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Abstract
Audio-visual automatic speech recognition (AV-ASR) is an

extension of ASR that incorporates visual cues, often from the
movements of a speaker’s mouth. Unlike works that simply fo-
cus on the lip motion, we investigate the contribution of en-
tire visual frames (visual actions, objects, background etc.).
This is particularly useful for unconstrained videos, where the
speaker is not necessarily visible. To solve this task, we propose
a new sequence-to-sequence AudioVisual ASR TrAnsformeR
(AVATAR) which is trained end-to-end from spectrograms and
full-frame RGB. To prevent the audio stream from dominating
training, we propose different word-masking strategies, thereby
encouraging our model to pay attention to the visual stream.
We demonstrate the contribution of the visual modality on the
How2 AV-ASR benchmark, especially in the presence of simu-
lated noise, and show that our model outperforms all other prior
work by a large margin. Finally, we also create a new, real-
world test bed for AV-ASR called VisSpeech, which demon-
strates the contribution of the visual modality under challenging
audio conditions.
Index Terms: speech recognition, video, audiovisual

1. Introduction
Automatic Speech Recognition (ASR) is often applied to edited
or streamed media (for example, TV, online videos, video con-
ferencing), where the input signal consists of both an audio and
a visual stream. For these applications, the visual stream can
provide strong cues for improving ASR, particularly in cases
where the audio is degraded or corrupted. This has been largely
exploited by AV-ASR works which focus on lip motion [1–8]
(using video crops centered around the speaker’s mouth). While
lip motion is a strong signal in videos centered on the speaker,
it may be less useful in some online videos (those with egocen-
tric viewpoints, face coverings, poor video quality, speaker at a
distance etc.). A more recent and less-explored direction is the
contribution of additional visual context, for example, the hand
movements of a speaker, the presence of certain objects that are
being described or even the background location [9].

In this paper, we focus on the latter case. The main exist-
ing benchmark for this task is the How2 dataset, which consists
of instructional videos where the ground truth is obtained from
user uploaded transcripts [10]. While extremely valuable, the
How2 dataset was created by keeping the audio samples that
were most aligned to user-uploaded transcripts. This was done
using an automatic alignment tool, and biases the dataset to-
wards ‘clean’ audio samples. We posit that in this case, a model
trained on clean audio would never be incentivised to learn from
the visual modality, as all the information for ASR is present in
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the audio stream. This has led to a number of AV-ASR works
to doubt whether the visual modality is useful at all in a clean
audio context, or if it is simply used as a regularizer [11–13].

To resolve this issue, we explore masking strategies that
degrade the audio samples during training, and then evaluate
our model under noisy audio conditions. By dropping out key
words in the audio signal, we incentivise our model to pay at-
tention to the visual stream. Our model is based on a Seq2Seq
encoder-decoder architecture. Unlike previous works that use
full-frame pre-extracted visual features [9–11, 13–18], our en-
coder performs audio-visual fusion early, and is trained directly
from pixels and spectrograms. We show that large performance
gains can also be achieved by pretraining our model on the large
HowTo100M [19] dataset (not to be confused with How2).

Given the clean audio on the How2 test set, we also simu-
late noise at test time [13]. Unlike [13] which explicitly drops
‘visual words’, we simulate noise in a more objective way, by
randomly dropping audio segments, or adding external environ-
mental sounds from the AudioSet dataset [20]. We show that
under these conditions, our model with audio-visual inputs con-
sistently outperforms an audio only model for the task of AV-
ASR. In addition, we also create a small, real-world test set
with naturally occurring noisy audio. This dataset is created by
filtering out samples where automatic ASR gets perfect results,
and hence is a challenging test bed. On this dataset, we show
that the visual modality makes a significant contribution to per-
formance.

In this work we make the following contributions: (i)
We propose a new encoder-decoder AudioVisual ASR TrAns-
formeR (AVATAR) which is trained end-to-end from spectro-
grams and full-frame RGB. Our encoder fuses audio and vi-
sual inputs and is trained jointly with the decoder; (ii) To pre-
vent the audio stream from dominating training, we propose
and compare a number of masking strategies during training,
thereby encouraging our model to pay attention to the visual
stream; (iii) Our model achieves state-of-the-art performance
on the How2 AV-ASR benchmark, with visual information im-
proving performance under various simulated noise conditions;
and finally (iv) we create a new, challenging real-world test
bed for AV-ASR called VisSpeech. The dataset is created us-
ing a combination of automatic techniques and manual annota-
tion and unlike other works, allows us to demonstrate the per-
formance of our method under realistic noise conditions. We
have released this dataset publicly to the research community at
https://gabeur.github.io/avatar-visspeech.

