the study". (This expression refers to the notion of "prior information" in Bayesian statistics [START_REF] Greenland | Bayesian perspectives for epidemiological research: I. Foundations and basic methods[END_REF] , in the context of the PPV of statistical tests [START_REF] Browner | Are all significant P values created equal? The analogy between diagnostic tests and clinical research[END_REF][START_REF] Lash | The Harm Done to Reproducibility by the Culture of Null Hypothesis Significance Testing[END_REF] .) As Browner and Newman wrote, the value of  for statistical tests is based on "biologic plausibility, previous experience with similar hypotheses, and knowledge of alternative scientific explanations" [START_REF] Browner | Are all significant P values created equal? The analogy between diagnostic tests and clinical research[END_REF] . Therefore, in an exploratory study where researchers are the first ones to assess an association between one exposure and one outcome in a specific target population, it must be admitted that the a priori probability that such association truly exists () is low, despite the potential strong pathophysiological basis for this exploratory study [START_REF] Ioannidis | Why most published research findings are false[END_REF] .

We can rewrite Formula (2) of the PPV of a diagnostic test by replacing Se and Sp by their analogous value for a statistical test ((1-α) and (1-β), respectively):

𝑃𝑃𝑉 = 𝜋. (1 -𝛽) (1 -𝜋). 𝛼 + 𝜋. (1 -𝛽) (3) 10/22
With  being the a priori probability that the null-hypothesis is false (i.e., the probability that the association truly exists), α the type-I error, β the type-II error, and (1-β) the statistical power.

The interpretation of Formula ( 3) is as follows. Suppose that the statistical power of study #2 is 80% when testing the association between masitinib plus prednisone use (versus prednisone use only) and lymphoma remission in dogs with multicentric lymphoma, and α is set at 5% (α=0.05). Suppose that the probability that this association truly exists is (i.e., =0.01); this low value of  can be explained by the fact that study #2 is exploratory and therefore involves much a priori uncertainty about the existence of such association. Based on the characteristics of study #2 (a statistical power of 80% and its exploratory status with =0.01), the PPV calculated by using Formula (3) is 0.14 (14%). This value of 14% means that if the investigators of study #2 conduct this study and obtain a significant association, the probability that this association truly exists in the population of dogs with multicentric lymphoma is (only) 14%.

VII. FALSE POSITIVE REPORT PROBABILITY OF A STATISTICAL TEST

In the context where researchers would like to estimate the probability of wrongly concluding that there is a true association in the population after obtaining a significant one in the study sample, the complement of the PPV (1-PPV) is the most relevant indicator. This complement of PPV is called "false positive report probability" (FPRP) [START_REF] Wacholder | Assessing the probability that a positive report is false: an approach for molecular epidemiology studies[END_REF][START_REF] Held | Reverse-Bayes analysis of two common misinterpretations of significance tests[END_REF] . The FPRP is therefore the probability that there is no true association in the population after obtaining a significant association in the study sample. In other words, the FPRP quantifies the probability of wrongly concluding that there is a true association in the population after obtaining a significant one in the study sample. For instance, the FPRP of the log-rank statistical test used in study #1 is the probability of wrongly concluding that there is an association between doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac hemangiosarcoma after obtaining a significant association in the study sample.
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We obtain the expression of the FPRP after calculation from Formula (3):

𝐹𝑃𝑅𝑃 = 1 -𝑃𝑃𝑉 = (1 -𝜋) × 𝛼 (1 -𝜋) × 𝛼 + 𝜋 × (1 -𝛽) (4) 
With  being the a priori probability that the null-hypothesis is false (i.e., the probability that the association truly exists), α the type-I error, β the type-II error, and (1-β) the statistical power.

Figure 1 provides numerical examples of FPRP values according to selected values of  and (1β).

VIII. MISINTERPRETATION OF THE TYPE-I ERROR AND P-VALUE

In the vast majority of cases, the Type-I error α is set at 5% (α=0.05), which is considered as a low value. Many researchers wrongly think that since α is low, the conclusion following a significant association is accompanied by a (same) low probability of error [START_REF] Goodman | p values, hypothesis tests, and likelihood: implications for epidemiology of a neglected historical debate[END_REF][START_REF] Gliner | Problems With Null Hypothesis Significance Testing (NHST): What Do the Textbooks Say?[END_REF] . Similarly, pvalues are commonly misinterpreted as the observed probability to wrongly reject the nullhypothesis, which means that researchers commonly and mistakenly interpret the p-value as if it were the FPRP [START_REF] Greenland | Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations[END_REF] . For instance, if the p-value obtained in study #2 is 0.03, the investigators of study #2 would probably conclude with a mistaken belief that there is strong evidence for a true association between doxorubicin chemotherapy use (versus no therapy use) and time to death in dogs with presumptive cardiac hemangiosarcoma, with a 3% risk of error [START_REF] Jeffery | Liberating the (data) population from subjugation to the 5% (P-value)[END_REF][START_REF] Goodman | A dirty dozen: twelve p-value misconceptions[END_REF][START_REF] Wasserstein | The ASA's Statement on p-Values: Context, Process, and Purpose[END_REF] . The p-value is actually the probability of the observed or more extreme results, if the null-hypothesis were true and if there were no bias when estimating the association. (The p-value has therefore no meaningful interpretation per se since its value is conditional on an hypothesis that nobody would know with 100% certainty whether it is true or false [START_REF] Wagenmakers | A practical solution to the pervasive problems of p values[END_REF] .)