2. Related Work
Audio-visual speech recognition. CTC [21] and Seq2Seq [22,
23] are the two most popular losses for performing ASR. In
the context of AV-ASR focused on lip motion, they have been
compared [4] and combined [7]. While early approaches [1, 2]
use pre-extracted lip visual features, recent works [3–8] adopt
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an end-to-end approach by directly processing the pixels of the
speaker’s lips. In contrast, the contribution of full frames for
AV-ASR beyond the speaker’s mouth movements has only been
studied through pre-extracted visual context features: either ac-
tion features [10, 11, 13, 17], place features [9, 11, 14, 16, 18] or
object features [9, 11, 14–16, 18]. Unlike these works, we train
directly from full frame pixels for AV-ASR.
Full-frame AV-ASR datasets. The How2 dataset [10], built
from instructional videos, is the main benchmark for the full-
frame AV-ASR task. Prior to this benchmark, full-frame AV-
ASR works [9, 14, 16] have also evaluated on instructional
videos datasets but those have not been released. Audio-
captioned image datasets [12, 18] have also been used for AV-
ASR. User-uploaded transcripts are the main source of ground
truth for large scale AV-ASR video datasets [6, 8, 10]. As these
are often misaligned or inaccurate, transcripts are typically first
audio-aligned and then automatically filtered [24].
Audio signal degradation for AV-ASR evaluation. In the case
of lip motion for AV-ASR, several works have experimented
with adding ‘babble noise’ [4, 6] or extra speech tracks [6, 8].
Additive Gaussian noise has also been used in [8]. In the case
of full-frame AV-ASR, it is common to completely mask some
segments of the audio signal that correspond to visual words.
Srinivasan et al. [18] mask the audio segments corresponding
to nouns and places. Ghorbani et al. [13] compute the similar-
ity between words and visual frames and mask only the visual
words. We instead attempt to mimic more realistic settings by
simulating audio degradations on How2 and releasing our ‘in
the wild’ benchmark VisSpeech. In order to prevent audio from
dominating the task, we extend audio degradation to the training
phase by randomly masking input words at training time.

3. Method
3.1. Model Architecture

In this section we provide an overview of our audiovisual ASR
model called AVATAR (Figure 1). Our model consists of a mul-
timodal encoder to encode both RGB frames and audio spectro-
grams, and a transformer decoder which produces the natural
language speech recognition output. Unlike previous AV-ASR
works, we do not use frozen visual features, but have a single
multimodal encoder that allows early multimodal fusion [25].
Audio Inputs. Our model operates on 25 second audio in-
puts. We follow common practice and extract 80-dimensional
filter bank features from the 16kHz raw speech signal using
a Hamming window of 25ms and a stride of 10ms, giving us
80× 2500 size spectrograms for 25 seconds of audio. We then
extract 16 × 16 non overlapping patches, giving us a total of
5× 156 = 780 input tokens for audio.
RGB Inputs. We randomly extract 2 frames at 2.5 fps from
each input video clip, which are then converted into tokens by
extracting 16×16×2 tubelets resulting in a total of 14×14 =
146 input tokens (the image resolution is 224 × 224). This is
based on our observations that visual signals are highly redun-
dant for most videos and can therefore be efficiently captured
from few frame samples.
Audiovisual Encoder. We adopt the recently proposed MBT
architecture [25], which is a transformer based multimodal en-
coder. Given both sets of audio and RGB tokens, MBT first adds
positional encodings to each token, and append a CLS token to
each set. The sets are then fed to the MBT encoder. MBT re-
lies on bottleneck tokens to model the cross-modal interactions.
Here we use the best parameters from [25] (4 bottleneck tokens

Figure 1: AVATAR: We propose a Seq2Seq architecture for
audio-visual speech recognition. Our model is trained end-to-
end from RGB pixels and spectrograms.

and bottleneck fusion starting at layer 8). We use public ViT-
Base [26] weights (ViT-B, dmodel = 768 L = 12, NH = 12,
d = 3072)1 pretrained on ImageNet-21K [27] for initialization.
Decoder. All hidden units from the encoder are then passed
to an auto-regressive transformer decoder [28] consisting of 8
layers and 4 attention heads.

3.2. Training Strategies

In this section we describe our training loss and strategy for
AVATAR. Our model is first pretrained on a large dataset with
transcripts obtained using an audio-only ASR API [19]. To en-
tice the model to pay attention to the visual modality, we intro-
duce a word masking strategy, which is described below.
End to end training. The model is trained end-to-end using a
cross-entropy loss on each decoded token.
Word Masking. To prevent our model from ignoring the visual
modality, we introduce word masking techniques during train-
ing. We randomly sample target words and mask out the input
audio signals that correspond to those words using pre-extracted
alignments between words and the input signal. We obtain the
alignment either from ASR results for pretraining or by using an
off-the-shelf forced-alignment tool for finetuning. For selecting
target words to mask, we experiment with two strategies: ran-
dom and content word masking. The former strategy selects
target words randomly whereas the latter chooses the targets
among non-stop (henceforth known as content) words. For ran-
dom word masking, we randomly mask out 10% of the words.
For content word masking, there are fewer candidate words to
be masked so content words are masked at a higher rate to match
the 10% overall masking on the entire dataset.

4. VisSpeech Dataset
In this section we describe our new AV-ASR benchmark called
VisSpeech. Our dataset is a subset of the publicly released
HowTo100M dataset [19], and is curated using a combination
of automatic filtering stages and manual verification.
Dataset creation pipeline:
Our dataset creation pipeline is driven by two objectives: (1) We
want to find challenging audio conditions in which regular
audio-based ASR fails. For this we seek videos where there
is a large word error rate between automatic ASR and user-
generated transcripts. (2) We are also interested in video seg-

1dmodel is the embedding dimension, L is the number of trans-
former layers, NH is the number of self-attention heads with hidden
dimension d.



ments where there is high audio-visual correspondence, in or-
der to create a suitable multimodal test set for AV-ASR. Our
pipeline consists of the following steps:
Step 1: Obtain videos with user uploaded transcripts. We
first search for HowTo100M videos that have both manually up-
loaded transcripts and automatic ASR. We then align the tran-
scripts using the Levenshtein algorithm in order to compute the
global word error rate (WER) between the two. Videos with
a global WER greater than 100% are removed, as we find this
helps filter out completely wrong user uploaded transcripts or
ASR. This gives us 85K videos.
Step 2: ASR vs user transcripts. Videos are split into
segments, at silences detected using an open-source VAD
model [29]. Using the user transcripts and the ASR from each
segment, we filter out segments with WER greater than 50% be-
tween the two transcripts to remove samples with significantly
low quality user transcripts or ASR. This is similar to the ratio-
nale for the filtering in Step 1, which is performed at a video
level, but now we perform it at a segment level. Next and most
importantly we remove “easy” samples, namely those with low
WER of less than 20% for non-stop words (too clean) and sam-
ples with less than 9 words (too short). This leaves us with 773K
sentences from 7.5K videos.
Step 3: Visual-Text similarity. To measure visual-text simi-
larity, we run a video-text similarity model [30] trained on the
Howto100M dataset to get similarity scores between each video
and sentence pair. This helps highlight challenging samples
where the visual modality can compensate for corrupted audio.
Step 4: Manual annotation. Finally, we manually check the
highest similarity segments and correct the user-uploaded ASR
if necessary.

VisSpeech consists of 508 segments from 495 unique
videos. The average transcript length is 12.2 words and aver-
age segment duration is 4.3 seconds. By filtering for segments
where ASR fails, we find that our dataset is truly a challeng-
ing test bed ‘in the wild’, with the audio containing background
chatter, laughter, music and other environmental sounds. Dur-
ing the manual verification phase, we also noticed that many
examples contain speech spoken with challenging English ac-
cents from various regions all over the world.

5. Experiments
In this section we first describe the datasets, metrics and imple-
mentation details for training (Section 5.1). We then describe
the simulated noise we use for evaluating our models on the
How2 dataset (Section 5.2). Finally we discuss the results of
our model under different training strategies on both the How2
and our newly introduced VisSpeech dataset (Section 5.3).

5.1. Datasets, Metrics, Implementation Details

HowTo100M [19] consists of more than 1 million instructional
videos associated with their automatically-extracted speech
transcriptions. We only use this dataset for pre-training our
model. Note that here we are not training with perfect ground
truth, but using the ASR outputs of an existing model. We re-
move videos present in the validation and test sets of VisSpeech
and How2 datasets (described next).
How2 [10] is an instructional video dataset created for multi-
modal language understanding. We use the 300 hour version.
The videos are segmented into short clips (avg 5.8s), each ac-
companied by their user-uploaded transcript (avg 20 words).
The dataset is split between a training (184,949 clips), valida-

tion (2,022 clips) and test (2,305 clips).
Metrics. We evaluate our models using Word Error Rate
(WER). For each sentence, dynamic programming is used to
align the predicted words to the ground truth. The number of
word errors (deletions, substitutions and insertions) is then com-
puted across the whole test dataset and divided by the number
of ground truth words to obtain the WER.
Training Implementation details. All models are trained end-
to-end unless otherwise specified. We use a batch size of 1,536
and 256 for pretraining and finetuning respectively. We adopt a
wordpiece tokenizer [31] pretrained for BERT and decode using
a beam search with a beam size of 4 and a brevity penalty of 0.6.
We use SpecAugment with parameters adopted from [32]. We
augment the visual frames using random cropping and color jit-
tering. We use a momentum optimizer. We pretrain our model
for 1M iterations with an initial learning rate of 2. The learning
rate is warmed up for 1K iterations and then linearly decayed to
0. We initialize both visual and audio streams of the MBT en-
coder with the public ViT [26] weights pretrained on ImageNet.
For finetuning, we train for 40K iterations without warmup.

5.2. Simulated Noise for Evaluation

The ground-truth transcripts in How2 are collected by perform-
ing forced-alignment on the user uploaded transcripts, and fil-
tering out examples with a low confidence score. Due to such a
filtering process, the audio signals in How2 are inherently clean,
and consequently the task is largely audio dominant. To over-
come this limitation, we evaluate our models with three types
of simulated audio noise: burst packet loss, environment noise
and mixed noise. For the burst packet loss, we randomly drop
two chunks of the input audio signal where the length of each
chunk is uniformly sampled from (0, 0.1] times the video dura-
tion. To simulate environment noise, we add audio noise ran-
domly sampled from the ‘noise’ and ‘environmental’ classes in
the AudioSet dataset [20]. Finally, we also evaluate a combi-
nation of the two (‘mixed noise’). Note that we train a single
model and evaluate it under different noise configurations.

5.3. Results

Effects of Training Strategies. Table 1 compares audio-only
(A) and audiovisual (A+V) models trained with different train-
ing strategies and evaluation noise settings on How2. In ad-
dition to clean audio, we report results in three degraded au-
dio scenarios, burst loss, environment noise and mixed noise.
We first note that without pretraining, our model performs well
on the clean eval, but performance degrades significantly un-
der simulated noise conditions. Adding the visual modality un-
der these noise conditions helps performance across the board.
Vanilla pretraining then improves performance significantly,
however we note the gap between A and A+V also shrinks, sig-
nifying the improvement is largely from better audio encoding.
In this case, the A+V model has no incentive to look at visual
inputs, as the task under clean conditions is dominated by au-
dio. In addition, the pretraining is performed on HowTo100M
where the transcripts are automatically generated from the au-
dio alone, and so our model is able to solve the task without any
visual information. We find the word masking strategies to be
extremely effective to mitigate this. The overall performance of
both A and A+V are improved and notably, the improvements
of A+V are larger. We show that with these masking schemes,
adding visual inputs helps even for clean audio, with the per-
formance improving under environment and mixed noise. Note
that across the board, adding the visual modality improves per-



Table 1: Audiovisual ASR vs Audio only models under various evaluation noise conditions (Clean, Burst, Environment and Mixed) and
with different training masking strategies (Random and Content). Percentage Word Error Rate (%WER) is reported on the How2 test
set. A: Audio-only. A+V: Audiovisual. Rel. ∆: Relative improvement of A+V over A.

Training
Eval Noise Clean Burst Loss Environment Noise Mixed Noise

A A+V Rel. ∆ A A+V Rel. ∆ A A+V Rel. ∆ A A+V Rel. ∆

No Pretraining 15.72 15.62 0.64% 29.59 28.69 3.05% 50.79 47.70 6.08% 60.51 57.49 5.0%
Vanilla 9.75 9.79 -0.33% 21.97 21.71 1.19% 25.97 25.55 1.61% 39.13 38.96 0.42%
Random Word Masking 9.19 9.11 0.93% 15.60 15.28 2.05% 23.39 22.35 4.45% 32.43 30.64 5.50%
Content Word Masking 9.58 9.25 3.48% 17.26 16.92 1.98% 23.77 22.67 4.65% 33.83 32.26 4.53%

Figure 2: Qualitative results on the VisSpeech dataset. We show the ground truth (GT), and predictions from our audio only (A) and
audio-visual model (A+V). Note how the visual context helps with objects (‘chain’, ‘eggplant’, ‘coin’, ‘dough’), as well as actions
(‘knit’, ‘fold’) which may be ambiguous from the audio stream alone. Errors in the predictions compared to the GT are highlighted in
red.

formance.
Comparison to the state-of-the-art. Table 2 compares
AVATAR with existing state-of-the-art methods on How2. Our
model trained from scratch already outperforms all existing
methods and serves as a strong baseline. Our best model, which
is pretrained on HowTo100M, with the random word masking
technique, brings a further boost reducing the error rate by over
45% relatively compared to the existing state-of-the-art method.
Evaluation on VisSpeech. We evaluate our AVATAR model
trained with different strategies on VisSpeech with real-world
noise (Table 3). We finetune the pretrained models for 5K iter-
ations on How2. Our dataset effectively highlights the contri-
bution of the visual modality without introducing any artificial
noise. Once again, both masking strategies help the audiovi-
sual (A+V) model learn to utilize the visual modality better.
Content word masking improves the performance only when

the visual modality is provided; providing some evidence that
the A+V model uses visual inputs to correct errors on content
words. To further tease apart the input of the visual modality,
we compute the word error rate on content words only and on
stop words only. This is because we hypothesize that visual
modality should not be able to provide any useful information
about stop words, and so most of the improvement should be
on the content words. As expected, we find the errors on con-
tent words are reduced substantially more than those on stop
words when the visual modality is incorporated with all train-
ing strategies (e.g., 1.18% vs. 0.33% absolute error rate drops
with content word masking). This also confirms the contribu-
tion of the visual modality. Further evidence can be found from
the qualitative examples provided in Figure 2, where it can be
clearly seen that visual context helps with correcting ASR errors
on objects as well as actions.



Table 2: Comparison to the state-of-the-art on How2. Our
model outperforms all previous works when trained from
scratch, and pretraining provides a significant boost. We report
the best audio-visual numbers for all works.

Model %WER

BAS [10] 18.0
VAT [11] 18.0
MultiRes [17] 20.5
LLD [13] 16.7

AVATAR (scratch) 15.6
AVATAR (pretrained) 9.1

Table 3: WERs of AVATAR on our newly introduced test set Vis-
Speech consisting of real-world noise. The models are trained
on automatic ASR from HowTo100M, and finetuned on How2.
Note here we do not add any artificial audio degradation at all.

Training Strategy A A+V Rel. ∆

No pretraining 44.57 43.41 2.61%
Vanilla 12.69 11.91 6.11%
Random Word Masking 12.35 11.86 3.93%
Content Word Masking 12.72 11.28 11.30%

End-to-end training with early audiovisual fusion. Unlike
previous works on full-frame AV-ASR, AVATAR is trained (i)
entirely end-to-end, and (ii) with early audiovisual fusion in the
MBT encoder. To assess this effect, we test AVATAR with pre-
extracted visual features as in [13], using a model pretrained
on HowTo100M with NCE loss [30]. We concatenate the au-
dio features at the output of our MBT encoder with our pre-
extracted visual features and provide them to the decoder. Note
that in this case the audio-visual fusion happens only through
the decoder. We train this model with random masking strat-
egy and find that the end-to-end trained model outperforms the
model with pre-extracted features with 9% relative improve-
ment in the mixed noise setting and similar trends are observed
in all the other noise settings.
Contribution of Visual Modality. Some works show that
the visual modality is simply a regularizer [11–13]. As done
by [12], we further investigate whether the contribution of the
visual modality is simply a regularizer by replacing the visual
frames of test examples with those extracted from random val-
idation videos. Unlike [12], we observe significant degrada-
tion of A+V models in all settings (e.g., 9.11%→9.53% with
random word masking and clean audio) as the models get dis-
tracted by the random visual inputs. Note that this perfor-
mance (9.53%) is worse than the audio-only model in this set-
ting (9.19%). This suggests vision in our model is not simply a
regularizer contrary to what was previously reported in [11,13].

6. Conclusion
In this work, we propose a novel encoder-decoder transformer
architecture and training strategies based on word masking for
AV-ASR. We show that our method helps the model learn to use
visual inputs better and outperform the state of the art. Finally
we also release VisSpeech, a new AV-ASR test benchmark, and
demonstrate the effectiveness of our method under naturally oc-
curring noise.
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