a priori probability that the null-hypothesis is false is compatible with the current state of knowledge in the field [START_REF] Held | Reverse-Bayes analysis of two common misinterpretations of significance tests[END_REF][START_REF] Colquhoun | The reproducibility of research and the misinterpretation of p-values[END_REF] .

X. CLINICAL SUMMARY

The probability of wrongly concluding that there is a true association in the population between one exposure and one outcome after obtaining a significant association in the study sample is neither equal to α nor to the p-value. Such probability (the "false positive report probability", or FPRP) depends on the characteristics of the study, namely its statistical power and its "confirmatory" versus "exploratory" status based on previous results in the same field.

In the case of an exploratory study (i.e., no previous studies have studied the same association in the same population yet), which is not uncommon in veterinary clinical research, researchers cannot be convinced that there is a true association in the population after obtaining a significant one in their study sample. However, in a study designed to confirm a result that other highquality studies have previously obtained, researchers can start to be confident when they conclude that there is a true association after obtaining a significant one in their study sample.

Furthermore, and importantly, unless the true association is strong, a small sample size (which is also not uncommon in veterinary clinical research) prevents one from being confident when concluding, even after obtaining a significant association in the study sample.

Researchers can start to be confident when they conclude that there is a true association in the population between one exposure and one outcome after obtaining a significant one in the study sample if (1) the statistical power of the study is high (at least 80%), and (2) the amount of knowledge on the subject of the study allows to estimate the a priori probability that this association truly exists of at least 20%. In such a situation, when the association is significant, the probability of wrongly concluding that this association truly exists is 20% (FPRP=20%).

One may think that such probability of 20% is too elevated, compared to the 5% that most researchers have in mind when they conclude after obtaining a significant association.

However, to reach an FPRP of 5%, the study must have the following characteristics: having a statistical power of 80% and being confirmatory with an a priori probability that there is a true association as high as 54% (=0.54). Unfortunately, such confirmatory studies would not likely be designed because researchers would be concerned that most funding sources and journals would prioritize projects as being more innovative [START_REF] Munafo | A manifesto for reproducible science[END_REF][START_REF] Hagen | Novel or reproducible: That is the question[END_REF] . This is the reason why confirmatory studies should be much more encouraged than they actually are [START_REF] Mogil | No publication without confirmation[END_REF] .

The readers must keep in mind that the interpretation of the probability of wrongly concluding that there is a true association in the population after obtaining a significant one in the study sample (i.e., the FPRP) assumes the absence of p-hacking, HARKing, association biases, or any other errors in scientific reporting. Even in this ideal world, the calculation of the FPRP, as it has been presented in this paper (and in other ones [START_REF] Ioannidis | Why most published research findings are false[END_REF][START_REF] Wacholder | Assessing the probability that a positive report is false: an approach for molecular epidemiology studies[END_REF] ), is still likely to be too optimistic [START_REF] Colquhoun | The reproducibility of research and the misinterpretation of p-values[END_REF] (i.e., the FPRP is likely to be even higher). Researchers as well as clinicians must nonetheless be aware that a significant association often provide a weak evidence that this association truly exists in the population. Such awareness is a necessary step to communicate more cautiously when writing the clinical relevance of the results of one study, potentially leading to clinical decisions thereafter. More generally, it is a necessary step for better veterinary research and (self-)evaluation of scientific research when practicing evidence-based veterinary medicine. "There is a true association in the population" ("the nullhypothesis is false") "To be disease-free" "There is no true association in the population" ("the null-hypothesis is true")
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 1 Figure 1. Values of the false positive report probability (FPRP) according to the statistical
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 1 Distribution of frequencies within a sample size of N animals according to the resultsof a diagnostic test and the absence/presence of the disease.

	Result of a diagnostic test	Disease present	Disease absent	Total
	Positive	True Positive (TP) False Positive (FP)	FP+TP
	Negative	False Negative	True Negative	
				TN+FN
		(FN)	(TN)	
	Total	TP+FN	FP+TN	N

Table 2 .

 2 Distribution of frequencies within a sample size of N animals according to sensitivity

(Se) and specificity (Sp) of a diagnostic test, and according to the proportion  of diseased animals in the sample.

Table 4 .

 4 Illustrative example of distribution of frequencies within a sample size of 1493 animals.

	Result of a diagnostic test	Disease present	Disease absent	Total
	Positive	12	74	86
	Negative	3	1404	1407
	Total	15	1478	1493
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IX. FACTORS CONTRIBUTING TO A HIGH FALSE POSITIVE REPORT PROBABILITY

The Formula (4) indicates that the FPRP of a statistical test performed in a study whose objective is to provide evidence that there is a true association between one exposure and one outcome depends on the probability of type-I error (α), on the statistical power of the study (1β), and on the a priori probability that the null-hypothesis is false ().

A. Impact of the value of the type-I error (α) Suppose that, in study #1 designed with 80% of statistical power, the a priori probability that the null-hypothesis is false is 20% (i.e., =0.20). If α is set to 1% (α=0.01), the FPRP calculated from Formula (4) is 5%; if α is set to 5% (α=0.05), the FPRP increases to 20%. Therefore, and more generally, the higher the type-I error (α), the higher the FPRP. This point is one of the origins of a scientific movement that questions the type-I error threshold of 5% (α=0.05), and proposes to lower it to 0.5% (α=0.005) [START_REF] Benjamin | Redefine statistical significance[END_REF] . This movement is however not shared by all scientists [START_REF] Trafimow | Manipulating the Alpha Level Cannot Cure Significance Testing[END_REF] , and the convention for the type-I error (α) threshold set at 5% is likely to persist for years. From now on throughout the paper, the value of α will be set at 5% (α=0.05).

B. Impact of the value of the statistical power

Suppose again that study #1 is designed with an a priori probability that the null-hypothesis is false of 20% (=0.20). With a statistical power of 80% (by recruiting 79 dogs per group), the calculated FPRP is 20%. Suppose now that the investigators were finally able to recruit 39 dogs only per group instead of 79, the statistical power decreases to 50%. In this new situation, the calculated FPRP increases to 29% (see Figure 1). More generally, the lower the statistical power, the higher the FPRP. Since the statistical power of a study is directly related to its sample size, the FPRP increases with decreased sample size. This point indicates that a low statistical power (or small sample size) not only decreases the chances of obtaining a significant result when there is a true association, but it also makes any obtained significant result more likely to be false positive.

C. Impact of the a priori probability that the null-hypothesis is false Suppose again that study #1 is designed with a statistical power of 80% (with 79 dogs per group) and that the a priori probability that the null-hypothesis is false is 20% (=0.20). The calculated FPRP is 20%. Suppose that study #2 is designed with 80% of statistical power as well (with 40 dogs per group), but with the a priori probability that the null-hypothesis is false of 1% (=0.01), a low value due to its exploratory status. With such characteristics, the calculated FPRP of study #2 is 86% (see Figure 1). More generally, the lower the a priori probability that the null-hypothesis is false, the higher the FPRP. This point indicates that an exploratory study obtaining a significant association in the study sample is more likely to wrongly conclude that the association truly exists compared to a confirmatory study. This reasoning above is well known by clinicians using diagnostic tests [START_REF] Altman | Diagnostic tests 2: Predictive values[END_REF][START_REF] Grimes | Uses and abuses of screening tests[END_REF] : a diagnostic test can have excellent sensitivity and specificity but have a very low PPV (and therefore a high FPRP) if the disease prevalence rate is very low. With statistical tests, a similar phenomenon occurs: a statistical test can be very sensitive (excellent statistical power) and very specific (low threshold of type-I error α), however a significant association in the study sample can very poorly predict the existence of a true association in the population if the a priori probability that this true association exists is very low.

The most difficult task to appreciate the probability of wrongly concluding that the association truly exists in the population (i.e., the value of the FPRP) is to appreciate the a priori probability that the null-hypothesis is false [START_REF] Browner | Are all significant P values created equal? The analogy between diagnostic tests and clinical research[END_REF] . Such appreciation is beyond the scope of the paper. Briefly, some authors suggested a "reverse-Bayes" reasoning [START_REF] Matthews | Why should clinicians care about Bayesian methods?[END_REF] , which consists in setting the statistical power of the planned study and the desired FPRP value, then in seeing whether the value of the Appendix To illustrate Formula (2), suppose the data shown in Table 4 from a hypothetical study of 1493 animals, including 20 diseased animals and 66 animals with a positive test result for a diagnostic test.

By using the classical formulas of Se, Sp, and PPV (see formulas under Table 1), we obtain: